Internet Traffic Performance in High Speed Trains 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Internet Traffic Performance in High Speed Trains 1"

Transcription

1 Internet Traffic Performance in High Speed Trains 1 Dmitry Sivchenko a, Bangnan Xu a, Gerd Zimmermann a, Sven Hischke b a T-Systems, Technologiezentrum, Am Kavalleriesand 3, D Darmstadt, Germany b Deutsche Telekom AG, Friedrich-Ebert-Allee 140, D Bonn, Germany Abstract: Internet is increasingly important to our work and daily life. With the fast development of wireless technologies Internet can now be accessed anywhere and anytime. This paper investigates the Internet traffic performance in high speed trains, considering various wireless channels to connect the high speed train and wireless access network. Wireless link parameters such as bandwidth, propagation delay and error rate have a considerable impact on the quality of Internet access. The traffic performance of http, ftp, cbr and is evaluated intensively by the Network Simulation Tool NS2. Keywords: Wireless Internet Access, traffic performance, high speed trains, traffic modelling, NS2 1. INTRODUCTION Internet access is increasingly important for the business trip and private life. With the great success of wireless technologies, it is possible to provide the users Internet access anywhere and anytime. In comparison to wired link, wireless medium has its own characteristics. High error rate, larger link delays (i.e. round trip times) and smaller link bandwidth of the wireless medium result in limitations on connection quality. The problem becomes more challenging if high mobility must be dealt with such as in the high speed train. This paper investigates the Internet traffic performance for the scenario shown in Figure 1, where IEEE WLAN is used within the train and various wireless channels may be used to connect the train gateway to the access infrastructure. The wireless connection between the train and the access infrastructure is the bottleneck of Internet Access of the users in the train. The influence of parameters such as bandwidth, propagation delay and error rate of this wireless link on the Internet access is studied in this paper. The paper is organised as follows: Section 2 describes the traffic models to be used. Computer simulation using NS2 is discussed in Section 3. Section 4 presents simulation results. A final conclusion in Section 5 closes this paper. Fig. 1. Internet Access in High Speed Trains 1 This work is partly supported by the German Minister for Education and Research under IPonAir Project P27/1

2 2. TRAFFIC TYPES The most expected traffic type in the networks is the traffic of the http applications. The web traffic is an incoming traffic for users, e.g. downloading requested html pages with different sizes from http servers in the Internet. According to [3] this traffic type takes up to roughly 75% of all data transfers in the Internet. The other general services in the Internet are ftp, real-time communications (based on the cbr traffic) and applications. We assume, that in our application scenario the ftp and cbr traffic are incoming to users only. The uplink bandwidth in wireless channels is generally much smaller than that of the downlink. Therefore it is not possible to provide users a large uploading data rate and it is not considered that users upload any large data files using ftp. For the same reason the uplink cbr services are not considered, as the delay for a realtime traffic is too large. The traffic of applications is similar to the ftp traffic, but the size of messages is generally smaller than that of data files transferred with ftp. However, the incoming traffic usually uses an application like Outlook Express (ftp traffic) or web-mail (http traffic). Therefore only outgoing traffic from mobile users is evaluated. Each traffic type has its own quality requirement. For http traffic it is important for users to get a requested html page as soon as possible. The average response time defined as the time it takes to complete an html page transfer once the page transfer is initiated is the essential parameter to be evaluated. Most of html pages are expected to be transferred within this time to the accessing user. For ftp and users the effective throughput is of most interest. The effective throughput is defined as the ratio of the number of the data bits in the transported file to the time it takes to transmit it [4]. So the effective throughput refers to how fast a data file using ftp connection can be sent on the wireless link. The time needed to transmit a long data file using ftp or an message can be estimated using these throughput values. Packet delay is the parameter used to define the quality of a cbr connection. Some results are compared to an ISDN reference user with standard 64 Kbit/s data channel. The provided Internet Access in the train must have at least the same quality as the ISDN channels that clients usually have at home. 3. COMPUTER SIMULATION The traffic performance is intensively studied using Network Simulator NS2 [1]. A structure shown in Figure 2 is used to analyse the traffic performance. Fig. 2. Simulated network The simulated network consists of one cbr server (node 0), one ftp server (node 1), two http servers (nodes 2 and 3), one server (node 4), one router (node 5), one wireless access router (AR, node 6) and various amount of mobile nodes (MN) accessible through the wireless access router (MNs are not shown on the network structure). The main goal of the simulations is to determine the traffic performance that may be provided to users in high speed trains depending on wireless link parameters and number of active users in the train. The wired links are with the data rate of 100 Mbit/s and the link delay of 2ms. The access network P27/2

3 in the train is IEEE WLAN that consists of mobile nodes and the wireless access router. The wireless channel between the train and land infrastructure, i.e. connection between node 5 and node 6, is simulated as an asymmetric link between the router and AR. Its downlink/uplink parameters such as bandwidth, error rate and link delay can be set according to the wireless technologies to be used. 3.1 Simulated traffic models Every user has one traffic connection, no handover occurs during the simulation time. The amount of active users in the train is varied between 1 and 50. The cbr server is used for generation of real-time streams such as video or speech traffic with the data rates of 128 kbit/s and 8 kbit/s respectively; the ftp server contains some data files of different sizes, these can be downloaded by users; every http server has a html page pool, users access html pages from these pools; the server is used to receive the outgoing traffic from users. Four traffic types are simulated using the described network servers and distributed among active users according to the models in Table 1. At least one cbr connection (128 kbit/s) is used if cbr connections are simulated. 3.2 Parameters of the traffic types Traffic http ftp cbr model down down down up 1 80% 10% 0 10% 2 70% 20% 0 10% 3 70% 10% 10% 10% 4 100% Table 1. Models for distribution of traffic types among active users The transport layer of http, ftp and traffic is TCP with the packet size of 1000 bytes. cbr traffic uses UDP with a packet size of 210 bytes. The packet interval of cbr traffic is varied according to the cbr data rate. Html pages with a data size according to [2] are generated in the pools and for stochastic evaluation a new random model for html pages is implemented in NS2. The data size of an html page consists of main object size and size of a number of embedded objects in the page. Distribution values of stochastic parameters of simulated traffic types are given in Table 2. Traffic parameter http main object size http embedded object size http number of embedded object http reading time Distribution Truncated Lognormal Truncated Lognormal Distribution function 2 1 (ln( x) µ ) f x = exp 2 σx 2π 2σ Mean = 11000; Variance = 2, Min = 1000;Max = Mean = 7000; Variance = 1 Min = 1000; Max = Uniform Min = 0; Max = 5 Exponential f x e x = λ λ, λ = http data file size Truncated Exponential λ = http Duration Truncated Exponential λ = http message size Truncated Exponential 5 λ = Start time value Truncated Exponential λftp = 0.05; λcbr = ; λ = 0.02; Table 2. Distribution values of traffic parameters P27/3

4 To smooth the link load at the start of simulations a random value with exponential distribution (start time) is used. Table 3 contains parameters of all simulated traffic types. Traffic type http ftp cbr Parameters Start, sec. 1 Interval, sec. av: 30 Page Size, Kb av: 55, min: 1, max: 550 Start, sec. av: 20, min: 5, max: 150 File Size, Kb av: 2000, min: 50, max: 5000 Start, sec. av: 30, min: 5, max: 150 Duration, sec. av: 90, min: 10, max: 150 Start, sec. av: 50, min: 5, max: 150 Size, Kb. av: 30, min: 1, max: 1000 Table 3. Parameters of traffic types 4. PERFORMANCE EVALUATION To investigate the Internet traffic performance in trains two wireless links connecting the train and the fixed infrastructure are used. The downlink/uplink propagation delay and bandwidth of the wireless channel are given according to the wireless technologies. The link delay of 3ms/3ms corresponds to an IEEE wireless channel and 500ms/100ms to the link delay of a satellite communications link with terrestrial return channel (mobile radio). 4.1 Packet delay of the cbr traffic To study the performance of cbr traffic that corresponds to real time traffic, we use the traffic model 3 (see 3.1). Figure 3 presents packet delay of the cbr traffic vs. downlink bandwidth of the wireless channel under various numbers of mobile users in a train. The uplink bandwidth is 25% of that of the downlink, and the link is assumed error-free. Fig. 3. cbr packet delay for link delays 3ms/3ms (downlink/uplink) From Figure 3 we can see that the link delay has a significant impact on the mean packet delay. Using satellite link with a link delay of 500ms/100ms, the mean packet delay is always larger than 0.5s. That means that satellite link is not suited to support any real time traffic no matter how high the downlink bandwidth is. With an IEEE b wireless link, 10 MNs can be supported keeping the mean packet delay lower than 0.5s with a downlink bandwidth of 512 kbit/s, while 30 MNs can be supported if the downlink bandwidth is P27/4

5 as high as 1024 kbit/s. If the downlink bandwidth is large enough so that data packets can be sent over the link at once, the mean packet delay cannot be reduced further. In this case the packet delay is proportional to the propagation delay, there is no wait time in the link queue. 4.2 Throughput of the ftp traffic Figure 4 shows the effective throughput of the ftp traffic per user (see Section 2) vs. downlink bandwidth of the wireless channel under various traffic models, number of active users in the train and wireless link delays. The transport layer for ftp is the TCP, therefore only acknowledgement packets (ACK) will be sent back to the ftp server. The size of these ACK packets is insignificant therefore the uplink data traffic is very small and simulated results do not differ with different uplink bandwidths (e.g. 25% or 50% of the bandwidth of the downlink), the uplink bandwidth of the presented results uses 25% of that of downlink. Error free link is assumed. Fig. 4. Throughput of the ftp traffic We can see that a larger ftp effective throughput per user can be achieved if the number of active users is smaller and the downlink bandwidth is larger. More active users mean more ftp connections. Due to the waiting time for ACK packets, the total throughput is reduced if more ftp connections are active at the same time. We can also see that the round trip time (RTT) is a very important parameter for the effective throughput. This is because the next data packet cannot be sent by the server if the transfer of ACK packets from the client to the server takes more time. Thus, the time needed to transmit the data file increases, and the mean effective throughput is reduced. From Figure 4 we can see that the effective throughput with wireless link of 500ms/100ms is much less that that with wireless link of 3ms/3ms. We can also observe an interesting result with a large downlink bandwidth the effective throughput will not be increased any more after a threshold of 1536 kbit/s. The reason is that the ftp effective throughput cannot be increased further by increasing of the downlink bandwidth due to the RTT. We can also see that the results of the traffic model 1 are slightly better than of the model 2. This is because the traffic model 2 has much more ftp traffic than traffic model 1. As ftp traffic uses most of the channel resources (transfer of large data files), the effective throughput of a particular ftp user is smaller if more ftp traffic exists. 4.3 Response time of http traffic WWW applications generating http traffic are mostly used in Internet. The traffic model 4 is used for simulations with the uplink bandwidth of 50% of the downlink one. The mean response time of an html page vs. number of active users under various downlink bandwidths without errors is shown in Figure 5. P27/5

6 Fig. 5. Response time of http traffic, error free The average response time of an http page for an ISDN user with a 64 kbit/s channel is 7.89 seconds. A response time lower than this value is better than that of the ISDN reference user. A comparison of ISDN quality with other scenarios reveals the approximate number of users that can be use Internet access at the same time with a quality similar to that of ISDN users. We can see that if the downlink bandwidth is larger than 768 kbit/s even 50 http users with large link delays have a better service quality than an ISDN user. The impact of errors in the wireless channel with the downlink bandwidth of 384 kbit/s is displayed in Figure 6. From Figure 6 we can see an interesting result that the error rate at a large link delay is much more significant than at the small delay. Thus with the bit error rate (BER) of 1e-5 the response time at 3ms/3ms link delay is not much changed, while at the link delay of 500ms/100ms the response time are not acceptable even at the error rate of 5e-6 BER. This is due to the TCP protocol. At the small link delay the client receives the resent packet and replies with the ACK much more quickly than at larger link delay. Therefore loss of a data packet has more significant impact at a large link delay. Fig. 6. Impact of channel errors on the response time of http traffic 4.4 Throughput of the traffic The effective throughput vs. downlink bandwidth under various numbers of mobile users in the train and different link delays is shown in Figure 7, error-free wireless link is assumed. The results are presented for the traffic model 1. P27/6

7 Fig. 7. Throughput of traffic The traffic is the only outgoing data traffic from users and its data packets will be transmitted over the wireless uplink towards the access infrastructure. The downlink bandwidth does not impact the effective throughput in this case. Hence the throughput with the uplink bandwidth of 50% is much larger than with 25% of the downlink bandwidth. With the same reason as described in Section 4.2 the effective throughput is also larger at the smaller number of users in the train and at a smaller wireless link delay. A saturation of the effective throughput at the 3ms/3ms delays is not reached as the maximal uplink bandwidth (only 1024 kbit/s) is not enough to provide the minimal RTT. 5. CONCLUSION The results presented in this paper reveal influence of the wireless link parameters on the Internet traffic performance that can be provided to users in a train. The widely used traffic types are evaluated in this paper. A desired service quality can be derived from the obtained results. From the simulation results we can conclude that the link delay has a significant impact on the traffic performance of cbr, ftp, http and traffic. A large link bandwidth is not enough to achieve a better traffic performance. The link delay has a significant impact on the mean packet delay of cbr traffic. If the downlink bandwidth is large enough so that data packets can be sent over the link at once, the mean packet delay of CBR traffic cannot be reduced further. The round trip time that is determined also by the link delay is a very important parameter for the effective throughput of the ftp traffic. Moreover, the error rate at a large link delay is much more significant than at the small delay with the ftp traffic. REFERENCES [1] The Network Simulator ns2, Start Page: nsnam/ns/ [2] N.K. Shankaranarayanan, Traffic Models for IEEE MBWA System Simulations (Baseline Draft), 16 July [3] D. Staehle, K. Leibnitz, P. Tran-Gia, Source Traffic Modeling of Wireless Applications, Research Report Series, Report No. 261, June [4] Technology Development Group, Loral CyberStar, Inc., TCP/IP Performance over Satellite Links - Summary Report, 29 March P27/7

QoS of Internet Access with GPRS

QoS of Internet Access with GPRS Dept. of Prof. Dr. P. Tran-Gia QoS of Internet Access with GPRS Dirk Staehle 1, Kenji Leibnitz 1, and Konstantin Tsipotis 2 1 [staehle,leibnitz]@informatik.uni-wuerzburg.de 2 Libertel-Vodafone k.tsipotis@libertel.nl

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Performance of UMTS Code Sharing Algorithms in the Presence of Mixed Web, Email and FTP Traffic

Performance of UMTS Code Sharing Algorithms in the Presence of Mixed Web, Email and FTP Traffic Performance of UMTS Code Sharing Algorithms in the Presence of Mixed Web, Email and FTP Traffic Doru Calin, Santosh P. Abraham, Mooi Choo Chuah Abstract The paper presents a performance study of two algorithms

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

First Midterm for ECE374 02/25/15 Solution!!

First Midterm for ECE374 02/25/15 Solution!! 1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS

RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS RESOURCE ALLOCATION FOR INTERACTIVE TRAFFIC CLASS OVER GPRS Edward Nowicki and John Murphy 1 ABSTRACT The General Packet Radio Service (GPRS) is a new bearer service for GSM that greatly simplify wireless

More information

ETSI TR 102 678 V1.2.1 (2011-05) Technical Report

ETSI TR 102 678 V1.2.1 (2011-05) Technical Report TR 102 678 V1.2.1 (2011-05) Technical Report Speech and multimedia Transmission Quality (STQ); QoS Parameter Measurements based on fixed Data Transfer Times 2 TR 102 678 V1.2.1 (2011-05) Reference RTR/STQ-00184m

More information

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan

Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service

More information

Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks

Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Vasilios A. Siris and Despina Triantafyllidou Institute of Computer Science (ICS) Foundation for Research and Technology - Hellas

More information

The OSI model has seven layers. The principles that were applied to arrive at the seven layers can be briefly summarized as follows:

The OSI model has seven layers. The principles that were applied to arrive at the seven layers can be briefly summarized as follows: 1.4 Reference Models Now that we have discussed layered networks in the abstract, it is time to look at some examples. In the next two sections we will discuss two important network architectures, the

More information

QoS Measurements Methods and Tools

QoS Measurements Methods and Tools QoS Measurements Methods and Tools Contact: Jarmo prokkola Jarmo.prokkola@vtt.fi Tel: +358 20 722 2346 VTT Technical Reseach Centre of Finland Easy Wireless Workshop, IST Summit, Budapest, 05.07.2007 Network

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan dr.khalidbilal@hotmail.com

More information

Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks

Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks Jian Chen and Victor C.M. Leung Department of Electrical and Computer Engineering The

More information

Comparative Analysis of Congestion Control Algorithms Using ns-2

Comparative Analysis of Congestion Control Algorithms Using ns-2 www.ijcsi.org 89 Comparative Analysis of Congestion Control Algorithms Using ns-2 Sanjeev Patel 1, P. K. Gupta 2, Arjun Garg 3, Prateek Mehrotra 4 and Manish Chhabra 5 1 Deptt. of Computer Sc. & Engg,

More information

D. SamKnows Methodology 20 Each deployed Whitebox performs the following tests: Primary measure(s)

D. SamKnows Methodology 20 Each deployed Whitebox performs the following tests: Primary measure(s) v. Test Node Selection Having a geographically diverse set of test nodes would be of little use if the Whiteboxes running the test did not have a suitable mechanism to determine which node was the best

More information

First Midterm for ECE374 03/24/11 Solution!!

First Midterm for ECE374 03/24/11 Solution!! 1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your

More information

CREW - FP7 - GA No. 258301. Cognitive Radio Experimentation World. Project Deliverable D7.5.4 Showcase of experiment ready (Demonstrator)

CREW - FP7 - GA No. 258301. Cognitive Radio Experimentation World. Project Deliverable D7.5.4 Showcase of experiment ready (Demonstrator) Cognitive Radio Experimentation World!"#$% Project Deliverable Showcase of experiment ready (Demonstrator) Contractual date of delivery: 31-03-14 Actual date of delivery: 18-04-14 Beneficiaries: Lead beneficiary:

More information

PART 1: USING BASIC BANDWIDTH TOOLS

PART 1: USING BASIC BANDWIDTH TOOLS Internet Bandwidth Issues -- from Internet Sources by J. Scott, Jan 2007 Page 1 of 8 This note begins by showing you some results from free Internet tools to determine you bandwidth, either at home via

More information

A Slow-sTart Exponential and Linear Algorithm for Energy Saving in Wireless Networks

A Slow-sTart Exponential and Linear Algorithm for Energy Saving in Wireless Networks 1 A Slow-sTart Exponential and Linear Algorithm for Energy Saving in Wireless Networks Yang Song, Bogdan Ciubotaru, Member, IEEE, and Gabriel-Miro Muntean, Member, IEEE Abstract Limited battery capacity

More information

SUNYIT. Reaction Paper 2. Measuring the performance of VoIP over Wireless LAN

SUNYIT. Reaction Paper 2. Measuring the performance of VoIP over Wireless LAN SUNYIT Reaction Paper 2 Measuring the performance of VoIP over Wireless LAN SUBMITTED BY : SANJEEVAKUMAR 10/3/2013 Summary of the Paper The paper s main goal is to compare performance of VoIP in both LAN

More information

RTT 60.5 msec receiver window size: 32 KB

RTT 60.5 msec receiver window size: 32 KB Real-World ARQ Performance: TCP Ex.: Purdue UCSD Purdue (NSL): web server UCSD: web client traceroute to planetlab3.ucsd.edu (132.239.17.226), 30 hops max, 40 byte packets 1 switch-lwsn2133-z1r11 (128.10.27.250)

More information

Basic Multiplexing models. Computer Networks - Vassilis Tsaoussidis

Basic Multiplexing models. Computer Networks - Vassilis Tsaoussidis Basic Multiplexing models? Supermarket?? Computer Networks - Vassilis Tsaoussidis Schedule Where does statistical multiplexing differ from TDM and FDM Why are buffers necessary - what is their tradeoff,

More information

Optimization of VoIP over 802.11e EDCA based on synchronized time

Optimization of VoIP over 802.11e EDCA based on synchronized time Optimization of VoIP over 802.11e EDCA based on synchronized time Padraig O Flaithearta, Dr. Hugh Melvin Discipline of Information Technology, College of Engineering and Informatics, National University

More information

High-Speed Thin Client Technology for Mobile Environment: Mobile RVEC

High-Speed Thin Client Technology for Mobile Environment: Mobile RVEC High-Speed Thin Client Technology for Mobile Environment: Mobile RVEC Masahiro Matsuda Kazuki Matsui Yuichi Sato Hiroaki Kameyama Thin client systems on smart devices have been attracting interest from

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

Performance Measurement of Wireless LAN Using Open Source

Performance Measurement of Wireless LAN Using Open Source Performance Measurement of Wireless LAN Using Open Source Vipin M Wireless Communication Research Group AU KBC Research Centre http://comm.au-kbc.org/ 1 Overview General Network Why Network Performance

More information

Analysis of TCP Performance Over Asymmetric Wireless Links

Analysis of TCP Performance Over Asymmetric Wireless Links Virginia Tech ECPE 6504: Wireless Networks and Mobile Computing Analysis of TCP Performance Over Asymmetric Kaustubh S. Phanse (kphanse@vt.edu) Outline Project Goal Notions of Asymmetry in Wireless Networks

More information

HO Policies for Combined WLAN/UMTS Networks

HO Policies for Combined WLAN/UMTS Networks HO Policies for Combined WLAN/UMTS Networks Sven Wiethölter Telecommunication Networks Group TU Berlin Telecommunication Networks Group Technische Universität Berlin Project Overview Project partners Goal:

More information

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks

Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks Adaptive DCF of MAC for VoIP services using IEEE 802.11 networks 1 Mr. Praveen S Patil, 2 Mr. Rabinarayan Panda, 3 Mr. Sunil Kumar R D 1,2,3 Asst. Professor, Department of MCA, The Oxford College of Engineering,

More information

TCP Westwood for Wireless

TCP Westwood for Wireless TCP Westwood for Wireless מבוא רקע טכני בקרת עומס ב- TCP TCP על קשר אלחוטי שיפור תפוקה עם פרוטוקול TCP Westwood סיכום.1.2.3.4.5 Seminar in Computer Networks and Distributed Systems Hadassah College Spring

More information

THE Transmission Control Protocol (TCP) has proved

THE Transmission Control Protocol (TCP) has proved IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2004 1 Bandwidth Estimation Schemes for TCP over Wireless Networks Antonio Capone, Member, IEEE, Luigi Fratta, Fellow, IEEE, and Fabio Martignon,

More information

Measuring TCP over WiFi: A Real Case

Measuring TCP over WiFi: A Real Case Measuring TCP over WiFi: A Real Case Mirko Franceschinis, Marco Mellia, Michela Meo, Maurizio Munafò Istituto Superiore Mario Boella - Torino - Italy Dipartimento di Elettronica - Politecnico di Torino

More information

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Wireless Networks 6 (2000) 375 379 375 An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Jian Ma a, Jussi Ruutu b and Jing Wu c a Nokia China R&D Center, No. 10, He Ping Li Dong Jie,

More information

TCP Behavior across Multihop Wireless Networks and the Wired Internet

TCP Behavior across Multihop Wireless Networks and the Wired Internet TCP Behavior across Multihop Wireless Networks and the Wired Internet Kaixin Xu, Sang Bae, Mario Gerla, Sungwook Lee Computer Science Department University of California, Los Angeles, CA 90095 (xkx, sbae,

More information

Introduction VOIP in an 802.11 Network VOIP 3

Introduction VOIP in an 802.11 Network VOIP 3 Solutions to Performance Problems in VOIP over 802.11 Wireless LAN Wei Wang, Soung C. Liew Presented By Syed Zaidi 1 Outline Introduction VOIP background Problems faced in 802.11 Low VOIP capacity in 802.11

More information

PERFORMANCE EVALUATION OF FIREWALLS IN GIGABIT-NETWORKS

PERFORMANCE EVALUATION OF FIREWALLS IN GIGABIT-NETWORKS PERFORMANCE EVALUATION OF FIREWALLS IN GIGABIT-NETWORKS Rainer Funke, Andreas Grote, Hans-Ulrich Heiss Department of Computer Science University of Paderborn 33095 Paderborn, Germany e-mail: {rainer, grote,

More information

Bandwidth Measurement in Wireless Networks

Bandwidth Measurement in Wireless Networks Bandwidth Measurement in Wireless Networks Andreas Johnsson, Bob Melander, and Mats Björkman {andreas.johnsson, bob.melander, mats.bjorkman}@mdh.se The Department of Computer Science and Engineering Mälardalen

More information

A TCP-like Adaptive Contention Window Scheme for WLAN

A TCP-like Adaptive Contention Window Scheme for WLAN A TCP-like Adaptive Contention Window Scheme for WLAN Qixiang Pang, Soung Chang Liew, Jack Y. B. Lee, Department of Information Engineering The Chinese University of Hong Kong Hong Kong S.-H. Gary Chan

More information

Per-Flow Queuing Allot's Approach to Bandwidth Management

Per-Flow Queuing Allot's Approach to Bandwidth Management White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth

More information

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h-12.00h. First read the entire examination. There

More information

A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks

A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks A Comparison Study of Qos Using Different Routing Algorithms In Mobile Ad Hoc Networks T.Chandrasekhar 1, J.S.Chakravarthi 2, K.Sravya 3 Professor, Dept. of Electronics and Communication Engg., GIET Engg.

More information

From IWCMC 07 August Shing-Guo Chang

From IWCMC 07 August Shing-Guo Chang G. A. Ramanujan, Amit Thawani*, V. Sridhar Applied Research Group, Satyam Computer Services Ltd, 3rd Floor SID Block, IISc Campus, Bangalore, INDIA 560012 {Ramanujan_GA, Amit_Thawani, K. Gopinath Department

More information

Performance Issues of TCP and MPEG-4 4 over UMTS

Performance Issues of TCP and MPEG-4 4 over UMTS Performance Issues of TCP and MPEG-4 4 over UMTS Anthony Lo A.Lo@ewi.tudelft.nl 1 Wiskunde end Informatica Outline UMTS Overview TCP and MPEG-4 Performance Summary 2 1 Universal Mobile Telecommunications

More information

VoIP in 802.11. Mika Nupponen. S-72.333 Postgraduate Course in Radio Communications 06/04/2004 1

VoIP in 802.11. Mika Nupponen. S-72.333 Postgraduate Course in Radio Communications 06/04/2004 1 VoIP in 802.11 Mika Nupponen S-72.333 Postgraduate Course in Radio Communications 06/04/2004 1 Contents Introduction VoIP & WLAN Admission Control for VoIP Traffic in WLAN Voice services in IEEE 802.11

More information

VRT Testing What Makes BullsEye Better and Different from the rest (Our competitive Advantage)

VRT Testing What Makes BullsEye Better and Different from the rest (Our competitive Advantage) VRT Testing What Makes BullsEye Better and Different from the rest (Our competitive Advantage) December 16 th, 2015 Table of Contents 1. Purpose... 3 2. What a typical internet speed test measures....

More information

Random Early Detection Gateways for Congestion Avoidance

Random Early Detection Gateways for Congestion Avoidance Random Early Detection Gateways for Congestion Avoidance Sally Floyd and Van Jacobson Lawrence Berkeley Laboratory University of California floyd@eelblgov van@eelblgov To appear in the August 1993 IEEE/ACM

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

ECE 358: Computer Networks. Homework #3. Chapter 5 and 6 Review Questions 1

ECE 358: Computer Networks. Homework #3. Chapter 5 and 6 Review Questions 1 ECE 358: Computer Networks Homework #3 Chapter 5 and 6 Review Questions 1 Chapter 5: The Link Layer P26. Let's consider the operation of a learning switch in the context of a network in which 6 nodes labeled

More information

Establishing How Many VoIP Calls a Wireless LAN Can Support Without Performance Degradation

Establishing How Many VoIP Calls a Wireless LAN Can Support Without Performance Degradation Establishing How Many VoIP Calls a Wireless LAN Can Support Without Performance Degradation ABSTRACT Ángel Cuevas Rumín Universidad Carlos III de Madrid Department of Telematic Engineering Ph.D Student

More information

Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks

Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks Analysis of QoS parameters of VOIP calls over Wireless Local Area Networks Ayman Wazwaz, Computer Engineering Department, Palestine Polytechnic University, Hebron, Palestine, aymanw@ppu.edu Duaa sweity

More information

Chaoyang University of Technology, Taiwan, ROC. {changb,s9227623}@mail.cyut.edu.tw 2 Department of Computer Science and Information Engineering

Chaoyang University of Technology, Taiwan, ROC. {changb,s9227623}@mail.cyut.edu.tw 2 Department of Computer Science and Information Engineering TCP-Taichung: A RTT-based Predictive Bandwidth Based with Optimal Shrink Factor for TCP Congestion Control in Heterogeneous Wired and Wireless Networks Ben-Jye Chang 1, Shu-Yu Lin 1, and Ying-Hsin Liang

More information

SwiftBroadband and IP data connections

SwiftBroadband and IP data connections SwiftBroadband and IP data connections Version 01 30.01.08 inmarsat.com/swiftbroadband Whilst the information has been prepared by Inmarsat in good faith, and all reasonable efforts have been made to ensure

More information

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network

Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Performance Evaluation of VoIP Services using Different CODECs over a UMTS Network Jianguo Cao School of Electrical and Computer Engineering RMIT University Melbourne, VIC 3000 Australia Email: j.cao@student.rmit.edu.au

More information

Wide Area Network Latencies for a DIS/HLA Exercise

Wide Area Network Latencies for a DIS/HLA Exercise Wide Area Network Latencies for a DIS/HLA Exercise Lucien Zalcman and Peter Ryan Air Operations Division Aeronautical & Maritime Research Laboratory Defence Science & Technology Organisation (DSTO) 506

More information

Measuring Wireless Network Performance: Data Rates vs. Signal Strength

Measuring Wireless Network Performance: Data Rates vs. Signal Strength EDUCATIONAL BRIEF Measuring Wireless Network Performance: Data Rates vs. Signal Strength In January we discussed the use of Wi-Fi Signal Mapping technology as a sales tool to demonstrate signal strength

More information

3GPP Technologies: Load Balancing Algorithm and InterNetworking

3GPP Technologies: Load Balancing Algorithm and InterNetworking 2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology 3GPP Technologies: Load Balancing Algorithm and InterNetworking Belal Abuhaija Faculty of Computers

More information

Supporting VoIP in IEEE802.11 Distributed WLANs

Supporting VoIP in IEEE802.11 Distributed WLANs Supporting VoIP in IEEE802.11 Distributed WLANs Zuo Liu Supervisor: Dr. Nick Filer July 2012 1 Voice VoIP Applications Constant Streaming Traffic Packetize interval usually 10-30 ms 8 160 bytes each packet

More information

Skype over UMTS. Tobias Hoßfeld www3.informatik.uni-wuerzburg.de. University of Würzburg Informatik III (Distributed Systems) Prof. Dr. P.

Skype over UMTS. Tobias Hoßfeld www3.informatik.uni-wuerzburg.de. University of Würzburg Informatik III (Distributed Systems) Prof. Dr. P. Inmatik III () Prof. Dr. P. Tran-Gia Skype over UMTS Talk (25+5min) ITG Fachgruppe 5.2.4 VoIP over Wireless 15th May 2006, WürzburgW P2P Applications Across Mobile Networks When Do We Need Rate Control

More information

Measuring the Performance of VoIP over Wireless LAN

Measuring the Performance of VoIP over Wireless LAN Measuring the Performance of VoIP over Wireless LAN Keshav Neupane, Student Victor Kulgachev, Student Department of Computer Science Northern Kentucky University Highland Heights, KY, USA, 41099 neupanek1@nku.edu

More information

Computer Networks III

Computer Networks III Computer Networks III Wide Area Networks and Packet Switching Network Protocols and the OSI Layers The Internet Internet Infrastructure 1 Wide Area Networks (recap) 2 Page 1 Basic WAN structure Host Router

More information

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages

Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages

More information

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements Outline Lecture 8 Performance Measurements and Metrics Performance Metrics Performance Measurements Kurose-Ross: 1.2-1.4 (Hassan-Jain: Chapter 3 Performance Measurement of TCP/IP Networks ) 2010-02-17

More information

Computer Networks Homework 1

Computer Networks Homework 1 Computer Networks Homework 1 Reference Solution 1. (15%) Suppose users share a 1 Mbps link. Also suppose each user requires 100 kbps when transmitting, but each user transmits only 10 percent of the time.

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

A Proxy Mobile IP based Layer-3 Handover Scheme for Mobile WiMAX based Wireless Mesh Networks

A Proxy Mobile IP based Layer-3 Handover Scheme for Mobile WiMAX based Wireless Mesh Networks A Proxy Mobile IP based Layer-3 Handover Scheme for Mobile WiMAX based Wireless Mesh Networks Min-Kim, Jong-min Kim, Hwa-sung Kim Dept. of Electronics and Communications Engineering Kwangwoon University

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

Network Performance: Networks must be fast. What are the essential network performance metrics: bandwidth and latency

Network Performance: Networks must be fast. What are the essential network performance metrics: bandwidth and latency Network Performance: Networks must be fast What are the essential network performance metrics: bandwidth and latency Transmission media AS systems Input'signal'f(t) Has'bandwidth'B System'with'H(-) Output'signal'g(t)

More information

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications Veselin Rakocevic School of Engineering and Mathematical Sciences City University, London, UK V.Rakocevic@city.ac.uk

More information

Data Networks Summer 2007 Homework #3

Data Networks Summer 2007 Homework #3 Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.

More information

Computer Networks CS321

Computer Networks CS321 Computer Networks CS321 Dr. Ramana I.I.T Jodhpur Dr. Ramana ( I.I.T Jodhpur ) Computer Networks CS321 1 / 22 Outline of the Lectures 1 Introduction OSI Reference Model Internet Protocol Performance Metrics

More information

Performance Comparison of low-latency Anonymisation Services from a User Perspective

Performance Comparison of low-latency Anonymisation Services from a User Perspective Performance Comparison of low-latency Anonymisation Services from a User Perspective Rolf Wendolsky Hannes Federrath Department of Business Informatics University of Regensburg 7th Workshop on Privacy

More information

A Multiple Access Protocol for Multimedia Transmission over Wireless Networks

A Multiple Access Protocol for Multimedia Transmission over Wireless Networks A Multiple Access Protocol for Multimedia Transmission over Wireless Networks Hong Yu and Mohammed Arozullah Department of Electrical Engineering and Computer Science Capitol College, Maryland, USA yhong@capitol-college.edu

More information

An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework

An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework An Active Network Based Hierarchical Mobile Internet Protocol Version 6 Framework Zutao Zhu Zhenjun Li YunYong Duan Department of Business Support Department of Computer Science Department of Business

More information

Priority Based Dynamic Rate Control for VoIP Traffic

Priority Based Dynamic Rate Control for VoIP Traffic Priority Based Dynamic Rate Control for VoIP Traffic Fariza Sabrina CSIRO ICT Centre, Sydney, Australia Email: Fariza.sabrina@csiro.au Jean-Marc Valin Octasic Inc., Montreal, Quebec, Canada Email:jmvalin@ieee.org

More information

PFS scheme for forcing better service in best effort IP network

PFS scheme for forcing better service in best effort IP network Paper PFS scheme for forcing better service in best effort IP network Monika Fudała and Wojciech Burakowski Abstract The paper presents recent results corresponding to a new strategy for source traffic

More information

CONTROL SYSTEM FOR INTERNET BANDWIDTH BASED ON JAVA TECHNOLOGY

CONTROL SYSTEM FOR INTERNET BANDWIDTH BASED ON JAVA TECHNOLOGY CONTROL SYSTEM FOR INTERNET BANDWIDTH BASED ON JAVA TECHNOLOGY SEIFEDINE KADRY, KHALED SMAILI Lebanese University-Faculty of Sciences Beirut-Lebanon E-mail: skadry@gmail.com ABSTRACT This paper presents

More information

VOICE OVER IP AND NETWORK CONVERGENCE

VOICE OVER IP AND NETWORK CONVERGENCE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Assaid O. SHAROUN* VOICE OVER IP AND NETWORK CONVERGENCE As the IP network was primarily designed to carry data, it

More information

Deployment Aspects for VoIP Services over HSPA Networks

Deployment Aspects for VoIP Services over HSPA Networks Nash Technologies Your partner for world-class custom software solutions & consulting Deployment Aspects for VoIP Services over HSPA Networks Jens Mueckenheim, Enrico Jugl, Thomas Wagner, Michael Link,

More information

Monitor network traffic in the Dashboard tab

Monitor network traffic in the Dashboard tab As a network analyzer (aka. packet sniffer & protocol analyzer), Capsa makes it easy for us to monitor and analyze network traffic in its intuitive and information-rich tab views. With Capsa's network

More information

Robust Router Congestion Control Using Acceptance and Departure Rate Measures

Robust Router Congestion Control Using Acceptance and Departure Rate Measures Robust Router Congestion Control Using Acceptance and Departure Rate Measures Ganesh Gopalakrishnan a, Sneha Kasera b, Catherine Loader c, and Xin Wang b a {ganeshg@microsoft.com}, Microsoft Corporation,

More information

The Performance of Measurement-Based Overlay Networks

The Performance of Measurement-Based Overlay Networks The Performance of Measurement-Based Overlay Networks Daniel Bauer, Sean Rooney, Paolo Scotton, Ilias Iliadis, Sonja Buchegger IBM Research Säumerstrasse 4 CH-8803 Rüschlikon/Switzerland Measurement Based

More information

Performance analysis and simulation in wireless mesh networks

Performance analysis and simulation in wireless mesh networks Performance analysis and simulation in wireless mesh networks Roberto Cusani, Tiziano Inzerilli, Giacomo Di Stasio University of Rome Sapienza INFOCOM Dept. Via Eudossiana 8, 84 Rome, Italy Abstract Wireless

More information

Saturday, August 25, 2012 1. MUM Home INDIA Assignment 2012 Soumil Gupta Bhaya PROPRIETARY WIRELESS PROTOCOLS. N-Streme and Nv2

Saturday, August 25, 2012 1. MUM Home INDIA Assignment 2012 Soumil Gupta Bhaya PROPRIETARY WIRELESS PROTOCOLS. N-Streme and Nv2 1 MUM Home INDIA Assignment 2012 Soumil Gupta Bhaya PROPRIETARY WIRELESS PROTOCOLS N-Streme and Nv2 2 3 Nstreme and NV2 are Wireless Protocols created by Mikrotik to improve Point to Point and Point to

More information

Performance Evaluation of a QoS-Aware Handover Mechanism

Performance Evaluation of a QoS-Aware Handover Mechanism Performance Evaluation of a QoS-Aware Handover Mechanism 1.Introduction Background Requirements in mobile communication Seamless mobility support Guarantee certain levels of QoS Mobile communications over

More information

Low-rate TCP-targeted Denial of Service Attack Defense

Low-rate TCP-targeted Denial of Service Attack Defense Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu

More information

LTE OPTIMIZATION AND MOBILE NETWORK

LTE OPTIMIZATION AND MOBILE NETWORK FUTUREMOBILE COMMUNICATION: LTE OPTIMIZATION AND MOBILE NETWORK VIRTUALIZATION Yasir Zaki, Andreas Timm Giel,, Carmelita Görg University of Bremen, Technical University of Hamburg Euroview July 23 rd 2012

More information

VoIP over Wireless Opportunities and Challenges

VoIP over Wireless Opportunities and Challenges Prof. Dr. P. Tran-Gia VoIP over Wireless Opportunities and Challenges Universität Würzburg Lehrstuhl für verteilte Systeme H.323 RTP Codec Voice-over-IP over Wireless (VoIPoW) UDP IMS G723.1 SIP G729 HSDPA

More information

Secure SCTP against DoS Attacks in Wireless Internet

Secure SCTP against DoS Attacks in Wireless Internet Secure SCTP against DoS Attacks in Wireless Internet Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea iwjoe@hanyang.ac.kr Abstract. The Stream Control Transport Protocol

More information

SBSCET, Firozpur (Punjab), India

SBSCET, Firozpur (Punjab), India Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based

More information

A MAC Protocol for ATM over Satellite

A MAC Protocol for ATM over Satellite A MAC Protocol for over Satellite Dr. H. Bischl, J. Bostic, Matteo Sabattini DLR Oberpfaffenhofen 1 Inhalt 4 Szenarium 4 Problemstellung und Anforderungen an das MAC Protokoll 4 Protokollarchitektur 4

More information

IJMIE Volume 2, Issue 7 ISSN: 2249-0558

IJMIE Volume 2, Issue 7 ISSN: 2249-0558 Evaluating Performance of Audio conferencing on Reactive Routing Protocols for MANET Alak Kumar Sarkar* Md. Ibrahim Abdullah* Md. Shamim Hossain* Ahsan-ul-Ambia* Abstract Mobile ad hoc network (MANET)

More information

Dynamic Load Balance Algorithm (DLBA) for IEEE 802.11 Wireless LAN

Dynamic Load Balance Algorithm (DLBA) for IEEE 802.11 Wireless LAN Tamkang Journal of Science and Engineering, vol. 2, No. 1 pp. 45-52 (1999) 45 Dynamic Load Balance Algorithm () for IEEE 802.11 Wireless LAN Shiann-Tsong Sheu and Chih-Chiang Wu Department of Electrical

More information

Application Note. Windows 2000/XP TCP Tuning for High Bandwidth Networks. mguard smart mguard PCI mguard blade

Application Note. Windows 2000/XP TCP Tuning for High Bandwidth Networks. mguard smart mguard PCI mguard blade Application Note Windows 2000/XP TCP Tuning for High Bandwidth Networks mguard smart mguard PCI mguard blade mguard industrial mguard delta Innominate Security Technologies AG Albert-Einstein-Str. 14 12489

More information

Spring 2014. Final Project Report

Spring 2014. Final Project Report ENSC 427: COMMUNICATIONNETWORKS Spring 2014 Final Project Report Evaluation and Comparison of WiMAX (802.16a) and Wi-Fi (802.11a) http://www.sfu.ca/~tlan/ensc427webpage.html Group #11 Tian Lan tlan@sfu.ca

More information

EFFECT OF TRANSFER FILE SIZE ON TCP-ADaLR PERFORMANCE: A SIMULATION STUDY

EFFECT OF TRANSFER FILE SIZE ON TCP-ADaLR PERFORMANCE: A SIMULATION STUDY EFFECT OF TRANSFER FILE SIZE ON PERFORMANCE: A SIMULATION STUDY Modupe Omueti and Ljiljana Trajković Simon Fraser University Vancouver British Columbia Canada {momueti, ljilja}@cs.sfu.ca ABSTRACT Large

More information

Fault-Tolerant Framework for Load Balancing System

Fault-Tolerant Framework for Load Balancing System Fault-Tolerant Framework for Load Balancing System Y. K. LIU, L.M. CHENG, L.L.CHENG Department of Electronic Engineering City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong SAR HONG KONG Abstract:

More information

Throughput Analysis of WEP Security in Ad Hoc Sensor Networks

Throughput Analysis of WEP Security in Ad Hoc Sensor Networks Throughput Analysis of WEP Security in Ad Hoc Sensor Networks Mohammad Saleh and Iyad Al Khatib iitc Stockholm, Sweden {mohsaleh, iyad}@iitc.se ABSTRACT This paper presents a performance investigation

More information