Presente e futuro del Web Semantico
|
|
|
- Owen Robbins
- 10 years ago
- Views:
Transcription
1 Sistemi di Elaborazione dell informazione II Corso di Laurea Specialistica in Ingegneria Telematica II anno 4 CFU Università Kore Enna A.A Alessandro Longheu [email protected] Presente e futuro del Web Semantico
2 Currently We have a solid specification since 2004 Lots of tools are available There are lots of tutorials Active developers communities Some mesaures claim that there are over 10 7 Semantic Web documents (ready to be integrated ) Large ontologies are being developed (converted from other formats or defined in OWL) eclassowl: ebusiness ontology for products and services, 75,000 classes and 5,500 properties the Gene Ontology: to describe gene and gene product attributes in any organism BioPAX, for biological pathway data UniProt: protein sequence and annotation terminology and data One should never forget: ontologies/vocabularies must be shared and reused! Querying RDF graphs becomes essential ; SPARQL is almost here 2
3 There are a number of problems however: how to get RDF data missing functionalities: rules, light ontologies, fuzzy reasoning, necessity to review RDF and OWL, misconceptions, messaging problems need for more applications, deployment, acceptance A huge amount of data in Relational Databases Although tools exist, it is not feasible to convert that data into RDF Instead: SQL RDF bridges are being developed 3
4 Some of the messaging on Semantic Web has gone terribly wrong : the Semantic Web is a reincarnation of Artificial Intelligence on the Web it relies on giant, centrally controlled ontologies for "meaning" (as opposed to a democratic, bottom up control of terms) one has to add metadata to all Web pages, convert all relational databases, and XML data to use the Semantic Web it is just an ugly application of XML one has to learn formal logic, knowledge representation techniques, description logic, etc, to use it it is, essentially, an academic project, of no interest for industry 4
5 SW has indeed a strong foundation in research results, But remember: (1) the Web was born at CERN (2) was first picked up by high energy physicists (3) then by academia at large (4) then by small businesses and start-ups (5) big business came only later! network effect kicked in early Semantic Web is now at #4, and moving to #5! 5
6 Data integration comes as one of the SW application areas, very important for large application areas (life sciences, energy sector, egovernment, financial institutions), as well as everyday applications (eg, reconciliation of calendar data) Life sciences example: data in different labs data aimed at scientists, managers, clinical trial participants large scale public ontologies (genes, proteins, antibodies, ) different formats (databases, spreadsheets, XML data, XHTML pages) 6
7 the need has increased for shared semantics and a web of data and information derived from it. One major driver has been e-science, i.e. life sciences research demands the integration of diverse and heterogeneous data sets (ontologies) that originate from distinct communities of scientists in separate subfields. Experience suggests that an incubator community with a pressing technology need is an essential prerequisite for success. In the original Web, this community was high energy physicists who needed to share large document sets. RDF, OWL but also there is the need for rules, in particular the Rule Interchange Format (RIF), an attempt to support and interoperate across a variety of rule-based formats. 7
8 Advances in AI exists: AI researchers have extended logics and modified them to capture causal, temporal, and probabilistic knowledge. In most cases, we aren t able to look up a URI and have the data returned: the data exposure revolution has not yet happened. We need to regard such ontologies as living structures. Communities and practice will change norms, conceptualizations, and terminologies in complex and sociologically subtle ways, hence the cost of ontology development and maintenance is critical. Some numbers: If we assume that ontology building costs are spread across user communities, the number of ontology engineers required increases as the log of the user community s size. The amount of building time increases as the square of the number of engineers. The consequence is that the effort involved per user in building ontologies for large communities gets very small very quickly. 8
9 Not only ontologies, but also folksonomies. Folksonomies arise when a large number of people are interested in particular information and are encouraged to describe it or tag it (they may tag selfishly to organize their own content retrieval or altruistically to help others). Rather than a centralized form of classification, users can assign keywords to documents or other information sources. These applications, driven by decentralized communities from the bottom up, are sometimes called Web 2.0 or social software. Folksonomies serve very different purposes from ontologies. Ontologies are defined through a careful,explicit process that attempts to remove ambiguity. Some people perceive ontologies as topdown, somewhat authoritarian constructs unrelated, or only tenuously related, to people s actual practice, then it s understandable that emergent structures like folksonomies begin to seem more attractive 9
10 Substantial research challenges: How do we effectively query huge numbers of decentralized information repositories of varying scales? How do we align and map between ontologies? How do we construct a Semantic Web browser that effectively visualizes and navigates the huge connected RDF graph? How do we establish trust and provenance of the content? We must not lose sight of the fact that the Web, and indeed many of our most important digital environments, depends fundamentally on certain general assumptions about social behavior The critical factors that led to the Web s success will also be important to the success of our Semantic Web enterprise. As we ve seen, some of these factors are social; others have their origin in elementary and fundamental design decisions about the Web s architectural principles. Will the Semantic web be the future or it will be another 10 dream?
Explorer's Guide to the Semantic Web
Explorer's Guide to the Semantic Web THOMAS B. PASSIN 11 MANNING Greenwich (74 w. long.) contents preface xiii acknowledgments xv about this booh xvii The Semantic Web 1 1.1 What is the Semantic Web? 3
Industry 4.0 and Big Data
Industry 4.0 and Big Data Marek Obitko, [email protected] Senior Research Engineer 03/25/2015 PUBLIC PUBLIC - 5058-CO900H 2 Background Joint work with Czech Institute of Informatics, Robotics and
Publishing Linked Data Requires More than Just Using a Tool
Publishing Linked Data Requires More than Just Using a Tool G. Atemezing 1, F. Gandon 2, G. Kepeklian 3, F. Scharffe 4, R. Troncy 1, B. Vatant 5, S. Villata 2 1 EURECOM, 2 Inria, 3 Atos Origin, 4 LIRMM,
Artificial Intelligence & Knowledge Management
Artificial Intelligence & Knowledge Management Nick Bassiliades, Ioannis Vlahavas, Fotis Kokkoras Aristotle University of Thessaloniki Department of Informatics Programming Languages and Software Engineering
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Linked Data Interface, Semantics and a T-Box Triple Store for Microsoft SharePoint
Linked Data Interface, Semantics and a T-Box Triple Store for Microsoft SharePoint Christian Fillies 1 and Frauke Weichhardt 1 1 Semtation GmbH, Geschw.-Scholl-Str. 38, 14771 Potsdam, Germany {cfillies,
Annotation: An Approach for Building Semantic Web Library
Appl. Math. Inf. Sci. 6 No. 1 pp. 133-143 (2012) Applied Mathematics & Information Sciences @ 2012 NSP Natural Sciences Publishing Cor. Annotation: An Approach for Building Semantic Web Library Hadeel
Information Management Metamodel
ISO/IEC JTC1/SC32/WG2 N1527 Information Management Metamodel Pete Rivett, CTO Adaptive OMG Architecture Board [email protected] 2011-05-11 1 The Information Management Conundrum We all have Data
Semantic Web Success Story
Semantic Web Success Story Practical Integration of Semantic Web Technology Chris Chaulk, Software Architect EMC Corporation 1 Who is this guy? Software Architect at EMC 12 years, Storage Management Software
Training Management System for Aircraft Engineering: indexing and retrieval of Corporate Learning Object
Training Management System for Aircraft Engineering: indexing and retrieval of Corporate Learning Object Anne Monceaux 1, Joanna Guss 1 1 EADS-CCR, Centreda 1, 4 Avenue Didier Daurat 31700 Blagnac France
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
A generic approach for data integration using RDF, OWL and XML
A generic approach for data integration using RDF, OWL and XML Miguel A. Macias-Garcia, Victor J. Sosa-Sosa, and Ivan Lopez-Arevalo Laboratory of Information Technology (LTI) CINVESTAV-TAMAULIPAS Km 6
Semantic Knowledge Management System. Paripati Lohith Kumar. School of Information Technology
Semantic Knowledge Management System Paripati Lohith Kumar School of Information Technology Vellore Institute of Technology University, Vellore, India. [email protected] Abstract The scholarly activities
Semantic Interoperability
Ivan Herman Semantic Interoperability Olle Olsson Swedish W3C Office Swedish Institute of Computer Science (SICS) Stockholm Apr 27 2011 (2) Background Stockholm Apr 27, 2011 (2) Trends: from
Open Source egovernment Reference Architecture Osera.modeldriven.org. Copyright 2006 Data Access Technologies, Inc. Slide 1
Open Source egovernment Reference Architecture Osera.modeldriven.org Slide 1 Caveat OsEra and the Semantic Core is work in progress, not a ready to use capability Slide 2 OsEra What we will cover OsEra
The Ontological Approach for SIEM Data Repository
The Ontological Approach for SIEM Data Repository Igor Kotenko, Olga Polubelova, and Igor Saenko Laboratory of Computer Science Problems, Saint-Petersburg Institute for Information and Automation of Russian
Automating Big Data Management, by DISIT Lab Distributed [Systems and Internet, Data Intelligence] Technologies Lab Prof. Ph.D. Eng.
Automating Big Data Management, by DISIT Lab Distributed [Systems and Internet, Data Intelligence] Technologies Lab Prof. Ph.D. Eng. Paolo Nesi Dipartimento di Ingegneria dell Informazione, DINFO Università
Semantic Web Development in China
Semantic Web Development in China Outline Web development in China Semantic Web communities in China Semantic Web projects in China IODT from IBM Research China Falcon from Southeast University APEX from
technische universiteit eindhoven WIS & Engineering Geert-Jan Houben
WIS & Engineering Geert-Jan Houben Contents Web Information System (WIS) Evolution in Web data WIS Engineering Languages for Web data XML (context only!) RDF XML Querying: XQuery (context only!) RDFS SPARQL
Semantic EPC: Enhancing Process Modeling Using Ontologies
Institute for Information Systems IWi Institut (IWi) für at the German Research Wirtschaftsinformatik Center for im DFKI Saarbrücken Artificial Intelligence (DFKI), Saarland University Semantic EPC: Enhancing
DISIT Lab, competence and project idea on bigdata. reasoning
DISIT Lab, competence and project idea on bigdata knowledge modeling, OD/LD and reasoning Paolo Nesi Dipartimento di Ingegneria dell Informazione, DINFO Università degli Studi di Firenze Via S. Marta 3,
The Development of the Clinical Trial Ontology to standardize dissemination of clinical trial data. Ravi Shankar
The Development of the Clinical Trial Ontology to standardize dissemination of clinical trial data Ravi Shankar Open access to clinical trials data advances open science Broad open access to entire clinical
STAR Semantic Technologies for Archaeological Resources. http://hypermedia.research.glam.ac.uk/kos/star/
STAR Semantic Technologies for Archaeological Resources http://hypermedia.research.glam.ac.uk/kos/star/ Project Outline 3 year AHRC funded project Started January 2007, finish December 2009 Collaborators
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
An industry perspective on deployed semantic interoperability solutions
An industry perspective on deployed semantic interoperability solutions Ralph Hodgson, CTO, TopQuadrant SEMIC Conference, Athens, April 9, 2014 https://joinup.ec.europa.eu/community/semic/event/se mic-2014-semantic-interoperability-conference
Semantic Modeling with RDF. DBTech ExtWorkshop on Database Modeling and Semantic Modeling Lili Aunimo
DBTech ExtWorkshop on Database Modeling and Semantic Modeling Lili Aunimo Expected Outcomes You will learn: Basic concepts related to ontologies Semantic model Semantic web Basic features of RDF and RDF
DISCOVERING RESUME INFORMATION USING LINKED DATA
DISCOVERING RESUME INFORMATION USING LINKED DATA Ujjal Marjit 1, Kumar Sharma 2 and Utpal Biswas 3 1 C.I.R.M, University Kalyani, Kalyani (West Bengal) India [email protected] 2 Department of Computer
Core Enterprise Services, SOA, and Semantic Technologies: Supporting Semantic Interoperability
Core Enterprise, SOA, and Semantic Technologies: Supporting Semantic Interoperability in a Network-Enabled Environment 2011 SOA & Semantic Technology Symposium 13-14 July 2011 Sven E. Kuehne [email protected]
AN INTEGRATION APPROACH FOR THE STATISTICAL INFORMATION SYSTEM OF ISTAT USING SDMX STANDARDS
Distr. GENERAL Working Paper No.2 26 April 2007 ENGLISH ONLY UNITED NATIONS STATISTICAL COMMISSION and ECONOMIC COMMISSION FOR EUROPE CONFERENCE OF EUROPEAN STATISTICIANS EUROPEAN COMMISSION STATISTICAL
Course Description Bachelor in Management Information Systems
Course Description Bachelor in Management Information Systems 1605215 Principles of Management Information Systems (3 credit hours) Introducing the essentials of Management Information Systems (MIS), providing
Giuseppe Riccardi, Marco Ronchetti. University of Trento
Giuseppe Riccardi, Marco Ronchetti University of Trento 1 Outline Searching Information Next Generation Search Interfaces Needle E-learning Application Multimedia Docs Indexing, Search and Presentation
OVERVIEW OF JPSEARCH: A STANDARD FOR IMAGE SEARCH AND RETRIEVAL
OVERVIEW OF JPSEARCH: A STANDARD FOR IMAGE SEARCH AND RETRIEVAL Frédéric Dufaux, Michael Ansorge, and Touradj Ebrahimi Institut de Traitement des Signaux Ecole Polytechnique Fédérale de Lausanne (EPFL)
Scalable End-User Access to Big Data http://www.optique-project.eu/ HELLENIC REPUBLIC National and Kapodistrian University of Athens
Scalable End-User Access to Big Data http://www.optique-project.eu/ HELLENIC REPUBLIC National and Kapodistrian University of Athens 1 Optique: Improving the competitiveness of European industry For many
Lightweight Data Integration using the WebComposition Data Grid Service
Lightweight Data Integration using the WebComposition Data Grid Service Ralph Sommermeier 1, Andreas Heil 2, Martin Gaedke 1 1 Chemnitz University of Technology, Faculty of Computer Science, Distributed
An Approach to Eliminate Semantic Heterogenity Using Ontologies in Enterprise Data Integeration
Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 3 rd, 2013 An Approach to Eliminate Semantic Heterogenity Using Ontologies in Enterprise Data Integeration Srinivasan Shanmugam and
ONTOLOGY-BASED APPROACH TO DEVELOPMENT OF ADJUSTABLE KNOWLEDGE INTERNET PORTAL FOR SUPPORT OF RESEARCH ACTIVITIY
ONTOLOGY-BASED APPROACH TO DEVELOPMENT OF ADJUSTABLE KNOWLEDGE INTERNET PORTAL FOR SUPPORT OF RESEARCH ACTIVITIY Yu. A. Zagorulko, O. I. Borovikova, S. V. Bulgakov, E. A. Sidorova 1 A.P.Ershov s Institute
Secure Semantic Web Service Using SAML
Secure Semantic Web Service Using SAML JOO-YOUNG LEE and KI-YOUNG MOON Information Security Department Electronics and Telecommunications Research Institute 161 Gajeong-dong, Yuseong-gu, Daejeon KOREA
The Value of Taxonomy Management Research Results
Taxonomy Strategies November 28, 2012 Copyright 2012 Taxonomy Strategies. All rights reserved. The Value of Taxonomy Management Research Results Joseph A Busch, Principal What does taxonomy do for search?
Semantic Data Management. Xavier Lopez, Ph.D., Director, Spatial & Semantic Technologies
Semantic Data Management Xavier Lopez, Ph.D., Director, Spatial & Semantic Technologies 1 Enterprise Information Challenge Source: Oracle customer 2 Vision of Semantically Linked Data The Network of Collaborative
Combining SAWSDL, OWL DL and UDDI for Semantically Enhanced Web Service Discovery
Combining SAWSDL, OWL DL and UDDI for Semantically Enhanced Web Service Discovery Dimitrios Kourtesis, Iraklis Paraskakis SEERC South East European Research Centre, Greece Research centre of the University
A Framework for Collaborative Project Planning Using Semantic Web Technology
A Framework for Collaborative Project Planning Using Semantic Web Technology Lijun Shen 1 and David K.H. Chua 2 Abstract Semantic web technology has become an enabling technology for machines to automatically
New Generation of Social Networks Based on Semantic Web Technologies: the Importance of Social Data Portability
New Generation of Social Networks Based on Semantic Web Technologies: the Importance of Social Data Portability Liana Razmerita 1, Martynas Jusevičius 2, Rokas Firantas 2 Copenhagen Business School, Denmark
Performance Analysis, Data Sharing, Tools Integration: New Approach based on Ontology
Performance Analysis, Data Sharing, Tools Integration: New Approach based on Ontology Hong-Linh Truong Institute for Software Science, University of Vienna, Austria [email protected] Thomas Fahringer
Linked Statistical Data Analysis
Linked Statistical Data Analysis Sarven Capadisli 1, Sören Auer 2, Reinhard Riedl 3 1 Universität Leipzig, Institut für Informatik, AKSW, Leipzig, Germany, 2 University of Bonn and Fraunhofer IAIS, Bonn,
Semantically Enhanced Web Personalization Approaches and Techniques
Semantically Enhanced Web Personalization Approaches and Techniques Dario Vuljani, Lidia Rovan, Mirta Baranovi Faculty of Electrical Engineering and Computing, University of Zagreb Unska 3, HR-10000 Zagreb,
Application of ontologies for the integration of network monitoring platforms
Application of ontologies for the integration of network monitoring platforms Jorge E. López de Vergara, Javier Aracil, Jesús Martínez, Alfredo Salvador, José Alberto Hernández Networking Research Group,
LinkZoo: A linked data platform for collaborative management of heterogeneous resources
LinkZoo: A linked data platform for collaborative management of heterogeneous resources Marios Meimaris, George Alexiou, George Papastefanatos Institute for the Management of Information Systems, Research
How To Build A Cloud Based Intelligence System
Semantic Technology and Cloud Computing Applied to Tactical Intelligence Domain Steve Hamby Chief Technology Officer Orbis Technologies, Inc. [email protected] 678.346.6386 1 Abstract The tactical
Supporting Change-Aware Semantic Web Services
Supporting Change-Aware Semantic Web Services Annika Hinze Department of Computer Science, University of Waikato, New Zealand [email protected] Abstract. The Semantic Web is not only evolving into
An Ontological Approach to Oracle BPM
An Ontological Approach to Oracle BPM Jean Prater, Ralf Mueller, Bill Beauregard Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065, USA [email protected], [email protected], [email protected]
Structured Content: the Key to Agile. Web Experience Management. Introduction
Structured Content: the Key to Agile CONTENTS Introduction....................... 1 Structured Content Defined...2 Structured Content is Intelligent...2 Structured Content and Customer Experience...3 Structured
LDIF - Linked Data Integration Framework
LDIF - Linked Data Integration Framework Andreas Schultz 1, Andrea Matteini 2, Robert Isele 1, Christian Bizer 1, and Christian Becker 2 1. Web-based Systems Group, Freie Universität Berlin, Germany [email protected],
XML for Manufacturing Systems Integration
Information Technology for Engineering & Manufacturing XML for Manufacturing Systems Integration Tom Rhodes Information Technology Laboratory Overview of presentation Introductory material on XML NIST
Model Driven Interoperability through Semantic Annotations using SoaML and ODM
Model Driven Interoperability through Semantic Annotations using SoaML and ODM JiuCheng Xu*, ZhaoYang Bai*, Arne J.Berre*, Odd Christer Brovig** *SINTEF, Pb. 124 Blindern, NO-0314 Oslo, Norway (e-mail:
Writing Queries Using Microsoft SQL Server 2008 Transact-SQL
Course 2778A: Writing Queries Using Microsoft SQL Server 2008 Transact-SQL Length: 3 Days Language(s): English Audience(s): IT Professionals Level: 200 Technology: Microsoft SQL Server 2008 Type: Course
Semantic Web Services for e-learning: Engineering and Technology Domain
Web s for e-learning: Engineering and Technology Domain Krupali Shah and Jayant Gadge Abstract E learning has gained its importance over the traditional classroom learning techniques in past few decades.
Service Oriented Architecture
Service Oriented Architecture Charlie Abela Department of Artificial Intelligence [email protected] Last Lecture Web Ontology Language Problems? CSA 3210 Service Oriented Architecture 2 Lecture Outline
A HUMAN RESOURCE ONTOLOGY FOR RECRUITMENT PROCESS
A HUMAN RESOURCE ONTOLOGY FOR RECRUITMENT PROCESS Ionela MANIU Lucian Blaga University Sibiu, Romania Faculty of Sciences [email protected] George MANIU Spiru Haret University Bucharest, Romania Faculty
Amit Sheth & Ajith Ranabahu, 2010. Presented by Mohammad Hossein Danesh
Amit Sheth & Ajith Ranabahu, 2010 Presented by Mohammad Hossein Danesh 1 Agenda Introduction to Cloud Computing Research Motivation Semantic Modeling Can Help Use of DSLs Solution Conclusion 2 3 Motivation
The e-lite Research Group
The e-lite Research Group e-learning, e-intelligence, e-interaction Fulvio Corno Politecnico di Torino Dip. Automatica e Informatica e-lite Research Group http://elite.polito.it The Research Group Dipartimento
Semantic Stored Procedures Programming Environment and performance analysis
Semantic Stored Procedures Programming Environment and performance analysis Marjan Efremov 1, Vladimir Zdraveski 2, Petar Ristoski 2, Dimitar Trajanov 2 1 Open Mind Solutions Skopje, bul. Kliment Ohridski
Big Data and Semantic Web in Manufacturing. Nitesh Khilwani, PhD Chief Engineer, Samsung Research Institute Noida, India
Big Data and Semantic Web in Manufacturing Nitesh Khilwani, PhD Chief Engineer, Samsung Research Institute Noida, India Outline Big data in Manufacturing Big data Analytics Semantic web technologies Case
An Ontology Based Method to Solve Query Identifier Heterogeneity in Post- Genomic Clinical Trials
ehealth Beyond the Horizon Get IT There S.K. Andersen et al. (Eds.) IOS Press, 2008 2008 Organizing Committee of MIE 2008. All rights reserved. 3 An Ontology Based Method to Solve Query Identifier Heterogeneity
Guidelines for Establishment of Contract Areas Computer Science Department
Guidelines for Establishment of Contract Areas Computer Science Department Current 07/01/07 Statement: The Contract Area is designed to allow a student, in cooperation with a member of the Computer Science
Tool Support for Model Checking of Web application designs *
Tool Support for Model Checking of Web application designs * Marco Brambilla 1, Jordi Cabot 2 and Nathalie Moreno 3 1 Dipartimento di Elettronica e Informazione, Politecnico di Milano Piazza L. Da Vinci,
White Paper: Big Data and the hype around IoT
1 White Paper: Big Data and the hype around IoT Author: Alton Harewood 21 Aug 2014 (first published on LinkedIn) If I knew today what I will know tomorrow, how would my life change? For some time the idea
GetLOD - Linked Open Data and Spatial Data Infrastructures
GetLOD - Linked Open Data and Spatial Data Infrastructures W3C Linked Open Data LOD2014 Roma, 20-21 February 2014 Stefano Pezzi, Massimo Zotti, Giovanni Ciardi, Massimo Fustini Agenda Context Geoportal
The use of Semantic Web Technologies in Spatial Decision Support Systems
The use of Semantic Web Technologies in Spatial Decision Support Systems Adam Iwaniak Jaromar Łukowicz Iwona Kaczmarek Marek Strzelecki The INSPIRE Conference 2013, 23-27 June Wroclaw University of Environmental
Data Driven Discovery In the Social, Behavioral, and Economic Sciences
Data Driven Discovery In the Social, Behavioral, and Economic Sciences Simon Appleford, Marshall Scott Poole, Kevin Franklin, Peter Bajcsy, Alan B. Craig, Institute for Computing in the Humanities, Arts,
Automatic Timeline Construction For Computer Forensics Purposes
Automatic Timeline Construction For Computer Forensics Purposes Yoan Chabot, Aurélie Bertaux, Christophe Nicolle and Tahar Kechadi CheckSem Team, Laboratoire Le2i, UMR CNRS 6306 Faculté des sciences Mirande,
Big Data Management Assessed Coursework Two Big Data vs Semantic Web F21BD
Big Data Management Assessed Coursework Two Big Data vs Semantic Web F21BD Boris Mocialov (H00180016) MSc Software Engineering Heriot-Watt University, Edinburgh April 5, 2015 1 1 Introduction The purpose
Writing Queries Using Microsoft SQL Server 2008 Transact-SQL
Lincoln Land Community College Capital City Training Center 130 West Mason Springfield, IL 62702 217-782-7436 www.llcc.edu/cctc Writing Queries Using Microsoft SQL Server 2008 Transact-SQL Course 2778-08;
Information Technology for KM
On the Relations between Structural Case-Based Reasoning and Ontology-based Knowledge Management Ralph Bergmann & Martin Schaaf University of Hildesheim Data- and Knowledge Management Group www.dwm.uni-hildesheim.de
How To Understand The Difference Between Terminology And Ontology
Terminology and Ontology in Semantic Interoperability of Electronic Health Records Dr. W. Ceusters Saarland University Semantic Interoperability Working definition: Two information systems are semantically
ONTOLOGY-BASED MULTIMEDIA AUTHORING AND INTERFACING TOOLS 3 rd Hellenic Conference on Artificial Intelligence, Samos, Greece, 5-8 May 2004
ONTOLOGY-BASED MULTIMEDIA AUTHORING AND INTERFACING TOOLS 3 rd Hellenic Conference on Artificial Intelligence, Samos, Greece, 5-8 May 2004 By Aristomenis Macris (e-mail: [email protected]), University of
UIMA and WebContent: Complementary Frameworks for Building Semantic Web Applications
UIMA and WebContent: Complementary Frameworks for Building Semantic Web Applications Gaël de Chalendar CEA LIST F-92265 Fontenay aux Roses [email protected] 1 Introduction The main data sources
