NODAL ANALYSIS. Circuits Nodal Analysis 1 M H Miller

Size: px
Start display at page:

Download "NODAL ANALYSIS. Circuits Nodal Analysis 1 M H Miller"

Transcription

1 NODAL ANALYSIS A branch of an electric circuit is a connection between two points in the circuit. In general a simple wire connection, i.e., a 'short-circuit', is not considered a branch since it is known directly that there is no voltage drop across a short-circuit and the current in the short-circuit is whatever is required to satisfy KCL. Although it is neither required, nor always desirable, ordinarily for simplicity each branch contains a single circuit element. A node is a point of connection of two or more branches. In general 'dangling' branches, i.e., branches each of which is connected only to a single node are assumed to have been removed from the circuit insofar as analysis of the circuit is concerned. Dangling branches are known directly to have at most a constant voltage drop (e.g., a voltage source) and carry no current. Finally it is assumed that the circuit does not have 'separate parts', i.e., consist of two or more electrically disconnected parts. It must be possible to trace a path along circuit branches between any two nodes. For circuits with separate parts each part can be analyzed separately. In practice these conditions are rarely violated. A circuit is analyzed by application of KVL, KCL, and the volt-ampere relations for the circuit branch elements. Nothing else is needed nor used. The three requirements are applied until a sufficient number of independent equations are obtained to solve for all branch voltages and all branch currents. This is far more subtle a procedure in practice than it sounds. An electric circuit usually involves many branches and many nodes, and a haphazard search for a sufficient number of independent equations can be quite enervating. Therefore we consider various ways of undertaking a circuit analysis with the general aim of assuring that a solution will be found with a minimum effort to do so. One way to solve a circuit problem is simply to guess at the answer. This is not a facetious suggestion. There are circumstances when guessing is inappropriate, most circumstances in fact, but there are other occasions when it is quite appropriate and even preferable. The reason for mentioning this option is to assert (without proof) a mathematical 'existence' theorem, which states that a) There is always a solution for a linear circuit analysis problem (assuming a consistent circuit description as described above). (Well, almost always. Circuit analysis deals with idealized elements, and these can be assembled in redundant, in contradictory, and in indeterminate combinations. For example it is possible for a circuit to include a loop formed from only voltage sources. The sum of the source voltages around the loop must satisfy KVL. Now imagine a current circulating around this loop. KVL is not involved in this circulation. KCL is satisfied; at each node the loop current leaving one source enters the neighboring source. And the source constitutive relations impose no constraints on the current. All these remarks apply whatever the current magnitude; any current can be specified. In reality this condition does not occur; all real voltage sources include some series resistance. As it happens even for idealized circuit elements a loop of voltage sources almost never is encountered. Two exceptions occur. First there is the pedagogical mention of the possibility, as in this case. Occasionally a loop of voltage sources is encountered in a computer analysis; circuit analysis programs preview a circuit specification to detect and point out such anomalies. And require correction before proceeding. The usual reason for this sort of encounter is an error in specifying circuit connections. If a voltage source loop is vital a small but finite resistance (1 picoohm?) can be inserted in series with a source. Circuits Nodal Analysis 1 M H Miller

2 Another circumstance where idealized elements introduce indeterminacy is where, for example, the circuit can be divided into two groups of branches with only current sources connecting the two groups. The sum of the currents in the connecting sources must satisfy KCL, i.e. there is no net current leaving one group of branches or the other. The upper diagram in the figure following illustrates such a case. The lower circuit simply separates the two sets without contravening KCL. KVL is not compromised; the constitutive relations for the idealized current sources permit any necessary voltage across a source. This also is a situation that does not occur for real sources. A computer analysis program will detect this anomaly as well; if it is a pedagogical requirement add a large but finite resistance (1 gigaohm?) in parallel with the current sources. We handle such circumstances simply by ignoring them. They are invariably rare, when they do occur it is usually because of an error, and in any case are more or less readily resolved. b) That solution is unique; it may assume different descriptive forms but all of these forms will be mathematically equivalent and can be converted one to any another if desired; c) A necessary and sufficient test for a validity of a solution is that it satisfies KCL, KVL, all the branch volt-ampere relations, and any initial conditions placed on the circuit. (Initial conditions are something we deal with later in connection with circuit elements yet to be discussed; for the circuits dealt with for the present they will be automatically satisfied. Basically the initial conditions take account of the net energy if any supplied to the circuit prior to the time at which the analysis undertaken is assumed to begin.) There is naturally a certain reassurance in knowing beforehand that finding a solution is possible, that there is only one solution to look for, and that there is a well-defined test to verify that a proposed solution is indeed the solution. In fact in most cases proposing a solution and testing it for validity are essentially done concurrently as part of the analysis procedure. If KCL, KVL, and the branch voltampere relations are used (correctly!) to solve for the circuit voltages and currents then the solution is automatically validated. Circuits Nodal Analysis 2 M H Miller

3 As is noted before recognition of items a), b), and c) above is the principal reason for suggesting, not entirely facetiously, educated guessing as a method of circuit analysis. Every so often, as we will see later, guessing is the easiest way to go. Ordinarily however there is an overriding advantage to using an organized procedure, which is known a priori to obtain the solution with a minimum of effort. One of these methods is called a 'nodal' or 'node-to-datum' analysis. Because it involves a possible complication that requires a modest special consideration it is convenient to place one temporary constraint on the circuits to which the analytical procedure is applied, and that is that a voltage source branch is required to have a finite series resistance as well. As a practical matter this will always be so, and as a computational subterfuge a resistor whose resistance is so small as to have negligible quantitative effect on circuit voltages and currents can be introduced to satisfy the letter of the requirement. However even in the theoretical limit in which the series resistance is zero the constraint can, and in due time will be, be lifted. Nevertheless, for the moment, no voltage source is allowed without an accompanying series resistor. Suppose a circuit involves B branches and N nodes. Here is an algorithm to calculate all the branch voltages and currents. Step # 1: Select one node as the reference (datum or 'ground') node. The choice is theoretically arbitrary, but usually a particular node will stand out as a particularly convenient candidate for nomination as the reference. Most of the time, for reasons to be seen, the convenient choice for the reference node will be a node with the greatest number of branch connections. Step #2: Define I ij as the current directed from node I to node j. Apply KCL to each node in turn of the circuit except the reference node; KCL automatically is satisfied at the datum if it is satisfied at all the other nodes. This provides N-1 independent equations involving the B branch currents of the form (for node i) There are N-1 such equations, that is the index i ranges over all the nodes except the datum. For the sake of making a point imagine the node equations written one by one. As each new equation is written it must involve a branch current not involved in any of the previous equations; there will be previously unused branches connecting to the 'new' node. Hence each successive equation will be independent of its predecessors. Of course 'independence' is a property of the equations and not of the order in which they are written; the equations will be independent no matter what order they are written in. Step #3: Choose the minimum number of voltage variables needed to express all the branch voltage drops. The easy way to do this is to choose as the variables the voltage drop from each node to the datum node. It is conventional to omit an explicit reference to the datum node, leaving this to be understood. Actually the voltage variables each may be chosen independently as a voltage rise or a voltage drop. Theoretically this doesn't matter. As a practical matter however there is strong reason to choose the variables either all as rises or all as drops. One immediate convenience of this choice is that there is no need to keep individual track of whether a particular variable is a rise or a drop. But there is further advantage to uniformity, as will be seen later. The voltage drop across any branch can be expressed in terms of no more than two node voltages. For a branch one of whose nodes is connected to the datum the voltage drop across that branch is the node voltage at the other node. Otherwise the drop from node a to node b is equal to the voltage at node a (i.e., node a to datum) - the voltage drop at node b (datum to node Circuits Nodal Analysis 3 M H Miller

4 b). There are N-1 node voltage variables, exactly the number of independent node equations in item 2. Step #4: Express each branch current in terms of the branch voltage using the branch volt-ampere relations, and substitute in the N-1 KCL node equations. The result is a set of N-1 independent equations in N-1 node voltage variables, and these can be solved by any of several methods; Cramer's Rule, Gauss Elimination, etc. Example Consider the application of a nodal analysis to the circuit drawn below. The reference node (the datum) is indicated by the ground symbol. There are four nodes (right-angle corners and short-circuit connections do not of course affect the topological connection information conveyed), and so there are three nodal (KCL) equations to write. The node variables to be used are the three voltage drops e 1, e 2 and e 3. These voltage drops are understood to be from a node to the datum, and with this understanding there is no need to clutter the diagram with explicit ± signs. (One could use voltage rise from the node to the datum as the variable. This would result in values for branch voltages and currents that are the negative of those calculated for a voltage-drop choice. But since the polarity markers are reversed the two sets of solutions are different descriptions of precisely the same things.) We can skip writing the KCL equations formally. The analysis is so straightforward that we can substitute for the currents from the branch volt-ampere relations directly. Thus consider the KCL equation for node (subscript) 1. There are four branches attached to node 1, and so four terms in the KCL equation. Suppose we write the KCL equation in the form Sum of the source currents in = Sum of the branch currents out There is a certain conceptual advantage to this form of KCL; it separates the sources which 'excite' the circuit from the branch currents which result from the excitation. Obtaining the left side of the equation is straightforward; there is one source which inserts 1 ampere into the node (more generally a volume of space enclosing the node), and another which inserts 2 amperes. The other side of the equation is only slightly more involved to obtain. Consider for example the current flowing out of node 1 through the 4 Ω branch. The voltage drop from node 1 to node 3 is e1 - e3. This is obtained by a straightforward application of KVL; the voltage drop from node 1 to node 2 is equal to the voltage drop from node 1 to the datum plus the voltage drop from the datum to node 3. The latter voltage drop is minus the drop from node 3 to the datum. Hence the current flowing out of node 1 in the 4 Ω branch is (e1 - e3)/4. Similarly, by direct inspection, the current flowing out of node 1 through the 1 Ω branch is (e1 - e2)/1. Hence = (e 1 - e 3 )/4 + (e 1 - e 2 )/1 Similarly for node 2 0 = (e 2 - e 1 )/1 +e 2 /2 + (e 2 - e 3 /8 Circuits Nodal Analysis 4 M H Miller

5 and for node 3-2 = (e 3 - e 1 )/4 + (e 3 - e 2 )/8 + e 3 /5 After algebraic simplification the three independent equations in three unknowns are 3 = 1.25 e 1 - e e 3 0 = - e e e 3-2 = e e e 3 Solving (Gauss elimination or Cramer's Rule or computer-aided analysis): e 1 = v I 20 = a e 2 = v I 30 = a e 3 = v I 12 = a I 23 = a I 13 = a It is not a bad idea to verify KCL at the three nodes, and to calculate a branch current or two from the node voltages and compare with the listed values. The illustrative circuit has no voltage source branches, an arbitrary constraint that was imposed earlier. As was noted at the time the constraint really is not necessary, and was stated mostly for purposes of sensitizing you to the observations to be made now. The singular aspect of a voltage source branch in a nodal analysis is that it introduces a node 'variable' which need not be used in the algorithmic procedure. If the voltage source is between a node and the datum then the node voltage is equal to the source voltage, and it is not necessary to treat that node voltage as an unknown. If the voltage source is connected between two nodes neither of which is the datum then one node voltage is readily calculated if the other is known by a simple addition (or subtraction). There are several ways of treating a voltage source branch, some more convenient for machine computation than for 'hand' calculation. A direct 'fix' for the presence of a voltage source branch is to consider the branch current as an independent variable in addition to the node voltages. Of course that requires an additional independent equation for a solution to be possible. But the source branch voltage provides such an equation. In the illustrative circuit for example the voltage source branches offset the introduction of two current variables with the two equations e1 = 1 and e1 - e3 = 2 (or e3 = -1). A disadvantage of this method for hand calculations, not so bad really for 'small' problems, is that the number of equations to be solved is increased. The node equations for the example circuit expressed in matrix form are: Circuits Nodal Analysis 5 M H Miller

6 Note the inclusion of the voltage source currents as independent variables, and the addition of the two source strength equations. An alternative procedure more convenient for hand calculations directly incorporates the fact that the voltage source strengths effectively reduce the number of unknown node voltages. The idea is illustrated below. First select a set of voltage sources (if any) which form a voltage source tree, i.e., any voltage source branch in the tree can be reached from any other voltage source branch using only voltage source branches; such a tree is enclosed by a loop in the diagram. The sources so enclosed form a 'supernode', a closed volume containing only voltage source branches. If one of the enclosed voltage sources is connected to the datum node then the associated (non-datum) node voltage is known; for example one can write for the illustration e 1 = 1. Depending on your preference you may remove e 1 from the set of node voltage variables, substituting where necessary its known value, or keep it as a variable and include e 1 = 1 as an independent equation. We can write a KCL equation for the supernode that does not involve the current through either voltage source as shown. Thus the current out of the supernode into node 3 is -i a + i c + i d, and these currents can be expressed in terms of the node voltages. Moreover the current out of the supernode at node 1 is i a + i b, which can be expressed in terms of node voltages, and KCL applied to the supernode is ( i a + i c + i d ) + (i a + i b ) = 0. The explanation is a bit extended, but in practice this equation would be written in terms of the node voltages directly by inspection. The voltage expression for e 1, the above supernode KCL equation, and a third KCL equation for node 2 provide three independent equations to determine the three node voltages. If a circuit contains more Circuits Nodal Analysis 6 M H Miller

7 than one voltage source tree a supernode is formed for each tree. In general circuit whose analysis is amenable to hand calculation will not have very many voltage sources, and circuits analyzed by computer do not require any special handling of this sort. It is a useful exercise to solve for the node voltages ( e 1 = 1v, e 2 = 0.54v, and e 3 = -1v) and verify in a few instances that KVL and KCL are satisfied. You might also write KCL equations for each node introducing temporary source branch currents, and then verify that the supernode KCL equation amounts simply to adding the equations for each 'internal' node of the supernode For machine computations a simpler tactic is not uncommon. Many machine programs simply prohibit a simple voltage source as a branch element. They require a circuit element such as a resistor to be placed in series with a voltage source, and these then force a simple relationship between the branch current, the source strength, and the branch node voltages. For 'real' circuits this is not a problem since in practice voltage sources inevitably have an internal series resistance. For idealized circuits or for some computational purposes a series resistor is not desired. One way out of this conflict is to insert a series resistor but to make the resistance have negligible effect on the computations, e.g., use the smallest non-zero resistance value in the circuit multiplied by, say,10-6. With some care this satisfies the computation program requirements without affecting any significant digits in computed values. (Indeed in some instances an analysis program will do this sort of thing automatically if you omit the resistor.) As it happens computer programs often impose a similar requirement on current sources; a resistor in parallel with the source is required. This is less of a problem because it is acceptable to specify a resistor with infinite resistance, in effect an open-circuit, to satisfy this requirement. Supplementary Example Involving a Controlled Source The voltage-controlled current source in the circuit below introduces only a modest adjustment in the nodal analysis. The dependent current source is treated as is any node current, except that the source strength depends on a voltage in another part of the circuit. Simply observe that the control voltage Vx is a branch voltage and it can be expressed in terms of node voltages as e2 e3. This replacement can be done in the course of writing the equation. Node 1: 1 = (e 1 - e 3 )/4 + (e 1 - e 2 )/1-2(e 2 - e 3 ) Node 2: 0 = (e 2 - e 1 )/1 + e 2 /2 + (e 2 - e 3 )/8 Node 3: 0 = (e 3 - e 1 )/4 + (e 3 - e 2 )/8 +e 3 /5 +2(e 2 - e 3 ) After algebraic simplification the three independent equations in three unknowns are 1 = 1.25 e 1-3.0e e 3 0 = - e e e 3 0 = e e e 3 Solving (Gauss elimination or Cramer's Rule or computer-aided analysis): e 1 = v I 20 = a Circuits Nodal Analysis 7 M H Miller

8 e 2 = v e 3 = v I 30 = a I 12 = a I 23 = a I 13 = a Circuits Nodal Analysis 8 M H Miller

Circuits 1 M H Miller

Circuits 1 M H Miller Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents

More information

Notes for course EE1.1 Circuit Analysis TOPIC 8 DEPENDENT SOURCES

Notes for course EE1.1 Circuit Analysis TOPIC 8 DEPENDENT SOURCES Objectives Notes for course EE1.1 Circuit Analysis 004-05 To introduce dependent sources TOPIC 8 DEPENDENT SOURCES To study active sub-circuits containing dependent sources To perform nodal analysis of

More information

Solving for Voltage and Current

Solving for Voltage and Current Chapter 3 Solving for Voltage and Current Nodal Analysis If you know Ohm s Law, you can solve for all the voltages and currents in simple resistor circuits, like the one shown below. In this chapter, we

More information

Basic circuit analysis

Basic circuit analysis EIE209 Basic Electronics Basic circuit analysis Analysis 1 Fundamental quantities Voltage potential difference bet. 2 points across quantity analogous to pressure between two points Current flow of charge

More information

3. Introduction and Chapter Objectives

3. Introduction and Chapter Objectives Real nalog Circuits Chapter 3: Nodal and Mesh nalysis 3. Introduction and Chapter Objectives In Chapters and 2, we introduced several tools used in circuit analysis: Ohm s law, Kirchoff s laws, and circuit

More information

07-Nodal Analysis Text: ECEGR 210 Electric Circuits I

07-Nodal Analysis Text: ECEGR 210 Electric Circuits I 07Nodal Analysis Text: 3.1 3.4 ECEGR 210 Electric Circuits I Overview Introduction Nodal Analysis Nodal Analysis with Voltage Sources Dr. Louie 2 Basic Circuit Laws Ohm s Law Introduction Kirchhoff s Voltage

More information

Circuit Analysis using the Node and Mesh Methods

Circuit Analysis using the Node and Mesh Methods Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The

More information

Chapter 4 Objectives

Chapter 4 Objectives Chapter 4 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 4 Objectives Understand and be able to use the node-voltage method to solve a circuit; Understand and be able to use the mesh-current method

More information

THEVENIN S EQUIVALENT CIRCUIT

THEVENIN S EQUIVALENT CIRCUIT THEVENIN S THEOREM INTRODUCTION THEVENIN S EQUIVALENT CIRCUIT ILLUSTRATION OF THEVENIN S THEOREM FORMAL PRESENTATION OF THEVENIN S THEOREM PROOF OF THEVENIN S THEOREM WORKED EXAMPLE 2 WORKED EXAMPLE 3

More information

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS Hello everybody! In a series of lecture on basic electronics, learning by doing, we now

More information

Basic Concepts. Basic Circuit Definitions

Basic Concepts. Basic Circuit Definitions Basic Concepts http://pami.uwaterloo.ca/~akrem/ University of Waterloo, Electrical and Computer Engineering Dep. Objective: To define the basic concepts of circuit analysis. Circuit: It is an interconnection

More information

Nodal and Loop Analysis

Nodal and Loop Analysis Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important

More information

CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

More information

Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models

Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm

More information

Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson

Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson 2-24-05 EGR 214 Circuit Analysis I Laboratory Section 04 Prof. Blauch Abstract The purpose of this report is to

More information

Chapter 2. Circuit Analysis Techniques

Chapter 2. Circuit Analysis Techniques Chapter 2 Circuit Analysis Techniques 1 Objectives To formulate the node-voltage equations. To solve electric circuits using the node voltage method. To introduce the mesh current method. To formulate

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for and V at each element Linear circuits: involve resistors, capacitors, inductors nitial analysis uses only resistors Power sources,

More information

Chapter 6: Operational Amplifier (Op Amp)

Chapter 6: Operational Amplifier (Op Amp) Chapter 6: Operational Amplifier (Op Amp) 6.1 What is an Op Amp? 6.2 Ideal Op Amp 6.3 Nodal Analysis of Circuits with Op Amps 6.4 Configurations of Op Amp 6.5 Cascaded Op Amp 6.6 Op Amp Circuits & Linear

More information

Thevenin s and Norton s theorems

Thevenin s and Norton s theorems Thevenin s and Norton s theorems Objectives To understand the basic philosophy behind the Thevenin s theorem and its application to solve dc circuits. Explain the advantage of Thevenin s theorem over conventional

More information

Experiment 17: Kirchho s Laws for Circuits

Experiment 17: Kirchho s Laws for Circuits Experiment 17: Kirchho s Laws for Circuits Figure 17.1: Kirchho s Law Circuit Board Figure 17.2: Schematic for Kirchho s Circuit EQUIPMENT (1) (2) (2) (4) (1) (5) Resistors: R1 = 10 Resistor R2 = 12 Resistor

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Alexander-Sadiku Fundamentals of Electric Circuits Chapter 3 Methods of Analysis Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Methods of Analysis - Chapter

More information

1. Solving series circuit problems

1. Solving series circuit problems Name: Skill Sheet 20. Parallel and Series Circuits There are two major types of electrical circuits: series and parallel. In a series circuit, current follows only one path. In a parallel circuit, the

More information

Mesh-Current Method (Loop Analysis)

Mesh-Current Method (Loop Analysis) Mesh-Current Method (Loop Analysis) Nodal analysis was developed by applying KCL at each non-reference node. Mesh-Current method is developed by applying KVL around meshes in the circuit. A mesh is a loop

More information

3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes

3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes Solving Simultaneous Linear Equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

More information

Node and Mesh Analysis

Node and Mesh Analysis Node and Mesh Analysis 1 Copyright ODL Jan 2005 Open University Malaysia Circuit Terminology Name Definition Node Essential node Path Branch Essential Branch Loop Mesh A point where two ore more branches

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

More information

EECE251 Circuit Analysis Set 2: Methods of Circuit Analysis

EECE251 Circuit Analysis Set 2: Methods of Circuit Analysis EECE251 Circuit Analysis Set 2: Methods of Circuit Analysis Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Reading Material Chapter

More information

Lecture - 3 Diode Equivalent Circuits

Lecture - 3 Diode Equivalent Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 3 Diode Equivalent Circuits

More information

Chapter 4: Methods of Analysis

Chapter 4: Methods of Analysis Chapter 4: Methods of Analysis 4.1 Motivation 4.2 Nodal Voltage Analysis 4.3 Simultaneous Eqs. & Matrix Inversion 4.4 Nodal Voltage Analysis with Voltage Sources 4.5 Mesh Current Analysis 4.6 Mesh Current

More information

Lab-18-(Circuit Analysis).doc Rev. 3/8/2006 ANALYSIS

Lab-18-(Circuit Analysis).doc Rev. 3/8/2006 ANALYSIS Name: Period: Due Date: _ Lab Partners: CIRCUIT ANALYSIS Purpose: To analyze subunits of complex circuits to see how the small branches may be analyzed as part of the analysis of the whole circuit. You

More information

Chris Young. Math 308 A. Electrical Networks. December 3, 2001

Chris Young. Math 308 A. Electrical Networks. December 3, 2001 Chris Young Math 308 A Electrical Networks December 3, 2001 Abstract An interesting application of linear algebra can be found in electrical engineering and specifically electrical networks. I have found

More information

3 Systems of Linear. Equations and Matrices. Copyright Cengage Learning. All rights reserved.

3 Systems of Linear. Equations and Matrices. Copyright Cengage Learning. All rights reserved. 3 Systems of Linear Equations and Matrices Copyright Cengage Learning. All rights reserved. 3.2 Using Matrices to Solve Systems of Equations Copyright Cengage Learning. All rights reserved. Using Matrices

More information

Chapter 08. Methods of Analysis

Chapter 08. Methods of Analysis Chapter 08 Methods of Analysis Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning C-C Tsai Outline Source Conversion Mesh Analysis Nodal Analysis Delta-Wye ( -Y) Conversion Bridge Networks

More information

4. Basic Nodal and Mesh Analysis

4. Basic Nodal and Mesh Analysis 1 4. Basic Nodal and Mesh Analysis This chapter introduces two basic circuit analysis techniques named nodal analysis and mesh analysis 4.1 Nodal Analysis For a simple circuit with two nodes, we often

More information

Chapter 4: Techniques of Circuit Analysis

Chapter 4: Techniques of Circuit Analysis 4.1 Terminology Example 4.1 a. Nodes: a, b, c, d, e, f, g b. Essential Nodes: b, c, e, g c. Branches: v 1, v 2, R 1, R 2, R 3, R 4, R 5, R 6, R 7, I d. Essential Branch: v 1 -R 1, R 2 -R 3, v 2 -R 4, R

More information

ECE 211 WORKSHOP: NODAL AND LOOP ANALYSIS. Tutor: Asad Akram

ECE 211 WORKSHOP: NODAL AND LOOP ANALYSIS. Tutor: Asad Akram ECE 211 WORKSHOP: NODAL AND LOOP ANALYSIS Tutor: Asad Akram 1 AGENDA Background: KCL and KVL. Nodal Analysis: Independent Sources and relating problems, Dependent Sources and relating problems. Loop (Mesh

More information

Graph theory and systematic analysis

Graph theory and systematic analysis Electronic Circuits 1 Graph theory and systematic analysis Contents: Graph theory Tree and cotree Basic cutsets and loops Independent Kirchhoff s law equations Systematic analysis of resistive circuits

More information

3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Outcomes

3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Outcomes Solving simultaneous linear equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

More information

Discussion Question 6A

Discussion Question 6A Discussion Question 6 P212, Week 6 Two Methods for Circuit nalysis Method 1: Progressive collapsing of circuit elements In last week s discussion, we learned how to analyse circuits involving batteries

More information

Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

More information

PHYSICS 326 LAB #2: The Voltage Divider Page 1

PHYSICS 326 LAB #2: The Voltage Divider Page 1 PHYSICS 326 LAB #2: The Voltage Divider Page 1 PURPOSES: to gain some experience with soldering to introduce the concept and jargon of voltage dividers to introduce the use of the Thevenin equivalent method

More information

Figure 2-3: (a) Rheostat is used to set the resistance between terminals 1 and 2 at any value between zero and Rmax; (b) location of wiper in

Figure 2-3: (a) Rheostat is used to set the resistance between terminals 1 and 2 at any value between zero and Rmax; (b) location of wiper in Figure 2-3: (a) Rheostat is used to set the resistance between terminals 1 and 2 at any value between zero and Rmax; (b) location of wiper in potentiometer divides the resistance Rmax among R13 and R23.

More information

CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

A)Review of KCL and KVL B)Nodal Analysis Strategy C)Special Situations and Examples D)Accounting for All Unknowns

A)Review of KCL and KVL B)Nodal Analysis Strategy C)Special Situations and Examples D)Accounting for All Unknowns Lecture 8: September 24th, 2001 Nodal Analysis 20 min Quiz on HW 1-4 at start of class on Wed. 9/26 A)Review of KCL and KVL B)Nodal Analysis Strategy C)Special Situations and Examples D)Accounting for

More information

2. Introduction and Chapter Objectives

2. Introduction and Chapter Objectives Real Analog - Circuits Chapter 2: Circuit Reduction 2. Introduction and Chapter Objectives In Chapter, we presented Kirchoff s laws (which govern the interactions between circuit elements) and Ohm s law

More information

Department of Physics and Astronomy. Series and Parallel Circuits + Ohm's law

Department of Physics and Astronomy. Series and Parallel Circuits + Ohm's law Department of Physics and Astronomy Physics 209B Series and Parallel Circuits + Ohm's law Objectives: You will learn how to use the Digital Multimeter (DMM) in two simple circuits to achieve the following:

More information

EE301 - PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW

EE301 - PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW Objectives a. estate the definition of a node and demonstrate how to measure voltage and current in parallel circuits b. Solve for total circuit resistance of a parallel circuit c. State and apply KCL

More information

à 7.Electrical Circuits and Kirchhoff's Rules

à 7.Electrical Circuits and Kirchhoff's Rules 1 à 7.Electrical Circuits and Kirchhoff's Rules Electrical circuits involving batteries and resistors can be treated using a method of analysis developed by Kirchoff. There are just two Kirchhoff's rules:

More information

1 Gaussian Elimination

1 Gaussian Elimination Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 Gauss-Jordan reduction and the Reduced

More information

Analogue Electronics I (Aero) 1 Basic Methods and Laws. Solution Methodology: Two types of analysis:

Analogue Electronics I (Aero) 1 Basic Methods and Laws. Solution Methodology: Two types of analysis: nalogue Electronics (ero) 1 1.1 nalogue Electronics I (ero) 1 asic Methods and Laws Solution Methodology: Electrical Circuit # Mathematical Model # written down and equations solved # oltages and Currents

More information

3LEARNING GOALS. Analysis Techniques

3LEARNING GOALS. Analysis Techniques IRWI3_8232hr 9/3/4 8:54 AM Page 82 3 Nodal 3LEARNING GOALS and Loop Analysis Techniques 3. Nodal Analysis An analysis technique in which one node in an Nnode network is selected as the reference node and

More information

Chapter 6. Experiment 4: Electric Currents and Circuits. 6.1 Introduction The Electric Current

Chapter 6. Experiment 4: Electric Currents and Circuits. 6.1 Introduction The Electric Current Chapter 6 Experiment 4: Electric Currents and Circuits 6.1 Introduction The resistance to the flow of an electric current is essential in the design of electronic devices and electric circuits generally.

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes

8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us

More information

In this series circuit the voltage drop across each resistor is:

In this series circuit the voltage drop across each resistor is: Simple DC circuits General rules In a series circuit it is the current which remains constant through each element of the circuit. In a parallel circuit it is the voltage which remains constant through

More information

Unit FE-2 Foundation Electricity: DC Network Analysis

Unit FE-2 Foundation Electricity: DC Network Analysis Unit FE-2 Foundation Electricity: DC Network Analysis What this unit is about This unit contains some basic ideas on DC network analysis. It also deals with the Thevenin theorem, a technique of considerable

More information

Lab 6 Series-Parallel DC Circuits

Lab 6 Series-Parallel DC Circuits Page 1 of 5 Name: ECET 231 - Circuit Analysis I Lab 6 Series-Parallel DC Circuits Objective: Lab Report: Equipment: Students successfully completing this lab will accomplish the following objectives: 1.

More information

Operational Amplifiers (OpAmps)

Operational Amplifiers (OpAmps) Chapter 1 Operational Amplifiers (OpAmps) 1.1 Introduction [1] An opamp is an electronic unit that behaves like a voltage-controlled voltage source.an opamp may also regarded as a voltage amplifier with

More information

Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010

Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010 Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun

More information

8. Resistors in Parallel

8. Resistors in Parallel 8. Resistors in Parallel Resistors are said to be connected together in "Parallel" when both of their terminals are respectively connected to each terminal of the other resistor or resistors. Unlike the

More information

DC circuit calculations

DC circuit calculations DC circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Science 14 Lab 3 - DC Circuits

Science 14 Lab 3 - DC Circuits Science 14 Lab 3 - DC Circuits Theory All DC circuit analysis (the determining of currents, voltages and resistances throughout a circuit) can be done with the use of three rules. These rules are given

More information

An Introduction to the Mofied Nodal Analysis

An Introduction to the Mofied Nodal Analysis An Introduction to the Mofied Nodal Analysis Michael Hanke May 30, 2006 1 Introduction Gilbert Strang provides an introduction to the analysis of electrical circuits in his book Introduction to Applied

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers Op amps have many applications. They are used in a wide variety of mathematical applications as a fundamental element of a mathematical circuit. Some more complicated models of an

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 28

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 28 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 28 In the earlier lectures, we have seen formulation for 3 node linear triangular

More information

3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Style. Learning Outcomes

3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Style. Learning Outcomes Solving simultaneous linear equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

More information

LAB 4: KIRCHOFF S CIRCUIT RULES (Reference: Physics Laboratory Experiments - J. D. Wilson, DC Heath & Co.)

LAB 4: KIRCHOFF S CIRCUIT RULES (Reference: Physics Laboratory Experiments - J. D. Wilson, DC Heath & Co.) LAB 4: KIRCHOFF S CIRCUIT RULES (Reference: Physics Laboratory Experiments - J. D. Wilson, DC Heath & Co.) Objectives: Distinguish between circuit branches and junctions Apply Kirchoff s rules to multiloop

More information

Thévenin s and Norton s Equivalent Circuits and Superposition Theorem

Thévenin s and Norton s Equivalent Circuits and Superposition Theorem Thévenin s and Norton s Equivalent Circuits and Superposition Theorem Thévenin s and Norton s Theorems Thévenin s Theorem As far as its appearance from outside is concerned, any two terminal network of

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

Problem set #5 EE 221, 09/26/ /03/2002 1

Problem set #5 EE 221, 09/26/ /03/2002 1 Chapter 3, Problem 42. Problem set #5 EE 221, 09/26/2002 10/03/2002 1 In the circuit of Fig. 3.75, choose v 1 to obtain a current i x of 2 A. Chapter 3, Solution 42. We first simplify as shown, making

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

DC Circuits: Operational Amplifiers Hasan Demirel

DC Circuits: Operational Amplifiers Hasan Demirel DC Circuits: Operational Amplifiers Hasan Demirel Op Amps: Introduction Op Amp is short form of operational amplifier. An op amp is an electronic unit that behaves like a voltage controlled voltage source.

More information

Series and Parallel Resistors

Series and Parallel Resistors Series and Parallel Resistors 1 Objectives To calculate the equivalent resistance of series and parallel resistors. 2 Examples for resistors in parallel and series R 4 R 5 Series R 6 R 7 // R 8 R 4 //

More information

Nodal Analysis Objective: To analyze circuits using a systematic technique: the nodal analysis.

Nodal Analysis Objective: To analyze circuits using a systematic technique: the nodal analysis. Circuits (MTE 20) (Spring 200) Nodal Analysis Objective: To analyze circuits using a systematic technique: the nodal analysis. http://pami.uwaterloo.ca/~akrem/ University of Waterloo, Electrical and Computer

More information

Electrical Machines-I Prof. Dr Debaprasad Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Electrical Machines-I Prof. Dr Debaprasad Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Electrical Machines-I Prof. Dr Debaprasad Kastha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 28 Compound DC Generators (Refer Slide Time: 00:26) We know that

More information

1 Introduction. 2 Integer Division

1 Introduction. 2 Integer Division 1 Introduction This essay introduces some new sets of numbers. Up to now, the only sets of numbers (algebraic systems) we know is the set Z of integers with the two operations + and and the system R of

More information

Reading 7 : Program Correctness

Reading 7 : Program Correctness CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Instructors: Beck Hasti, Gautam Prakriya Reading 7 : Program Correctness 7.1 Program Correctness Showing that a program is correct means that

More information

Direct Current Circuits

Direct Current Circuits Phys 2212L LAB 4 Direct Current Circuits Purpose In this laboratory, we will set up the three basic types of electric circuits: a series, a parallel and a combination circuit. We will use Ohm s Law and

More information

120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY PROBLEMS SECTION 3.1

120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY PROBLEMS SECTION 3.1 IRWI03_082132v3 8/26/04 9:41 AM Page 120 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY Nodal analysis for an Nnode circuit Select one node in the Nnode circuit as the reference node. Assume

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

SUPPLEMENT TO CHAPTER

SUPPLEMENT TO CHAPTER SUPPLEMENT TO CHAPTER 6 Linear Programming SUPPLEMENT OUTLINE Introduction and Linear Programming Model, 2 Graphical Solution Method, 5 Computer Solutions, 14 Sensitivity Analysis, 17 Key Terms, 22 Solved

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide

More information

CIRCUITS LABORATORY EXPERIMENT 1

CIRCUITS LABORATORY EXPERIMENT 1 CIRCUITS LABORATORY EXPERIMENT 1 DC Circuits Measurement and Analysis 1.1 Introduction In today's high technology world, the electrical engineer is faced with the design and analysis of an increasingly

More information

How can we deal with a network branch which is part of two networks each with a source? R3 is carrying current supplied by each battery

How can we deal with a network branch which is part of two networks each with a source? R3 is carrying current supplied by each battery Network nalysis ims: Consolidate use of KCL in circuit analysis. Use Principle of Superposition. Learn basics of Node Voltage nalysis (uses KCL) Learn basics of Mesh Current nalysis (uses KVL) Lecture

More information

Advanced Operation Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operation Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operation Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture No. # 01 Introduction and Linear Programming We begin this lecture series

More information

FB-DC4 Electric Circuits: Divider Circuits And Kirchhoff's Laws

FB-DC4 Electric Circuits: Divider Circuits And Kirchhoff's Laws CREST Foundation Electrical Engineering: DC Electric Circuits Kuphaldt FB-DC4 Electric Circuits: Divider Circuits And Kirchhoff's Laws Contents 1. Voltage divider circuits 2. Kirchhoff's Voltage Law (KVL)

More information

Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node.

Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node. Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1 - The sum of the currents

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations ) Consider the following system of equations: x + x = x x = x + x = or x + x + x = x - x + x = Why? x + x + x = Solving Systems of Linear Equations We will solve this system using a procedure, which will

More information

V out. Figure 1: A voltage divider on the left, and potentiometer on the right.

V out. Figure 1: A voltage divider on the left, and potentiometer on the right. Living with the Lab Fall 202 Voltage Dividers and Potentiometers Gerald Recktenwald v: November 26, 202 gerry@me.pdx.edu Introduction Voltage dividers and potentiometers are passive circuit components

More information

Kirchhoff s Voltage Law

Kirchhoff s Voltage Law BASIC ELECTRICAL Kirchhoff s Voltage Law OBJECTIVES Define Kirchhoff s Voltage Law Discuss how Kirchhoff s Voltage Law applies to Series and Parallel Circuits Calculate Voltage drops in a Series and Parallel

More information

1 Review of two equations in two unknowns

1 Review of two equations in two unknowns Contents 1 Review of two equations in two unknowns 1.1 The "standard" method for finding the solution 1.2 The geometric method of finding the solution 2 Some equations for which the "standard" method doesn't

More information

Electric Circuits. Overview. Hani Mehrpouyan,

Electric Circuits. Overview. Hani Mehrpouyan, Electric Circuits Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 5 (Mesh Analysis) Sep 8 th, 205 Hani Mehrpouyan (hani.mehr@ieee.org) Boise State c 205 Overview With Ohm s

More information

LAB 2 - BATTERIES, BULBS, & CURRENT

LAB 2 - BATTERIES, BULBS, & CURRENT 21 Name Date Partners LAB 2 - BATTERIES, BULBS, & CURRENT OBJECTIVES OVERVIEW To understand how a potential difference (voltage) can cause an electric current through a conductor. To learn how to design

More information

Cost Allocations and Linear Programming

Cost Allocations and Linear Programming Cost Allocations and Linear Programming by Richard A. Young 1 I. Introduction The heart of the accountant's job is allocation. Costs and revenues are allocated over time and across products. In this fashion,

More information

Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction)

Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Peter Young (Dated: February 12, 2014) I. INTRODUCTION The general problem is to solve m linear equations in n variables. In

More information

Matrices & Their Applications: Nodal Analysis

Matrices & Their Applications: Nodal Analysis Matrices & Their Applications: Nodal Analysis Introduction Nodal analysis is a method applied to electrical circuits to determine the nodal voltages. In electrical circuits nodes are points where two or

More information

ETEC Chapter 2 Circuit Elements

ETEC Chapter 2 Circuit Elements ETEC 3501 Chapter 2 Circuit Elements Introduction Five basic circuit elements are: voltage sources, current sources, resistors, inductors, and capacitors. Voltage sources, current sources, and resistors

More information