# QUADRATIC EQUATIONS. 1. The equation ax 2 + bx + c = 0, a 0 is the standard form of a quadratic equation, where a, b and c are real numbers.

Save this PDF as:

Size: px
Start display at page:

Download "QUADRATIC EQUATIONS. 1. The equation ax 2 + bx + c = 0, a 0 is the standard form of a quadratic equation, where a, b and c are real numbers."

## Transcription

1 QUADRATIC EQUATIONS. The equation a + b + c = 0, a 0 is the standard form of a quadratic equation, where a, b and c are real numbers.. A real number is said to be a root of the quadratic equation a + b + c = 0, a 0. If a + b + c = 0, the zeros of quadratic polynomial a + b + c and the roots of the quadratic equation a + b + c = 0 are the same. 3. If we can factorise a + b + c = 0, a 0 in to product of two linear factors, then the roots of the quadratic equation can be found by equating each factors to zero. 4. The roots of a quadratic equation a + b + c = 0, a 0 are given by b b 4ac, provided that b 4ac 0. a 5. A quadratic equation a + b + c = 0, a 0, has (a) Two distinct and real roots, if b 4ac > 0. (b) Two equal and real roots, if b 4ac = 0. (c) Two roots are not real, if b 4ac < A quadratic equation can also be solved by the method of completing the square. (i) a + ab + b = (a + b ) (ii) a ab + b = (a b ) 7. Discriminant of the quadratic equation a + b + c = 0, a 0 is given by D = b 4ac. 74 X Maths

2 MULTIPLE CHOICE QUESTIONS. The general form of a quadratic equation is (a 0) (a) a + b + c (b) a + b + c = 0 (c) a + b (d) a + b = 0. Number of solutions of a quadratic equation are : (a) 0 (b) (c) (d) 3 3. If the equation ( + m ) + ( m 4m 4) = 0 has coincident roots, then (a) m = 0, m = (b) m =, m = (c) m =, m = (d) m = 6, m = 4. Discriminant of a quadratic equation a + b + c = 0 is given by (a) b 4ac (b) b 4ac (c) b 4ac (d) b + 4ac 5. Which is a quadratic equation? (a) (b) + = ( + 3) (c) ( + ) (d). 6. If the roots of a quadratic equation are and 3, then the equation is (a) = 0 (b) = 0 (c) 5 6 = 0 (d) = 0 7. Roots of the equations 3 + = 0 are (a), (b), (c), (d), X Maths 75

3 8. If the roots of a quadratic equation are equal, than discriminant is (a) (b) 0 (c) greater than 0 (d) less than zero. 9. If one root of + k + = 0 is, (a) 3 (b) 3 (c) 5 (d) 5 then the value of k is 0. The sum of the roots of the quadratic = 0 is (a) 6 5 (b) 5 (c) 5 6 (d) 5. The product of the roots of the quadratic equation = 0 is (a) 5 (b) 7 (c) 5 (d) 7. If the roots of the quadratic + k + = 0 are equal then the value of k is (a) 4 (b) 4 (c) ± 4 (d) ± 6 3. If the roots of 4 + 3p + 9 = 0 are real and distinct then, the value of p is (a) p 4 or p 4 (b) p 4 or p 4 (c) p 4 or p 4 (d) p 4 or p 4 76 X Maths

4 4. If the sum and product of roots of a quadratic equation are 7 5 and respectively, then the equation is (a) = 0 (b) = 0 (c) 7 5 = 0 (d) = 0 5. Which constant must be added or subtracted to solve the equation by the method of completing the square 4 (a) 8 (b) 64 (c) 6 (d) none SHORT ANSWER TYPE QUESTIONS 6. If one root of the equation k = 0 is, then find the value of k and the other root. 7. For what value of k the equation + k + 3 = 0 has equal roots? 8. For what value of p, the equation 3 + p + 3 = 0 has real roots? 9. The product of two consecutive odd integers is 63. Represent this in form of a quadratic equation. 0. Find the roots of the equation : 4, Find the roots of the equation : Divide 5 in to two parts such that their product is Find k so that (k ) + (k ) + = 0 has equal roots. (k ). 4. If ( 5) is a root of the equation + p 5 = 0 and the equation p ( + ) + k = 0 has equal roots, find values of p and k. X Maths 77

5 5. Find the roots of the equation 3,, The difference of two numbers is 5 and the difference of their reciprocals is. 0 Find the numbers. 7. If the roots of the equation (b c) + (c a ) + (a b ) = 0 are equal, then prove that b = a + c. 8. Find the nature of the roots of the following quadratic equations. If roots are real, find them. (a) = 0. (b) = Sum of two numbers is 5, if sum of their reciprocals is numbers Find the 30. Solve the following quadratic equations , a + (a b ) b = ab + (b ac) bc = ,, , 4, a b a b, a 0, b 0, 0, (a + b). 78 X Maths

6 38. A two digit number is such that the product of the digit is 35, when 8is added to the number, the digits inter change their places. Find the number. 39. Three consecutive positive integers are such that the sum of the square of the first and the product of the other two is 46, find the integers. 40. A motor boat whose speed is 9 km/h in still water goes km down stream and comes back in a total time 3 hours. Find the speed of the stream. 4. A train travels 360 km at uniform speed. If the speed had been 5 km/hr more it would have taken hour less for the same journey. Find the speed of the train. 4. The hypotenuse of right angled triangle is 6cm more than twice the shortest side. If the third side is cm less than the hypotenuse, find the sides of the triangle. 43. By a reduction of Rs. per kg in the price of sugar. Anita can purchase kg sugar more for Rs. 4. Find the original price of sugar per kg. 44. Rs were divided equally among a certain number of students. Had there been 5 more students, each would have got Rs. 30 less. Find the original number of students. 45. A fast train takes 3 hours less than a slow train in travelling 600 km. If the speed of fast train is 0 km/kr more than the speed of slow train, find the speed of both the trains. 46. A girl is twice as old as her sister. Four years hence, the product of their ages will be 60. Find their present ages. 47. Two years ago a man s age was three times the square of his son s age. Three years hence his age will be four times his son s age. Find their present ages. 48. In a cricket match against Sri Lanka, Sehwag took one wicket less than twice the number of wickets taken by Unmukt. If the product of the number of wickets taken by these two is 5, find the number of wickets taken by each. 49. A takes 0 days less than the time taken by B to finish a piece of work. If both A and B together can finish the work in days. Find the time taken by B to finish the work alone. X Maths 79

7 50. Two pipes running together can fill a cistern in 8 minutes. If one pipe takes minute more than the other to fill the cistern, find the time in which each pipe would fill the cistern alone.. b. c 3. a 4. c 5. a 6. d 7. d 8. b 9. a 0. a. b. c 3. b 4. a 5. a 6. k = 0, second root = p 6 or p = , 4. 5,. 9, 4 3. k = , , , 5 7. Hint : For equal roots D = (a) Not real roots. 9. 5, 0 (b) Roots are real, 3 3,. 80 X Maths

8 30. 6, 3., b a 3 3., 4 3 c 33., b b a , 35., 36. 5, a, b , 5, km/hr km/hr cm, 4 cm, 0 cm 43. Rs , , yrs., 5 yrs days 50. 5, 6 min X Maths 8

### QUADRATIC EQUATIONS EXPECTED BACKGROUND KNOWLEDGE

MODULE - 1 Quadratic Equations 6 QUADRATIC EQUATIONS In this lesson, you will study aout quadratic equations. You will learn to identify quadratic equations from a collection of given equations and write

70 MATHEMATICS QUADRATIC EQUATIONS 4 4. Introduction In Chapter, you have studied different types of polynomials. One type was the quadratic polynomial of the form ax + bx + c, a 0. When we equate this

### not to be republished NCERT QUADRATIC EQUATIONS CHAPTER 4 (A) Main Concepts and Results

QUADRATIC EQUATIONS (A) Main Concepts and Results Quadratic equation : A quadratic equation in the variable x is of the form ax + bx + c = 0, where a, b, c are real numbers and a 0. Roots of a quadratic

### In a triangle with a right angle, there are 2 legs and the hypotenuse of a triangle.

PROBLEM STATEMENT In a triangle with a right angle, there are legs and the hypotenuse of a triangle. The hypotenuse of a triangle is the side of a right triangle that is opposite the 90 angle. The legs

### ( ) ( ) Math 0310 Final Exam Review. # Problem Section Answer. 1. Factor completely: 2. 2. Factor completely: 3. Factor completely:

Math 00 Final Eam Review # Problem Section Answer. Factor completely: 6y+. ( y+ ). Factor completely: y+ + y+ ( ) ( ). ( + )( y+ ). Factor completely: a b 6ay + by. ( a b)( y). Factor completely: 6. (

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### Park Forest Math Team. Meet #5. Algebra. Self-study Packet

Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number

### MEP Practice Book SA10

10 Equations 10.1 Negative Numbers 1. Rewrite each of the following sets of numbers in increasing order. (a), 0, 10,, 1,,, 0, 10,, 1 (c) 1, 4, 7,,, 10 (d) 1, 41, 11, 1, 11, 1. Write down all the integers

### MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

### Q3 Algebra Review Pre-calculus Name. Simplify each completely. Show work. Indicate your final answer a 2 2a -1 a 2. 1.

Q3 Algebra Review Pre-calculus Name Simplify each completely. Show work. Indicate your final answer. 1. (x 1 + y 1 ) -1 8. 4 a a -1 a. (a b ) 3. y 1 + 1 3y 1 + 3-1 9. 1 1 ( x y)( ) x y 1 1 ( x y)( ) x

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### Squares and Square Roots

SQUARES AND SQUARE ROOTS 89 Squares and Square Roots CHAPTER 6 6.1 Introduction You know that the area of a square = side side (where side means the length of a side ). Study the following table. Side

476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

### SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT

UNIT 3 SQUAREQUARE AND CUBEUBE (A) Main Concepts and Results A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m

### Sect 6.7 - Solving Equations Using the Zero Product Rule

Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred

### 2.5 Zeros of a Polynomial Functions

.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

### Solving Equations of Degree 1 (Linear Equations):

Solving Equations of Degree 1 (Linear Equations): Definition: The equation a b0 is called an equation of degree 1. Eample: Solve for : 0. 0, Or. Dividing both sides by : giving. Easy! Check the answer!

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Quadratic Equations in One Unknown

1 Quadratic Equations in One Unknown 1A 1. Solving Quadratic Equations Using the Factor Method Name : Date : Mark : Ke Concepts and Formulae 1. An equation in the form a + b + c, where a, b and c are real

SECTION.3 Quadratic Equations Section.3: Quadratic Equations Solving by Factoring Solving by Completing the Square Solving by the Quadratic Formula The Discriminant Solving by Factoring MATH 1310 College

### 1. By how much does 1 3 of 5 2 exceed 1 2 of 1 3? 2. What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3.

1 By how much does 1 3 of 5 exceed 1 of 1 3? What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3 A ticket fee was \$10, but then it was reduced The number of customers

### Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

### Key. Introduction. What is a Quadratic Equation? Better Math Numeracy Basics Algebra - Rearranging and Solving Quadratic Equations.

Key On screen content Narration voice-over Activity Under the Activities heading of the online program Introduction This topic will cover: the definition of a quadratic equation; how to solve a quadratic

### 4. An isosceles triangle has two sides of length 10 and one of length 12. What is its area?

1 1 2 + 1 3 + 1 5 = 2 The sum of three numbers is 17 The first is 2 times the second The third is 5 more than the second What is the value of the largest of the three numbers? 3 A chemist has 100 cc of

### Junior Cert Maths Notes Sample Paper 1 (Higher Level) Ronan Mulloy

Junior Cert Maths Notes Sample Paper 1 (Higher Level) by Ronan Mulloy Table of Contents Number Theory... 3 1. Conversions.... 3 2. Rounding Off... 4 3. Average Speed and Fuel Consumption... 7 4. Number

### Chapter 8. Quadratic Equations and Functions

Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property

### Solving Quadratic Equations by Factoring

4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### Example 1: If the sum of seven and a number is multiplied by four, the result is 76. Find the number.

EXERCISE SET 2.3 DUE DATE: STUDENT INSTRUCTOR: 2.3 MORE APPLICATIONS OF LINEAR EQUATIONS Here are a couple of reminders you may need for this section: perimeter is the distance around the outside of the

### Cork Institute of Technology. CIT Mathematics Examination, Paper 1 Sample Paper A

Cork Institute of Technology CIT Mathematics Examination, 2015 Paper 1 Sample Paper A Answer ALL FIVE questions. Each question is worth 20 marks. Total marks available: 100 marks. The standard Formulae

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### Math Common Core Sampler Test

High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests

### Objectives. By the time the student is finished with this section of the workbook, he/she should be able

QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a

### Instructions for SA Completion

Instructions for SA Completion 1- Take notes on these Pythagorean Theorem Course Materials then do and check the associated practice questions for an explanation on how to do the Pythagorean Theorem Substantive

### SOLVING TRIGONOMETRIC EQUATIONS

Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC

### Teaching & Learning Plans. Quadratic Equations. Junior Certificate Syllabus

Teaching & Learning Plans Quadratic Equations Junior Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to achieve.

### MATH 521B WORKBOOK RADICALS AND RATIONAL EXPRESSIONS

MATH 5B WORKBOOK RADICALS AND RATIONAL EXPRESSIONS Unit - Radicals Estimation of Radicals Estimate, then find an approximate value, to the nearest hundredth.. 87. 6680. 8. 55. 0. 5. 0. 008 6.. 006 Estimate,

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### SECTION 1-6 Quadratic Equations and Applications

58 Equations and Inequalities Supply the reasons in the proofs for the theorems stated in Problems 65 and 66. 65. Theorem: The complex numbers are commutative under addition. Proof: Let a bi and c di be

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

MATHEMATICAL VECTOR ADDITION Part One: The Basics When combining two vectors that act at a right angle to each other, you are able to use some basic geometry to find the magnitude and direction of the

### LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL

Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables

### Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

Advanced GMAT Math Questions Version Quantitative Fractions and Ratios 1. The current ratio of boys to girls at a certain school is to 5. If 1 additional boys were added to the school, the new ratio of

### Thompson Rivers University

Thompson Rivers University Math Assessment Test: Fundamental Level through University Level X Open Learning Faculty of Arts and Faculty of Science Programs Copyright & Credits Copyright 2012 (Revised)

### Polynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if

1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c

### 4. How many integers between 2004 and 4002 are perfect squares?

5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

### 3. Power of a Product: Separate letters, distribute to the exponents and the bases

Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

### Answer: = π cm. Solution:

Round #1, Problem A: (4 points/10 minutes) The perimeter of a semicircular region in centimeters is numerically equal to its area in square centimeters. What is the radius of the semicircle in centimeters?

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS Now that we are starting to feel comfortable with the factoring process, the question becomes what do we use factoring to do? There are a variety of classic

### The problems in this booklet are organized into strands. A problem often appears in multiple strands. The problems are suitable for most students in

The problems in this booklet are organized into strands. A problem often appears in multiple strands. The problems are suitable for most students in Grade 11 or higher. Problem E Mathletes in Action Four

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### Pythagoras Theorem. Page I can... 1... identify and label right-angled triangles. 2... explain Pythagoras Theorem. 4... calculate the hypotenuse

Pythagoras Theorem Page I can... 1... identify and label right-angled triangles 2... eplain Pythagoras Theorem 4... calculate the hypotenuse 5... calculate a shorter side 6... determine whether a triangle

### Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

### YOU CAN COUNT ON NUMBER LINES

Key Idea 2 Number and Numeration: Students use number sense and numeration to develop an understanding of multiple uses of numbers in the real world, the use of numbers to communicate mathematically, and

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### Testing Center Student Success Center x x 18 12x I. Factoring and expanding polynomials

Testing Center Student Success Center Accuplacer Study Guide The following sample questions are similar to the format and content of questions on the Accuplacer College Level Math test. Reviewing these

### Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

MATH 11 Quadratic Functions and Parabolas A quadratic function has the form Dr. Neal, Fall 2008 f () = a 2 + b + c where a 0. The graph of the function is a parabola that opens upward if a > 0, and opens

### Introduction Assignment

PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying

### Placement Test Review Materials for

Placement Test Review Materials for 1 To The Student This workbook will provide a review of some of the skills tested on the COMPASS placement test. Skills covered in this workbook will be used on the

### Skill Builders. (Extra Practice) Volume I

Skill Builders (Etra Practice) Volume I 1. Factoring Out Monomial Terms. Laws of Eponents 3. Function Notation 4. Properties of Lines 5. Multiplying Binomials 6. Special Triangles 7. Simplifying and Combining

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### PowerScore Test Preparation (800) 545-1750

Question 1 Test 1, Second QR Section (version 2) Two triangles QA: x QB: y Geometry: Triangles Answer: Quantity A is greater 1. The astute student might recognize the 0:60:90 and 45:45:90 triangle right

### MATH 21. College Algebra 1 Lecture Notes

MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### Solving Quadratic Equations by Completing the Square

9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

### Finding Solutions of Polynomial Equations

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

### 1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

Extra Practice for Lesson Add or subtract. ) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = Multiply. 7) (5)(-4) = 8) (-3)(-6) = 9) (-)(2) = Division is

0 The Quadratic Function TERMINOLOGY Ais of smmetr: A line about which two parts of a graph are smmetrical. One half of the graph is a reflection of the other Coefficient: A constant multiplied b a pronumeral

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

### Factoring, Solving. Equations, and Problem Solving REVISED PAGES

05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

CHAPTER Roots of quadratic equations Learning objectives After studying this chapter, you should: know the relationships between the sum and product of the roots of a quadratic equation and the coefficients

### 9.6 The Pythagorean Theorem

Section 9.6 The Pythagorean Theorem 959 9.6 The Pythagorean Theorem Pythagoras was a Greek mathematician and philosopher, born on the island of Samos (ca. 582 BC). He founded a number of schools, one in

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### a) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2

Solving Quadratic Equations By Square Root Method Solving Quadratic Equations By Completing The Square Consider the equation x = a, which we now solve: x = a x a = 0 (x a)(x + a) = 0 x a = 0 x + a = 0

### Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

### MATH Fundamental Mathematics II.

MATH 10032 Fundamental Mathematics II http://www.math.kent.edu/ebooks/10032/fun-math-2.pdf Department of Mathematical Sciences Kent State University December 29, 2008 2 Contents 1 Fundamental Mathematics

### INFANT JESUS GROUP OF ENGINEERING COLLEGES PLACEMENT TRAINING QUANTITATIVE APTITUDE RATIO AND PROPORTION

INFANT JESUS GROUP OF ENGINEERING COLLEGES PLACEMENT TRAINING QUANTITATIVE APTITUDE RATIO AND PROPORTION a : b represents the fraction b a. The multiplication or division of each term of a ratio by a nonzero

### Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### 5. Factoring by the QF method

5. Factoring by the QF method 5.0 Preliminaries 5.1 The QF view of factorability 5.2 Illustration of the QF view of factorability 5.3 The QF approach to factorization 5.4 Alternative factorization by the

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

CHATER. RIGHT TRIANGLE AND UADRILATERAL 18 1 5 11 Choose always the way that seems the best, however rough it may be; custom will soon render it easy and agreeable. ythagoras CHATER Right Triangles and

### STRAND B: Number Theory. UNIT B2 Number Classification and Bases: Text * * * * * Contents. Section. B2.1 Number Classification. B2.

STRAND B: Number Theory B2 Number Classification and Bases Text Contents * * * * * Section B2. Number Classification B2.2 Binary Numbers B2.3 Adding and Subtracting Binary Numbers B2.4 Multiplying Binary

### Algebra: Equations and formulae

Algebra: Equations and formulae. Basic algebra HOMEWORK A 6 7 8 0 FM AU Find the value of x + when a x = b x = 6 c x = Find the value of k when a k = b k = c k = 0 Find the value of + t when a t = b t

### Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### P.E.R.T. Math Study Guide

A guide to help you prepare for the Math subtest of Florida s Postsecondary Education Readiness Test or P.E.R.T. P.E.R.T. Math Study Guide www.perttest.com PERT - A Math Study Guide 1. Linear Equations

### Factoring - Solve by Factoring

6.7 Factoring - Solve by Factoring Objective: Solve quadratic equation by factoring and using the zero product rule. When solving linear equations such as 2x 5 = 21 we can solve for the variable directly

### + 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider

Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake

### UK Junior Mathematical Olympiad 2016

UK Junior Mathematical Olympiad 206 Organised by The United Kingdom Mathematics Trust Tuesday 4th June 206 RULES AND GUIDELINES : READ THESE INSTRUCTIONS CAREFULLY BEFORE STARTING. Time allowed: 2 hours.

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important