Automated Scheduling, School of Computer Science and IT, University of Nottingham 1. Job Shop Scheduling. Disjunctive Graph.


 Stuart Thornton
 2 years ago
 Views:
Transcription
1 Job hop cheduling Contents 1. Problem tatement 2. Disjunctive Graph. he hifting Bottleneck Heuristic and the Makespan Literature: 1. cheduling, heory, Algorithms, and ystems, Michael Pinedo, Prentice Hall, 199, or new: econd Addition, 22 Chapter or 2. Operations cheduling with Applications in Manufacturing and ervices, Michael Pinedo and Xiuli Chao, McGraw Hill, 2 Chapter 1 2 Problem tatement Disjunctive Graph Job shop environment: Example of a job shop problem: machines and jobs m machines, n jobs objective function each job follows a predetermined route routes are not necessarily the same for each job machine can be visited once or more than once (recirculation) NP hard problems,2,1,2 1, 2,, Jm C max How to construct a feasible schedule? (i, j) processing of job j on machine i processing time of job j on machine i G = (N, A B) (i, j) N all the operations that must be performed on the n jobs A conjunctive (solid) arcs represent the precedence relationships between the processing operations of a single job B disjunctive (broken) arcs connect two operations which belong to two different jobs, that are to be processed on the same machine, they go in opposite directions Disjunctive arcs form a clique for each machine. Clique is a maximal subgraph in which all pairs of nodes are connected with each other. elect D  a subset of disjunctive arcs (one from each pair) such that the resulting directed graph G(D) has no cycles. Graph G(D) contains conjunctive arcs + D. D represents a feasible schedule. A cycle in the graph corresponds to a schedule that is infeasible. Example invalid h,j Operations in the same clique have to be done on the same machine. i,k h,k i,j machine i machine h j k k j Automated cheduling, chool of Computer cience and I, University of Nottingham 1
2 1,1,2,2 1, 2,, he hifting Bottleneck Heuristic and the Makespan Idea: A classic idea in nonlinear programming is to hold all but one variable fixed and then optimise over that variable. hen hold all but a different one fixed, and so on. Furthermore, if we can do the onevariable optimisation in order of decreasing importance, there is better hope that the local optimum so found will be the global one, or close to it. he makespan of a feasible schedule is determined by the longest path in G(D) from to. In job shop problems fixing the value of variable means fixing the sequence in which jobs are to be processed on a given machine. Minimise makespan: find a selection of disjunctive arcs that minimises the length of the longest path (the critical path). Iteration M set of m machines M M machines for which sequence of jobs has already been determined in previous iterations Analysis of machines still to be scheduled i {MM } Define a singlemachine problem 1 r j L max for machine i i,j Jobs... j... r ij d ij longest path from to (i,j) C max (M ) longest path from (i,j) to + pij 9 Bottleneck selection A machine k with the largest maximum lateness is a bottleneck. L max ( k) = max ( Lmax ( i)) i { M M } 1. chedule machine k according to the sequence which minimises the corresponding L max (singlemachine problem). 2. Insert all the corresponding disjunctive arcs in the graph.. Insert machine k in M. C max (M k) C max (M ) + L max (k) 1 Resequencing of all machines scheduled earlier Aim: to reduce the makespan Do for each machine l {M  k} delete the disjunctive arcs associated with the machine l formulate a single machine problem for the machine l and find the sequence that minimises L max (l) Insert the corresponding disjunctive arcs. 11 hifting Bottleneck Algorithm tep 1. et the initial conditions M = set of scheduled machines. Graph G is the graph with all the conjunctive arcs and no disjunctive arcs. et C max ( ) equal to the longest path in graph G. tep 2. Analysis of the machines still to be scheduled olve the simple problem for each machine still to be scheduled: formulate a single machine problem with all operations subject to release dates and due dates. tep. Bottleneck selection he machine with the highest cost is designated the bottleneck. Insert all the corresponding disjunctive arcs in graph G. Insert machine which is the bottleneck in M. 12 Automated cheduling, chool of Computer cience and I, University of Nottingham 2
3 tep. Resequencing of all the machines scheduled earlier Find the sequence that minimised the cost and insert the corresponding disjunctive arcs in graph G. tep. topping condition If all the machines are scheduled (M = M) then OP else go to tep 2. Example. Jobs Machine Procesing imes equence 1 1, 2, p 11 =1, p 21 =, p 1 = 2 2, 1,, p 22 =, p 12 =, p 2 =, p 2 = 1, 2, p 1 =, p 2 =, p = 1,1,2,2 1, 2,, 1 1 Iteration 1. M = C max ( )=22 p1j 1 r1j d1j , L max (1)= 1,1,2,2 1, 2,, L max (1, 2, ) = max {, 2, } = L max (1,, 2) = max {, 2, } = L max (2, 1, ) = max {, 11,...} >11 L max (2,, 1) = max {,, 1} = 1 L max (, 1, 2) = max {,, } = L max (, 2, 1) = max {,, 1} = 1 1 1,1,2,2 p2j r2j 1 d2j ,,1 L max (2)= 1, 2,, L max (1, 2, ) = max {, 1, 1} = 1 L max (1,, 2) = max {,, 2} = 2 L max (2, 1, ) = max {,, } = L max (2,, 1) = max {, , } = L max (, 1, 2) = max {, 1, 19} = 19 L max (, 2, 1) = max {,, } = 1 1,1 1,1,2,2,2,2 1, 2,, 1, 2,, Machine pj rj 1 1 dj L max (1, 2) = max {, } = L max (2, 1) = max {, } = Machine Jobs 2 pj rj dj 1 22 L max (2, ) = max {, } = L max (, 2) = max {, } = L max ()= L max ()= 1 1 Automated cheduling, chool of Computer cience and I, University of Nottingham
4 L max (2)= 2,,1 L max (1)=, L max ()= L max ()= Machines 1 and 2 are bottlenecks. 1,1 1,2,2 1, 2,, is chosen as a bottleneck! C max ({1}) = C max ( ) + L max (1) = 22 + = Iteration 2. M = {1}, C max ({1})=2 1,1 1 Machine pj rj 1 1 dj 2 2 or L max ()=1,2,2 1, 2,, Machine L max ()= Machines 2 and are bottlenecks. p 2j r 2j 1 1 d 2j 2 1 2, L max (2)=1 is chosen as a bottleneck! ,1 1,2,2 1, 2,, C max ({}) = C max ({1}) + L max (2) = = 2 Can we decrease C max ({})? Will resequencing machine 1 give any improvement? 1,1 1,2,2 1, p1j 1 r1j d1j original sequence:, 2,, C max ({}) = 2 L max (1, 2, ) = max {, , 1} = L max (1,, 2) = max {, , } = L max (2, 1, ) = max {, 11,} =11 L max (2,, 1) = max {, , 1} = 1 L max (, 1, 2) = max {1,, } = L max (, 2, 1) = max {1, 2, 1} = 1 2 Resequencing machine 1 does not give any improvement. 2 Automated cheduling, chool of Computer cience and I, University of Nottingham
5 Iteration. M = {} C max ({})=2 Machine pj rj 1 1 dj 2 2 or L max () = 1,1 1,2,2 1, 2,, Machine L max () = 1 2 No machine is a bottleneck! Machine Machine t Automated cheduling, chool of Computer cience and I, University of Nottingham
Scheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
More information5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
More informationA Linear Programming Based Method for Job Shop Scheduling
A Linear Programming Based Method for Job Shop Scheduling Kerem Bülbül Sabancı University, Manufacturing Systems and Industrial Engineering, OrhanlıTuzla, 34956 Istanbul, Turkey bulbul@sabanciuniv.edu
More information2.3 Scheduling jobs on identical parallel machines
2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed
More informationTutorial: Operations Research in Constraint Programming
Tutorial: Operations Research in Constraint Programming John Hooker Carnegie Mellon University May 2009 Revised June 2009 May 2009 Slide 1 Motivation Benders decomposition allows us to apply CP and OR
More informationScheduling Problem of JobShop with Blocking: A Taboo Search Approach
MIC 20014th Metaheuristics International Conference 643 Scheduling Problem of JobShop with Blocking: A Taboo Search Approach Yazid Mati Nidhal Rezg Xiaolan Xie INRIA/MACSI Project & LGIPM ENIMILE DU
More informationScheduling and (Integer) Linear Programming
Scheduling and (Integer) Linear Programming Christian Artigues LAAS  CNRS & Université de Toulouse, France artigues@laas.fr Master Class CPAIOR 2012  Nantes Christian Artigues Scheduling and (Integer)
More informationWhy? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
More informationComplexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
More informationBatch Production Scheduling in the Process Industries. By Prashanthi Ravi
Batch Production Scheduling in the Process Industries By Prashanthi Ravi INTRODUCTION Batch production  where a batch means a task together with the quantity produced. The processing of a batch is called
More informationApproximation Algorithms. Scheduling. Approximation algorithms. Scheduling jobs on a single machine
Approximation algorithms Approximation Algorithms Fast. Cheap. Reliable. Choose two. NPhard problems: choose 2 of optimal polynomial time all instances Approximation algorithms. Tradeoff between time
More informationvii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK
vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS LIST OF APPENDICES
More informationChapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NPhard problem. What should I do? A. Theory says you're unlikely to find a polytime algorithm. Must sacrifice one
More informationDuration Must be Job (weeks) Preceeded by
1. Project Scheduling. This problem deals with the creation of a project schedule; specifically, the project of building a house. The project has been divided into a set of jobs. The problem is to schedule
More informationGraphs and Network Flows IE411 Lecture 1
Graphs and Network Flows IE411 Lecture 1 Dr. Ted Ralphs IE411 Lecture 1 1 References for Today s Lecture Required reading Sections 17.1, 19.1 References AMO Chapter 1 and Section 2.1 and 2.2 IE411 Lecture
More information1 st year / 20142015/ Principles of Industrial Eng. Chapter 3 / Dr. May G. Kassir. Chapter Three
Chapter Three Scheduling, Sequencing and Dispatching 31 SCHEDULING Scheduling can be defined as prescribing of when and where each operation necessary to manufacture the product is to be performed. It
More informationComparison of Optimization Techniques in Large Scale Transportation Problems
Journal of Undergraduate Research at Minnesota State University, Mankato Volume 4 Article 10 2004 Comparison of Optimization Techniques in Large Scale Transportation Problems Tapojit Kumar Minnesota State
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. #approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of three
More informationAn ant colony optimization for singlemachine weighted tardiness scheduling with sequencedependent setups
Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 2224, 2006 19 An ant colony optimization for singlemachine weighted tardiness
More information5 Scheduling. Operations Planning and Control
5 Scheduling Operations Planning and Control Some Background Machines (resources) are Machines process jobs (molding machine, x ray machine, server in a restaurant, computer ) Machine Environment Single
More informationCHAPTER 1. Basic Concepts on Planning and Scheduling
CHAPTER 1 Basic Concepts on Planning and Scheduling Scheduling, FEUP/PRODEI /MIEIC 1 Planning and Scheduling: Processes of Decision Making regarding the selection and ordering of activities as well as
More informationProject Scheduling in Software Development
Project Scheduling in Software Development Eric Newby, Raymond Phillips, Dario Fanucchi, Byron Jacobs, Asha Tailor, Lady Kokela, Jesal Kika, Nadine Padiyachi University of the Witwatersrand January 13,
More informationMathematical Modelling Lecture 8 Networks
Lecture 8 Networks phil.hasnip@york.ac.uk Overview of Course Model construction dimensional analysis Experimental input fitting Finding a best answer optimisation Tools for constructing and manipulating
More informationAlgorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
More informationBranchandPrice Approach to the Vehicle Routing Problem with Time Windows
TECHNISCHE UNIVERSITEIT EINDHOVEN BranchandPrice Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents
More informationDiscrete (and Continuous) Optimization Solutions of Exercises 1 WI4 131
Discrete (and Continuous) Optimization Solutions of Exercises 1 WI4 131 Kees Roos Technische Universiteit Delft Faculteit Informatietechnologie en Systemen Afdeling Informatie, Systemen en Algoritmiek
More informationDiscrete Optimization
Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.14.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 20150331 Todays presentation Chapter 3 Transforms using
More informationModels in Transportation. Tim Nieberg
Models in Transportation Tim Nieberg Transportation Models large variety of models due to the many modes of transportation roads railroad shipping airlines as a consequence different type of equipment
More informationMODERN METHODS FOR MANUFACTURING PLANNING AND SCHEDULING
MODERN METHODS FOR MANUFACTURING PLANNING AND SCHEDULING IVANA SIMEONOVOVA 1, ALEKSANDAR GYUROV 2, SIMEON SIMEONOV1 1 Brno University of Technology, Faculty of Mechanical Engineering 2 Technical University
More informationClustering and scheduling maintenance tasks over time
Clustering and scheduling maintenance tasks over time Per Kreuger 20080429 SICS Technical Report T2008:09 Abstract We report results on a maintenance scheduling problem. The problem consists of allocating
More informationMultiresource Shop Scheduling With Resource Flexibility and Blocking Yazid Mati and Xiaolan Xie
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1 Multiresource Shop Scheduling With Resource Flexibility and Blocking Yazid Mati and Xiaolan Xie Abstract This paper proposes a general scheduling
More informationStatic and dynamic jobshop scheduling using rollinghorizon approaches and the Shifting Bottleneck Procedure
Static and dynamic jobshop scheduling using rollinghorizon approaches and the Shifting Bottleneck Procedure By Ahmed S. Ghoniem Thesis submitted to the faculty of the Virginia Polytechnic Institute and
More informationLecture 10 Scheduling 1
Lecture 10 Scheduling 1 Transportation Models 1 large variety of models due to the many modes of transportation roads railroad shipping airlines as a consequence different type of equipment and resources
More informationMinimum Caterpillar Trees and RingStars: a branchandcut algorithm
Minimum Caterpillar Trees and RingStars: a branchandcut algorithm Luidi G. Simonetti Yuri A. M. Frota Cid C. de Souza Institute of Computing University of Campinas Brazil Aussois, January 2010 Cid de
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. !approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of
More informationScheduling Home Health Care with Separating Benders Cuts in Decision Diagrams
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery
More information5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the FordFulkerson
More informationFactors to Describe Job Shop Scheduling Problem
Job Shop Scheduling Job Shop A work location in which a number of general purpose work stations exist and are used to perform a variety of jobs Example: Car repair each operator (mechanic) evaluates plus
More informationApplied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
More informationVEHICLE ROUTING PROBLEM
VEHICLE ROUTING PROBLEM Readings: E&M 0 Topics: versus TSP Solution methods Decision support systems for Relationship between TSP and Vehicle routing problem () is similar to the Traveling salesman problem
More informationON SOLUTION TO MODIFIED UNBALANCED TRANSPORTATION PROBLEM
Bulletin of the Marathwada Mathematical Society Vol. 11, No. 2, December 2010, Pages 2026. ON SOLUTION TO MODIFIED UNBALANCED TRANSPORTATION PROBLEM S.S. Kulkarni, Head, Department of Statistics, Willingdon
More informationSingle machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
More informationVisualising the Shifting Bottleneck Scheduling Algorithm Craig Lawrence BSc Computer Science 2006/2007
Visualising the Shifting Bottleneck Scheduling Algorithm Craig Lawrence BSc Computer Science 2006/2007 The candidate confirms that the work submitted is their own and the appropriate credit has been given
More informationScheduling Parallel Machine Scheduling. Tim Nieberg
Scheduling Parallel Machine Scheduling Tim Nieberg Problem P C max : m machines n jobs with processing times p 1,..., p n Problem P C max : m machines n jobs with processing times p 1,..., p { n 1 if job
More informationApproximability of TwoMachine NoWait Flowshop Scheduling with Availability Constraints
Approximability of TwoMachine NoWait Flowshop Scheduling with Availability Constraints T.C. Edwin Cheng 1, and Zhaohui Liu 1,2 1 Department of Management, The Hong Kong Polytechnic University Kowloon,
More informationMincost flow problems and network simplex algorithm
Mincost flow problems and network simplex algorithm The particular structure of some LP problems can be sometimes used for the design of solution techniques more efficient than the simplex algorithm.
More informationPlanning and Scheduling in Manufacturing and Services
Michael L. Pinedo Planning and Scheduling in Manufacturing and Services Second edition 4y Springer Preface Contents of CDROM vii xvii Part I Preliminaries 1 Introduction 3 1.1 Planning and Scheduling:
More informationSOLVING JOB SHOP SCHEDULING WITH THE COMPUTER SIMULATION
The International Journal of TRANSPORT & LOGISTICS Medzinárodný časopis DOPRAVA A LOGISTIKA ISSN 1451107X SOLVING JOB SHOP SCHEDULING WITH THE COMPUTER SIMULATION 1 Tomas Kloud 1, Frantisek Koblasa 2
More information2.8 An application of Dynamic Programming to machine renewal
ex.6. Foundations of Operations Research Prof. E. Amaldi.6 Shortest paths with nonnegative costs Given the following graph, find a set of shortest paths from node to all the other nodes, using Dijkstra
More informationOutline. Linear Programming (LP): Simplex Search. Simplex: An ExtremePoint Search Algorithm. Basic Solutions
Outline Linear Programming (LP): Simplex Search Benoît Chachuat McMaster University Department of Chemical Engineering ChE 4G03: Optimization in Chemical Engineering 1 Basic Solutions
More informationHybrid Cooperative Coevolution for Fuzzy Flexible Job Shop Scheduling Problems
Hybrid Cooperative Coevolution for Fuzzy Flexible Job Shop Scheduling Problems Juan José Palacios, Camino R. Vela, Jorge Puente Dep. Computer Science University of Oviedo (Spain) {palaciosjuan,crvela,puente}@uniovi.es
More informationResource Allocation and Scheduling
Lesson 3: Resource Allocation and Scheduling DEIS, University of Bologna Outline Main Objective: joint resource allocation and scheduling problems In particular, an overview of: Part 1: Introduction and
More informationFairness in Routing and Load Balancing
Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria
More informationMinimizing Cycle Time for PCB Assembly Lines: An Integer Programming Model and a BranchandBound Approach
Information and Management Sciences Volume 19, Number 2, pp. 237243, 2008 Minimizing Cycle Time for PCB Assembly Lines: An Integer Programming Model and a BranchandBound Approach P. Ji Y. F. Wan Hong
More informationGRAPH THEORY and APPLICATIONS. Trees
GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.
More informationKerem Bülbül & Philip Kaminsky
A linear programmingbased method for job shop scheduling Kerem Bülbül & Philip Kaminsky Journal of Scheduling ISSN 10946136 Volume 16 Number 2 J Sched (2013) 16:161183 DOI 10.1007/s1095101202704
More informationSTUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1
STUDY OF PROJECT SCHEDULING AND RESOURCE ALLOCATION USING ANT COLONY OPTIMIZATION 1 Prajakta Joglekar, 2 Pallavi Jaiswal, 3 Vandana Jagtap Maharashtra Institute of Technology, Pune Email: 1 somanprajakta@gmail.com,
More informationProblem Set 7 Solutions
8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in
More informationIntroduction to production scheduling. Industrial Management Group School of Engineering University of Seville
Introduction to production scheduling Industrial Management Group School of Engineering University of Seville 1 Introduction to production scheduling Scheduling Production scheduling Gantt Chart Scheduling
More informationAlgorithm Design and Analysis Homework #6 Due: 1pm, Monday, January 9, === Homework submission instructions ===
Algorithm Design and Analysis Homework #6 Due: 1pm, Monday, January 9, 2012 === Homework submission instructions === Submit the answers for writing problems (including your programming report) through
More informationA Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem
A Genetic Algorithm Approach for Solving a Flexible Job Shop Scheduling Problem Sayedmohammadreza Vaghefinezhad 1, Kuan Yew Wong 2 1 Department of Manufacturing & Industrial Engineering, Faculty of Mechanical
More informationModelling for Constraint Programming
Modelling for Constraint Programming Barbara Smith 2. Implied Constraints, Optimization, Dominance Rules CP Summer School 28 Implied Constraints Implied constraints are logical consequences of the set
More informationAnswers to some of the exercises.
Answers to some of the exercises. Chapter 2. Ex.2.1 (a) There are several ways to do this. Here is one possibility. The idea is to apply the kcenter algorithm first to D and then for each center in D
More informationIntroduction to Scheduling Theory
Introduction to Scheduling Theory Arnaud Legrand Laboratoire Informatique et Distribution IMAG CNRS, France arnaud.legrand@imag.fr November 8, 2004 1/ 26 Outline 1 Task graphs from outer space 2 Scheduling
More informationA generalized jobshop problem with more than one resource demand per task
A generalized jobshop problem with more than one resource demand per task Joachim Schauer Cornelius Schwarz Abstract We study a generalized jobshop problem called the Laser Sharing Problem with fixed
More informationFuzzy Cognitive Map for Software Testing Using Artificial Intelligence Techniques
Fuzzy ognitive Map for Software Testing Using Artificial Intelligence Techniques Deane Larkman 1, Masoud Mohammadian 1, Bala Balachandran 1, Ric Jentzsch 2 1 Faculty of Information Science and Engineering,
More informationINTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models
Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is
More informationSocial Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
More informationResource allocation for robust project scheduling
BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 1, 2011 DOI: 10.2478/v101750110008z Varia Resource allocation for robust project scheduling M. KLIMEK 1 and P. ŁEBKOWSKI 2
More informationIndustrial Optimization
Industrial Optimization Lessons learned from Optimization in Practice Marco Lübbecke Chair of Operations Research RWTH Aachen University, Germany SICS Stockholm Feb 11, 2013 Discrete Optimization: Some
More informationWarshall s Algorithm: Transitive Closure
CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths
More informationOR topics in MRPII. Mads Jepsens. OR topics in MRPII p.1/25
OR topics in MRPII Mads Jepsens OR topics in MRPII p.1/25 Overview Why bother? OR topics in MRPII p.2/25 Why bother? Push and Pull systems Overview OR topics in MRPII p.2/25 Overview Why bother? Push
More informationRailway scheduling problems and their decomposition
Railway scheduling problems and their decomposition Dissertation im Fachbereich Mathematik/Informatik der Universität Osnabrück Christian Strotmann Osnabrück, Juli 2007 Abstract Railway scheduling problems
More informationA MULTIPERIOD INVESTMENT SELECTION MODEL FOR STRATEGIC RAILWAY CAPACITY PLANNING
A MULTIPERIOD INVESTMENT SELECTION MODEL FOR STRATEGIC RAILWAY YungCheng (Rex) Lai, Assistant Professor, Department of Civil Engineering, National Taiwan University, Rm 313, Civil Engineering Building,
More informationTimeConstrained Project Scheduling
TimeConstrained Project Scheduling T.A. Guldemond ORTEC bv, PO Box 490, 2800 AL Gouda, The Netherlands J.L. Hurink, J.J. Paulus, and J.M.J. Schutten University of Twente, PO Box 217, 7500 AE Enschede,
More informationOutline. NPcompleteness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NPcompleteness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2pairs sum vs. general Subset Sum Reducing one problem to another Clique
More informationDiscuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
More informationSimultaneous Scheduling of Machines and Material Handling System in an FMS
Simultaneous Scheduling of Machines and Material Handling System in an FMS B. Siva Prasad Reddy* and C.S.P. Rao** *Department of Mech. Engg., KITS, Warangal5 5 (A.P) INDIA. **Department of Mech. Engg.,
More informationGuessing Game: NPComplete?
Guessing Game: NPComplete? 1. LONGESTPATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTESTPATH: Given a graph G = (V, E), does there exists a simple
More informationDynamic programming formulation
1.24 Lecture 14 Dynamic programming: Job scheduling Dynamic programming formulation To formulate a problem as a dynamic program: Sort by a criterion that will allow infeasible combinations to be eli minated
More informationUniversità degli Studi di Roma Tre Dipartimento di Informatica e Automazione. Via della Vasca Navale, 79 00146 Roma, Italy
R O M A TRE DIA Università degli Studi di Roma Tre Dipartimento di Informatica e Automazione Via della Vasca Navale, 79 00146 Roma, Italy Realtime scheduling of aircraft arrivals and departures in a terminal
More informationFacility Location: Discrete Models and Local Search Methods
Facility Location: Discrete Models and Local Search Methods Yury KOCHETOV Sobolev Institute of Mathematics, Novosibirsk, Russia Abstract. Discrete location theory is one of the most dynamic areas of operations
More informationA comparison of approaches to modeling train scheduling problems as jobshops with blocking constraints
A comparison of approaches to modeling train scheduling problems as jobshops with blocking constraints Julia Lange Frank Werner Institute of Mathematical Optimization OttovonGuerickeUniversity Magdeburg
More informationLiSA  A Library of Scheduling Algorithms Handbook for Version 3.0
1 LiSA  A Library of Scheduling Algorithms Handbook for Version 3.0 Michael Andresen, Heidemarie Bräsel, Frank Engelhardt, Frank Werner Fakultät für Mathematik OttovonGuericke Universität Magdeburg
More information1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT
DECISION 1 Revision Notes 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT Make sure you show comparisons clearly and label each pass First Pass 8 4 3 6 1 4 8 3 6 1 4 3 8 6 1 4 3 6 8 1
More information1 Basic Definitions and Concepts in Graph Theory
CME 305: Discrete Mathematics and Algorithms 1 Basic Definitions and Concepts in Graph Theory A graph G(V, E) is a set V of vertices and a set E of edges. In an undirected graph, an edge is an unordered
More informationClassification  Examples
Lecture 2 Scheduling 1 Classification  Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
More informationFUZZY JOB SHOP SCHEDULING WITH LOT SIZING
FUZZY JOB HOP CHEDULIG WITH LOT IZIG ana Petrovic *, Carole Fayad, Dobrila Petrovic 2, Edmund Burke Graham Kendall chool of Computer cience, University of ottingham, Jubilee Campus, Wollaton Road, ottingham
More informationModeling and Optimization of Resource Allocation in Cloud
1 / 40 Modeling and Optimization of Resource Allocation in Cloud PhD Thesis Proposal Atakan Aral Thesis Advisor: Asst. Prof. Dr. Tolga Ovatman Istanbul Technical University Department of Computer Engineering
More informationAlternative JobShop Scheduling For Proton Therapy
Alternative JobShop Scheduling For Proton Therapy Cyrille Dejemeppe ICTEAM, Université Catholique de Louvain (UCLouvain), Belgium, cyrille.dejemeppe@uclouvain.be Director: Yves Deville (ICTEAM, UCLouvain)
More informationObservations on PCB Assembly Optimization
Observations on PCB Assembly Optimization A hierarchical classification scheme based on the number of machines (one or many) and number of boards (one or many) can ease PCB assembly optimization problems.
More informationApproximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques. My T. Thai
Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques My T. Thai 1 Overview An overview of LP relaxation and rounding method is as follows: 1. Formulate an optimization
More informationA MODEL TO SOLVE EN ROUTE AIR TRAFFIC FLOW MANAGEMENT PROBLEM:
A MODEL TO SOLVE EN ROUTE AIR TRAFFIC FLOW MANAGEMENT PROBLEM: A TEMPORAL AND SPATIAL CASE V. Tosic, O. Babic, M. Cangalovic and Dj. Hohlacov Faculty of Transport and Traffic Engineering, University of
More informationOptimal Scheduling for Dependent Details Processing Using MS Excel Solver
BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of
More informationFlow and Activity Analysis
Facility Location, Layout, and Flow and Activity Analysis Primary activity relationships Organizational relationships» Span of control and reporting hierarchy Flow relationships» Flow of materials, people,
More informationMinimum Makespan Scheduling
Minimum Makespan Scheduling Minimum makespan scheduling: Definition and variants Factor 2 algorithm for identical machines PTAS for identical machines Factor 2 algorithm for unrelated machines Martin Zachariasen,
More informationA Numerical Study on the Wiretap Network with a Simple Network Topology
A Numerical Study on the Wiretap Network with a Simple Network Topology Fan Cheng and Vincent Tan Department of Electrical and Computer Engineering National University of Singapore Mathematical Tools of
More informationBatch Splitting in an Assembly Scheduling Environment
Batch Splitting in an Assembly Scheduling Environment Satyaki Ghosh Dastidar Rakesh Nagi 1 420 Bell Hall, Department of Industrial Engineering, University at Buffalo (SUNY), Buffalo, NY 14260, USA. This
More informationNetwork (Tree) Topology Inference Based on Prüfer Sequence
Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,
More information