Effect of sectoring on the capacity of CDMA multi-hop communication network Kshipra Yadav 1, Dr.Manish Rai 2

Size: px
Start display at page:

Download "Effect of sectoring on the capacity of CDMA multi-hop communication network Kshipra Yadav 1, Dr.Manish Rai 2"

Transcription

1 International Journal of Electronics and Computer Science Engineering 1111 Available Online at ISSN Effect of sectoring on the capacity of CDMA multi-hop communication network Kshipra Yadav 1, Dr.Manish Rai Department of Electronics and Communication Engineering 1 Galgotias College of Engineering and Technology, Greater Noida, (UP)-India 2 Faculty of Engineering and Technology, MJP Rohilkhand University, Bareilly, (UP)-India 1 ykshipra@yahoo.com, 2 manishrai1968@gmail.com Abstract Sectoring is one of the widely accepted techniques to increase the capacity of a cellular system. It considerably increases the capacity of cellular CDMA. On the other hand multi-hopping is also seen to increase the capacity in cellular networks. Although both the techniques reduce interference, the increment in capacity due to sectoring is very large as compared to that of multi-hopping. Multihopping alone shows an increment of 10% in the capacity whereas a 3-sectored cell shows an increment of 200%. This paper explores the effect on CDMA capacity if sectoring is also applied on a multi-hopping scheme. If we use this technique of sectoring on multi-hopping scheme, it is seen that the capacity increases to % as opposed to 10% with multi-hopping only. So this paper explores the tremendous effect which sectoring can impose on multi-hopping. Index Terms capacity, CDMA, interference, multi-hopping, sectorization. I. INTRODUCTION CDMA exhibits a soft-limit on the capacity of the cellular system. This means there is always a scope of adding one more user at the expense of an increased noise floor. An additional user will cause an increase in the interference of the system. Whereas in the case of TDMA and FDMA, time slots and frequency band respectively are the decision factor on the upper limit of the number of users, in the case of CDMA it is decided by the tolerance limit to interference. Hence, any reduction in the interference will result in linear increase in the capacity of the CDMA system. In Multi-hopping, relaying mobile terminals are used to send the signal in multiple-hops to the base station and back to the mobile terminals. Different multi-hop proposals could be found in [1]-[3] and that the multi-hop can increase the capacity is shown in [3], [4]. The capacity increase associated with multi-hopping and the use of formulas in calculating the interference in this paper is derived from [7]. This interference is calculated at the base station during the reverse link and no specific channel assignment is assumed. In sectorization, an omnidirectional antenna at the cell-site is replaced by the sectored antenna. Mainly 3 or 6 sectors are used. A 3-sectored antenna reduces the interference to one-third and the corresponding increase in capacity is three times or 200% [8]. In this paper, the effects in the reduction of interference is seen when sectorization is applied on a multi-hopping communication network. The relaying mobile terminals are different than mobile terminals sending their own data. This gives the worst case scenario since this increase the total interference and hence the capacity increase is shown in the worst case. Power control is assumed only in the innermost disc. Section II contains the network model. The use of formulas in calculating interference is shown in section III. In section IV, numerical results are presented and discussed. Section V concludes the paper. II. NETWORK STRUCTURE In the case of multi-hopping, a cell is divided into k concentric discs around the base station. The innermost disc is numbered 0 and the outermost disc is k [7]. In order to see the effects of sectoring on multi-hopping, the omnidirectional antenna at the cell site is replaced by the three directional antennas, each of beam width 120 as shown in fig. 1. Only the mobile terminals of the innermost disc are under the power control of these directional antennas. The signals from these mobile terminals are received at each antenna with power S R. All other mobile terminals transmit with constant power S TR and they relay their signals through the mobile terminals in the intermediate discs to the sectored antennas.

2 IJECSE,Volume2, Number 4 Kshipra Yadav and Dr.Manish Rai 1112 Figure1. A cell with sectoring imposed on multi-hopping III. INTERFERENCE CALCULATION Interference is calculated at the base station during an uplink slot. The interference produced is composed of intra-cell interference which results from inside the cell and inter-cell interference which is due to the neighboring cells. The directional antennas are used instead of omnidirectional antenna and the power control is exhibited only in the innermost disc. Thus, while calculating the interference, the intra-cell interference from the innermost disc is reduced to one-third. This is because the use of 120 beamwidth sectors in place of an omnidirectional antenna causes the interference to reduce to one-third at the cell-site[8]. Similar approach is applied while determining the inter-cell interference i.e. the interference only due to the innermost disc from the neighboring cells is reduced to one-third. A. Intra-cell interference at the base station The intra-cell interference at the base station is calculated using the formulas derived in [7], which is given by = +, 10 ξ ƒ, (1) 1 Where N 0 is the number of mobile terminals transmitting in disc 0, S R is the constant strength with which the signals are received at the mobile terminal, S TR is constant transmission power of the mobile terminals outside the innermost disc, N i is the number of mobile terminals transmitting in disc i, d(x,y) is the distance from any point (x,y) inside the cell to BS, m is the path loss exponent, ξ is the shadowing effect, ƒ(x,y) is the distribution function of mobile terminals inside disc i and A(i) is the area of disc i. The first term N 0 S R in (1) gives the interference from the innermost disc. This is the case when no sectoring is applied. Now, due to the application of sectoring, this term is reduced to N 0 S R /3. After changing the Cartesian co-ordinates into polar co-ordinates (since the cells are assumed to be circular[6]) and simplifying the integral, the common term for intra-cell interference is found out as = 3 + π

3 Effect of sectoring on the capacity of CDMA multi-hop communication network 1113 Where N T is the total number of calls in each cell, R s is the radius of the circle circumscribing the cell, k is the number of concentric discs in which the cell is divided. B. Intercell interference at the base station Because signals from mobile terminals reach the Base station in multiple hops, therefore their transmission power is limited, so only first tier cells are considered. Since all the neighboring base stations are equidistant from the base station of concern, therefore interference from one cell is calculated then multiplied by six. The term for calculating inter-cell interference at base station as derived in [7] is given by =,, 10 ξ ξ ƒ,+, 10 ξ ƒ, (3) Where d i (x,y) and ξ i are the distance and shadowing effect from mobile terminal to its own BS and d j (x,y) and ξ j are the distance and shadowing effect from mobile terminal to the BS where the interference is calculated. The first term in the above formula gives the intercell interference from the innermost disc. While considering the sectoring effect, this term reduces to one-third. The second term gives the interference due to outer discs. Applying polar co-ordinates, the first term of the above equation reduces to 36, =1/ The above term gives the inter-cell interference from all the six neighboring cells where n=0 signifies the innermost disc. The second term of equation (3) which gives the inter-cell interference from the outer discs can be simplified to, = 4 π Where R c is the radius of the hexagonal cell and Rs is the radius of the circle circumscribing the cell. Due to the use of sectorization, the intra-cell and inter-cell interference from the innermost discs is reduced to one-third which is shown in eq. (2) and (4) respectively. IV. Numerical results and discussion In order to find out the numerical results, polar co-ordinates are used since the integration is done over circular cells [6].The term N i which is the number of mobile terminals transmitting in disc i is given by = +α 6 Where N T is the total number of calls in each cell. A T is the cell area, α is 1 which implies that active mobile terminals cannot relay other mobile s data [7] The total interference at the base station is calculated as a function of N T and S R to have value as

4 IJECSE,Volume2, Number 4 Kshipra Yadav and Dr.Manish Rai 1114 I T_BS =C k N T S R (7) Where C k is the numerical value which depends on the number of discs and is defined as the average interference caused per original call. Now comparing the values of C k in multi-hopping case to the case where sectoring is also applied together with multihopping, there is a considerable decrease in the values of C k as simulated results show in fig. 2. It can be seen that the values almost reduce to half with sectorization. Table 1 shows the comparative study of the reduction in average interference per original call between multi-hopping case and the case where sectoring is also applied on multi-hopping. Table 1. Comparative study of the reduction in average interference per original call No. of discs k Average interference per original call(db) Multi-hopping k= k= k= k= k= k= k= k= k= k= Multihopping+sectoring Average interference per call in db multihopping multihopping+sectoring Number of discs Figure 2. Comparison of average interference (C k) per original Call between simple multi-hopping case and the case where sectoring is also applied. Based on the values of C k, the maximum number of simultaneous calls that can be accommodated are calculated using the formula as given in [11]. = (8) Where W is the RF bandwidth which is 1.22 MHz, R is data rate which is 9.6 kbps and τ is the threshold value for E b /I 0 which should be above 5 (7 db). The cell radius R c considered here is 500m. Using the formulas above, the percentage increase in the number of calls can be plotted. The two plots are compared as shown fig. 3. Table 2 shows the comparative study of the increase in the number of simultaneous calls and Table 3 contains

5 Effect of sectoring on the capacity of CDMA multi-hop communication network 1115 comparative study of the percentage increase between the cell which uses multi-hopping only and the cell which also uses sectoring upon multi-hopping. 150 Percentage increase multihopping multihopping+sectoring Number of discs Figure 3. Comparison of percentage increase in the number of simultaneous calls. Table 2. Comparative study of the increase in the number of simultaneous calls No. of discs k Maximum number of simultaneous calls Multi-hopping k= k= k= k= k= k= k= k= k= k= Multihopping+sectoring Table 3. Comparative study of the percentage increase in the number of simultaneous calls No. of discs k Percentage increase in the number of simultaneous calls Multi-hopping Multihopping+sectoring k=1 0 0 k= k= k= k= k=

6 IJECSE,Volume2, Number 4 Kshipra Yadav and Dr.Manish Rai 1116 k= k= k= k= V. Conclusions In this paper, a combined effect of sectoring and multi-hopping is shown on the capacity of cellular CDMA. It is seen that the interference values almost decrease to half. Due to this the percentage increase in capacity as compared to a cell which does not employ any sectoring or multi-hopping goes up to % whereas for a cell which employs multi-hopping this percentage increase is only 10%. Such increment can be attributed to the fact that a 3-sectored cell as opposed to an omnidirectional antenna sees capacity increase to 200%. So, when this sectoring approach is applied on a cell with multi-hopping scheme then the intracell and inter-cell interference from the innermost disc is reduced to one-third and correspondingly there is an increase in the capacity. The findings of this paper could be beneficial in the areas of high density of users which demand high throughput rates. Further research in this topic can be done by the use of adaptive antennas and by the use of new centrality based power control in multi-hopping network[8]. REFERENCES [1] C. Qiau and H.Wu, icar:an integrated cellular and Ad-hoc Relay System, in Proc. IEEE int l Conf. Computer Communications Networks, pp ,Oct [2] Y. D. Lin, and Y.C. Hsu, Multi-hop Cellular:A New Architecture for Wireless Communications, in Proc. IEEE INFOCOM 2000,pp , Mar [3] A. Safwat, A-Cell:A Novel Multi-hop Architecture for 4G and 4G+ Wireless Networks, in Proc. IEEE Vehicular Technology Conf., Vol. 5,pp , Oct [4] Y.Yamao, T.Otsu, A.Fujiwara, H. Murata,and S. Yoshida, Multi-hop Radio Access Cellular Concept for Fourth-Generation Mobile Communications System, in Proc. 13 th IEEE Int l. Symposium on Personal, Indoor and Mobile Radio Communications, Vol. 1,pp.59-63, Sept [5] M. Kwok, and H. Wang, Adjacent Cell Interference Analysis of Reverse-Link in CDMA Cellular Radio Syustems, in Proc. 6 th IEEE Int l. Symposium on Personal, Indoor and Mobile Radio Communications. Vol.2, pp ,sept [6] A. Radwan and H.S. Hassanein, Capacity Enhancement in CDMA Cellular Networks using Multi-hop Communication, in Proc. 11 th IEEE Symposium on Computers and Communications, pp ,june [7] Theodore S. Rappaport, Wireless communications-principles and practice,1996, Prentice Hall PTR. [8] Parth H. Pathak and Rudra Dutta, Centrality-based power control for hot-spot mitigation in multi-hop wireless networks, in Elsevier, Computer Communications 35,pp , 2012.

System Design in Wireless Communication. Ali Khawaja

System Design in Wireless Communication. Ali Khawaja System Design in Wireless Communication Ali Khawaja University of Texas at Dallas December 6, 1999 1 Abstract This paper deals with the micro and macro aspects of a wireless system design. With the growing

More information

ERLANG CAPACITY EVALUATION IN GSM AND CDMA CELLULAR SYSTEMS

ERLANG CAPACITY EVALUATION IN GSM AND CDMA CELLULAR SYSTEMS ERLANG CAPACITY EVALUATION IN GSM AND CDMA CELLULAR SYSTEMS Ch Usha Kumari 1, G Sasi Bhushana Rao and R Madhu Department of Electronics and Communication Engineering, Andhra University College of Engineering,

More information

A Novel Decentralized Time Slot Allocation Algorithm in Dynamic TDD System

A Novel Decentralized Time Slot Allocation Algorithm in Dynamic TDD System A Novel Decentralized Time Slot Allocation Algorithm in Dynamic TDD System Young Sil Choi Email: choiys@mobile.snu.ac.kr Illsoo Sohn Email: sohnis@mobile.snu.ac.kr Kwang Bok Lee Email: klee@snu.ac.kr Abstract

More information

An Interference Avoiding Wireless Network Architecture for Coexistence of CDMA 2000 1x EVDO and LTE Systems

An Interference Avoiding Wireless Network Architecture for Coexistence of CDMA 2000 1x EVDO and LTE Systems ICWMC 211 : The Seventh International Conference on Wireless and Mobile Communications An Interference Avoiding Wireless Network Architecture for Coexistence of CDMA 2 1x EVDO and LTE Systems Xinsheng

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 11, November 2012 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Automated

More information

Bluetooth voice and data performance in 802.11 DS WLAN environment

Bluetooth voice and data performance in 802.11 DS WLAN environment 1 (1) Bluetooth voice and data performance in 802.11 DS WLAN environment Abstract In this document, the impact of a 20dBm 802.11 Direct-Sequence WLAN system on a 0dBm Bluetooth link is studied. A typical

More information

Performance of TD-CDMA systems during crossed slots

Performance of TD-CDMA systems during crossed slots Performance of TD-CDMA systems during s Jad NASREDDINE and Xavier LAGRANGE Multimedia Networks and Services Department, GET / ENST de Bretagne 2 rue de la châtaigneraie, CS 1767, 35576 Cesson Sévigné Cedex,

More information

1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss

1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2015 1 Lecture Notes 1 Interference Limited System, Cellular Systems Introduction, Power and Path Loss Reading: Mol 1, 2, 3.3, Patwari

More information

Ohaneme Cletus Ogbonna Idigo Victor Eze Onoh Greg Nwachukwu Azubogu Augustine C.O. Abstract: Keywords: I INTRODUCTION

Ohaneme Cletus Ogbonna Idigo Victor Eze Onoh Greg Nwachukwu Azubogu Augustine C.O. Abstract: Keywords: I INTRODUCTION Improving the Channel Capacity of Wireless Network Using Cell Sectoring Ohaneme Cletus Ogbonna Department of Electronic and Computer Engineering, Nnamdi Azikiwe University, PMB 5025 Awka, Nigeria. Onoh

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed

More information

8. Cellular Systems. 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992.

8. Cellular Systems. 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992. 8. Cellular Systems References 1. Bell System Technical Journal, Vol. 58, no. 1, Jan 1979. 2. R. Steele, Mobile Communications, Pentech House, 1992. 3. G. Calhoun, Digital Cellular Radio, Artech House,

More information

Lecture 1. Introduction to Wireless Communications 1

Lecture 1. Introduction to Wireless Communications 1 896960 Introduction to Algorithmic Wireless Communications Lecture 1. Introduction to Wireless Communications 1 David Amzallag 2 May 25, 2008 Introduction to cellular telephone systems. How a cellular

More information

Location management Need Frequency Location updating

Location management Need Frequency Location updating Lecture-16 Mobility Management Location management Need Frequency Location updating Fig 3.10 Location management in cellular network Mobility Management Paging messages Different paging schemes Transmission

More information

Introductory Concepts

Introductory Concepts Chapter 1 Introductory Concepts 1.1 Introduction Communication is one of the integral parts of science that has always been a focus point for exchanging information among parties at locations physically

More information

How To Understand The Theory Of Time Division Duplexing

How To Understand The Theory Of Time Division Duplexing Multiple Access Techniques Dr. Francis LAU Dr. Francis CM Lau, Associate Professor, EIE, PolyU Content Introduction Frequency Division Multiple Access Time Division Multiple Access Code Division Multiple

More information

Multihopping for OFDM based Wireless Networks

Multihopping for OFDM based Wireless Networks Multihopping for OFDM based Wireless Networks Jeroen Theeuwes, Frank H.P. Fitzek, Carl Wijting Center for TeleInFrastruktur (CTiF), Aalborg University Neils Jernes Vej 12, 9220 Aalborg Øst, Denmark phone:

More information

How To Understand And Understand The Power Of A Cdma/Ds System

How To Understand And Understand The Power Of A Cdma/Ds System CDMA Technology : Pr. Dr. W. Skupin www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : Introduction to Spread Spectrum Technology CDMA / DS : Principle

More information

ADHOC RELAY NETWORK PLANNING FOR IMPROVING CELLULAR DATA COVERAGE

ADHOC RELAY NETWORK PLANNING FOR IMPROVING CELLULAR DATA COVERAGE ADHOC RELAY NETWORK PLANNING FOR IMPROVING CELLULAR DATA COVERAGE Hung-yu Wei, Samrat Ganguly, Rauf Izmailov NEC Labs America, Princeton, USA 08852, {hungyu,samrat,rauf}@nec-labs.com Abstract Non-uniform

More information

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2 On the Traffic Capacity of Cellular Data Networks T. Bonald 1,2, A. Proutière 1,2 1 France Telecom Division R&D, 38-40 rue du Général Leclerc, 92794 Issy-les-Moulineaux, France {thomas.bonald, alexandre.proutiere}@francetelecom.com

More information

Antenna Diversity in Wireless Local Area Network Devices

Antenna Diversity in Wireless Local Area Network Devices Antenna Diversity in Wireless Local Area Network Devices Frank M. Caimi, Ph.D. Kerry L. Greer Jason M. Hendler January 2002 Introduction Antenna diversity has been used in wireless communication systems

More information

Inter-Cell Interference Coordination (ICIC) Technology

Inter-Cell Interference Coordination (ICIC) Technology Inter-Cell Interference Coordination (ICIC) Technology Dai Kimura Hiroyuki Seki Long Term Evolution (LTE) is a promising standard for next-generation cellular systems targeted to have a peak downlink bit

More information

White Paper: Microcells A Solution to the Data Traffic Growth in 3G Networks?

White Paper: Microcells A Solution to the Data Traffic Growth in 3G Networks? White Paper: Microcells A Solution to the Data Traffic Growth in 3G Networks? By Peter Gould, Consulting Services Director, Multiple Access Communications Limited www.macltd.com May 2010 Microcells were

More information

MICROWAVE ANTENNA PATTERN WITH DIFFERENT PARAMETER EVALUATION IN MOBILE ENVIRONMENT

MICROWAVE ANTENNA PATTERN WITH DIFFERENT PARAMETER EVALUATION IN MOBILE ENVIRONMENT www.arpapress.com/volumes/vol9issue1/ijrras_9_1_07.pdf MICROWAVE ANTENNA PATTERN WITH DIFFERENT PARAMETER EVALUATION IN MOBILE ENVIRONMENT 1,* D.S. Ramkiran, 2 A.RamaKrishna, 1 Ch.Radhika & 1 B.T.P.Madhav

More information

Figure 1: cellular system architecture

Figure 1: cellular system architecture Question 1: (30 marks) Consider a FDM cellular system with 120 cites, a frequency reuse factor of N=12, and 900 overall two-way channels. Omni-directional antennas are used: Figure 1 shows some of the

More information

Mobile Phone Tracking & Positioning Techniques

Mobile Phone Tracking & Positioning Techniques Mobile Phone Tracking & Positioning Techniques Laxmana Siridhara Arigela #1, Putta Aditya Veerendra *2, Simhadri Anvesh *2, Kolisetty Sandeep Satya Hanuman #3 1 Assistant Professor, Department of ECE,

More information

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network Recent Advances in Electrical Engineering and Electronic Devices Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network Ahmed El-Mahdy and Ahmed Walid Faculty of Information Engineering

More information

MULTIHOP cellular networks have been proposed as an

MULTIHOP cellular networks have been proposed as an 1206 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 7, SEPTEMBER 2004 On the Throughput Enhancement of the Downstream Channel in Cellular Radio Networks Through Multihop Relaying Jaeweon

More information

GSM Network and Services

GSM Network and Services GSM Network and Services Cellular networks GSM Network and Services 2G1723 Johan Montelius 1 The name of the game The number one priority for mobile/cellular networks is to implement full-duplex voice

More information

ANALYSIS OF INTERFERENCE AND CHANEL CAPACITY IN A CDMA WIRELESS NETWORK USING DYNAMIC CHANNEL ASSIGNMENT (DCA) STRATEGY

ANALYSIS OF INTERFERENCE AND CHANEL CAPACITY IN A CDMA WIRELESS NETWORK USING DYNAMIC CHANNEL ASSIGNMENT (DCA) STRATEGY ANALYSIS OF INTERFERENCE AND CHANEL CAPACITY IN A CDMA WIRELESS NETWORK USING DYNAMIC CHANNEL ASSIGNMENT (DCA) STRATEGY 1 Ohaneme C.O., 2 Idigo V.E., 3 Nnebe S.U. and 4 Ifeagwu E.N. 1, 2, 3, 4 Department

More information

Multiple Access Techniques

Multiple Access Techniques Chapter 8 Multiple Access Techniques Multiple access techniques are used to allow a large number of mobile users to share the allocated spectrum in the most efficient manner. As the spectrum is limited,

More information

Effects of natural propagation environments on wireless sensor network coverage area

Effects of natural propagation environments on wireless sensor network coverage area Effects of natural propagation environments on wireless sensor network coverage area Ms. Abiola Fanimokun Department of Electrical and Computer Engineering, Tennessee Tech University Cookeville, TN 38505,

More information

Lecture 18: CDMA. What is Multiple Access? ECE 598 Fall 2006

Lecture 18: CDMA. What is Multiple Access? ECE 598 Fall 2006 ECE 598 Fall 2006 Lecture 18: CDMA What is Multiple Access? Multiple users want to communicate in a common geographic area Cellular Example: Many people want to talk on their cell phones. Each phone must

More information

Interference Analysis of a Total Frequency Hopping GSM Cordless Telephony System 1

Interference Analysis of a Total Frequency Hopping GSM Cordless Telephony System 1 Interference Analysis of a Total Frequency Hopping GSM Cordless Telephony System 1 Jürgen Deißner, André Noll Barreto, Ulrich Barth*, and Gerhard Fettweis Endowed Chair for Mobile Communications Systems

More information

CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY

CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY CHAPTER - 4 CHANNEL ALLOCATION BASED WIMAX TOPOLOGY 4.1. INTRODUCTION In recent years, the rapid growth of wireless communication technology has improved the transmission data rate and communication distance.

More information

The design objective of early mobile radio systems was to achieve a large coverage

The design objective of early mobile radio systems was to achieve a large coverage 03_57_104_final.fm Page 57 Tuesday, December 4, 2001 2:17 PM C HAPTER 3 The Cellular Concept System Design Fundamentals The design objective of early mobile radio systems was to achieve a large coverage

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular

More information

Chapter 2 Cellular System

Chapter 2 Cellular System Chapter 2 Cellular System 2.1Introduction In the older mobile radio systems, single high power transmitter was used to provide coverage in the entire area. Although this technique provided a good coverage,

More information

Detecting Multiple Selfish Attack Nodes Using Replica Allocation in Cognitive Radio Ad-Hoc Networks

Detecting Multiple Selfish Attack Nodes Using Replica Allocation in Cognitive Radio Ad-Hoc Networks Detecting Multiple Selfish Attack Nodes Using Replica Allocation in Cognitive Radio Ad-Hoc Networks Kiruthiga S PG student, Coimbatore Institute of Engineering and Technology Anna University, Chennai,

More information

GSM frequency planning

GSM frequency planning GSM frequency planning Band : 890-915 and 935-960 MHz Channel spacing: 200 khz (but signal bandwidth = 400 khz) Absolute Radio Frequency Channel Number (ARFCN) lower band: upper band: F l (n) = 890.2 +

More information

Institute of Technology, Taipei County 236, Taiwan, R.O.C.

Institute of Technology, Taipei County 236, Taiwan, R.O.C. Progress In Electromagnetics Research C, Vol. 25, 223 232, 2012 THE MEASUREMENT AND ANALYSIS OF WIMAX BASE STATION SIGNAL COVERAGE Y.-H. Lee 1, H. -W. Tseng 2, *, W.-C. Lee 1, J.-Y. Lin 1, Y.-G. Jan 1,

More information

An Algorithm for Automatic Base Station Placement in Cellular Network Deployment

An Algorithm for Automatic Base Station Placement in Cellular Network Deployment An Algorithm for Automatic Base Station Placement in Cellular Network Deployment István Törős and Péter Fazekas High Speed Networks Laboratory Dept. of Telecommunications, Budapest University of Technology

More information

communication over wireless link handling mobile user who changes point of attachment to network

communication over wireless link handling mobile user who changes point of attachment to network Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet

More information

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving 1 Space Division Multiple Access of the signals from the MSs A BTS with n directed antennae covers mobile stations

More information

A Study of Network assisted Device-to- Device Discovery Algorithms, a Criterion for Mode Selection and a Resource Allocation Scheme

A Study of Network assisted Device-to- Device Discovery Algorithms, a Criterion for Mode Selection and a Resource Allocation Scheme A Study of Network assisted Device-to- Device Discovery Algorithms, a Criterion for Mode Selection and a Resource Allocation Scheme ANASTASIOS THANOS KTH Information and Communication Technology Master

More information

Cooperative Techniques in LTE- Advanced Networks. Md Shamsul Alam

Cooperative Techniques in LTE- Advanced Networks. Md Shamsul Alam Cooperative Techniques in LTE- Advanced Networks Md Shamsul Alam Person-to-person communications Rich voice Video telephony, video conferencing SMS/MMS Content delivery Mobile TV High quality video streaming

More information

VOICE OVER WI-FI CAPACITY PLANNING

VOICE OVER WI-FI CAPACITY PLANNING VOICE OVER WI-FI CAPACITY PLANNING Version 1.0 Copyright 2003 Table of Contents Introduction...3 Wi-Fi RF Technology Options...3 Spectrum Availability and Non-Overlapping Wi-Fi Channels...4 Limited

More information

The GSM and GPRS network T-110.300/301

The GSM and GPRS network T-110.300/301 The GSM and GPRS network T-110.300/301 History The successful analog 1:st generation mobile telephone systems proved that there is a market for mobile telephones ARP (AutoRadioPuhelin) in Finland NMT (Nordic

More information

Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks

Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks Tim Farnham, Brian Foxon* Home Communications Department HP Laboratories Bristol HPL-98-123 June, 1998 broadband,

More information

Radio Resource Allocation Algorithm for Relay aided Cellular OFDMA System

Radio Resource Allocation Algorithm for Relay aided Cellular OFDMA System Radio Resource Allocation Algorithm for Relay aided Cellular OFDMA System Megumi Kaneo # and Petar Popovsi Center for TeleInFrastructure (CTIF), Aalborg University Niels Jernes Vej 1, DK-90 Aalborg, Denmar

More information

Antenna Tilt Control in CDMA Networks

Antenna Tilt Control in CDMA Networks Antenna Tilt Control in CDMA Networks ABSTRACT This paper presents a real-time utility based procedure for antenna tilt control in cellular networks. The method s convergence to Nash equilibrium is guaranteed

More information

Downlink Performance of WiMAX Broadband from High Altitude Platform and Terrestrial Deployments sharing a common 3.5GHz band

Downlink Performance of WiMAX Broadband from High Altitude Platform and Terrestrial Deployments sharing a common 3.5GHz band Downlink Performance of WiMAX Broadband from igh Altitude Platform and Terrestrial Deployments sharing a common 3.5Gz band Z. Yang, D. Grace, P. D. Mitchell Communications Research Group, Department of

More information

Characteristics of terrestrial IMT-Advanced systems for frequency sharing/ interference analyses

Characteristics of terrestrial IMT-Advanced systems for frequency sharing/ interference analyses Report ITU-R M.2292-0 (12/2013) Characteristics of terrestrial IMT-Advanced systems for frequency sharing/ interference analyses M Series Mobile, radiodetermination, amateur and related satellite services

More information

The Vertical Handoff Algorithm using Fuzzy Decisions in Cellular Phone Networks

The Vertical Handoff Algorithm using Fuzzy Decisions in Cellular Phone Networks International Journal of Electronics Engineering, 2(), 200, pp. 29-34 The Vertical Handoff Algorithm using Fuzzy Decisions in Cellular Phone Networks Chandrashekhar G.Patil & R.D.Kharadkar 2 Department

More information

CDMA Performance under Fading Channel

CDMA Performance under Fading Channel CDMA Performance under Fading Channel Ashwini Dyahadray 05307901 Under the guidance of: Prof Girish P Saraph Department of Electrical Engineering Overview Wireless channel fading characteristics Large

More information

5G Ultra-Dense Cellular Networks

5G Ultra-Dense Cellular Networks 5G Ultra-Dense Cellular Networks Xiaohu Ge 1, Senior Member, IEEE, Song Tu 1, Guoqiang Mao 2, Senior Member, IEEE, Cheng-Xiang Wang 3, Senior Member, IEEE, Tao Han 1, Member, IEEE 1 Department of Electronics

More information

COMPATIBILITY STUDY FOR UMTS OPERATING WITHIN THE GSM 900 AND GSM 1800 FREQUENCY BANDS

COMPATIBILITY STUDY FOR UMTS OPERATING WITHIN THE GSM 900 AND GSM 1800 FREQUENCY BANDS Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) COMPATIBILITY STUDY FOR UMTS OPERATING WITHIN THE GSM 900 AND GSM 1800 FREQUENCY

More information

Dynamic Load Balancing Through Coordinated Scheduling in Packet Data Systems

Dynamic Load Balancing Through Coordinated Scheduling in Packet Data Systems Dynamic Load Balancing Through Coordinated Scheduling in Packet Data Systems Suman Das, Harish Viswanathan, Gee Rittenhouse Wireless Technology Research Lucent Technologies, Bell Labs. 6 Mountain Ave,

More information

Subscriber Maximization in CDMA Cellular Networks

Subscriber Maximization in CDMA Cellular Networks CCCT 04: INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS, AND CONTROL TECHNOLOGIES 234 Subscriber Maximization in CDMA Cellular Networks Robert AKL Department of Computer Science and Engineering

More information

DVB-T and Wireless Microphone Exclusion Area Computation Through Interference Analysis

DVB-T and Wireless Microphone Exclusion Area Computation Through Interference Analysis SE43(11)Info 12 DVB-T and Wireless Microphone Exclusion Area Computation Through Interference Analysis Rogério Dionísio Instituto de Telecomunicações - Portugal 11th SE43 meeting, 19 September 2011 Page

More information

Assessment of Cellular Planning Methods for GSM

Assessment of Cellular Planning Methods for GSM Assessment of Cellular Planning Methods for GSM Pedro Assunção, Rui Estevinho and Luis M. Correia Instituto das Telecomunicações/Instituto Superior Técnico, Technical University of Lisbon Av. Rovisco Pais,

More information

Inter-cell Interference Mitigation Reduction in LTE Using Frequency Reuse Scheme

Inter-cell Interference Mitigation Reduction in LTE Using Frequency Reuse Scheme International Journal of Scientific and Research Publications, Volume 5, Issue 8, August 2015 1 Inter-cell Interference Mitigation Reduction in LTE Using Frequency Reuse Scheme Rupali Patil 1, R.D.Patane

More information

EPL 657 Wireless Networks

EPL 657 Wireless Networks EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing

More information

Chapter 4 Solution to Problems

Chapter 4 Solution to Problems Chapter 4 Solution to Problems Question #1. A C-band earth station has an antenna with a transmit gain of 54 db. The transmitter output power is set to 100 W at a frequency of 6.100 GHz. The signal is

More information

A! Aalto University Comnet

A! Aalto University Comnet NETS2020 Project Task #2.3: Self-organization in Dynamic Networks Olav Tirkkonen, Jyri Hämäläinen 1 Content Subtask #2.3.1: Convergence of Distributed Network Algorithms: The project outcome Subtask #2.3.2:

More information

CDMA Network Planning

CDMA Network Planning CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications

More information

Evolution in Mobile Radio Networks

Evolution in Mobile Radio Networks Evolution in Mobile Radio Networks Multiple Antenna Systems & Flexible Networks InfoWare 2013, July 24, 2013 1 Nokia Siemens Networks 2013 The thirst for mobile data will continue to grow exponentially

More information

Full Duplex Device-to-Device Communication in Cellular Networks

Full Duplex Device-to-Device Communication in Cellular Networks Full Duplex Device-to-Device Communication in Cellular Networks Samad Ali Email: saali@ee.oulu.fi Nandana Rajatheva Email: rrajathe@ee.oulu.fi Matti Latva-aho Email: matla@ee.oulu.fi Abstract In this paper

More information

Mobility Management usually includes two parts: location management and handoff management.

Mobility Management usually includes two parts: location management and handoff management. Part 9: Mobile Data / Mobility Management I. Mobile Data Services/ Management This broad area involves a lot of industrial applications. Mobile data services/ management is becoming another profitable

More information

Thwarting Selective Insider Jamming Attacks in Wireless Network by Delaying Real Time Packet Classification

Thwarting Selective Insider Jamming Attacks in Wireless Network by Delaying Real Time Packet Classification Thwarting Selective Insider Jamming Attacks in Wireless Network by Delaying Real Time Packet Classification LEKSHMI.M.R Department of Computer Science and Engineering, KCG College of Technology Chennai,

More information

Bands and Calls to Rings in the Mobile Network Automated MBA Algorithm

Bands and Calls to Rings in the Mobile Network Automated MBA Algorithm LOAD BALANCING IN MULTIBAND CDMA Lachlan L. H. Andrew Department of Electrical and Electronic Engineering University of Melbourne, Parkville, Vic, 3052, Australia L.Andrew @ee.mu.oz.au Ph. +613 9344 9208

More information

2G/3G Mobile Communication Systems

2G/3G Mobile Communication Systems 2G/3G Mobile Communication Systems Winter 2012/13 Integrated Communication Systems Group Ilmenau University of Technology Outline 2G Review: GSM Services Architecture Protocols Call setup Mobility management

More information

Analysis of Immunity by RF Wireless Communication Signals

Analysis of Immunity by RF Wireless Communication Signals 64 PIERS Proceedings, Guangzhou, China, August 25 28, 2014 Analysis of Immunity by RF Wireless Communication Signals Hongsik Keum 1, Jungyu Yang 2, and Heung-Gyoon Ryu 3 1 EletroMagneticwave Technology

More information

GSM Frequency Planning with Band Segregation for the Broadcast Channel Carriers

GSM Frequency Planning with Band Segregation for the Broadcast Channel Carriers GSM Frequency Planning with Band Segregation for the Broadcast Channel Carriers F. Galliano (1), N.P. Magnani (1), G. Minerva (1), A. Rolando (2), P. Zanini (3) (1) CSELT - Via G. Reiss Romoli, 274 - Torino

More information

A High Capacity Multihop packet CDMA Wireless Network Ali Nabi Zadeh & Bijan Jabbari

A High Capacity Multihop packet CDMA Wireless Network Ali Nabi Zadeh & Bijan Jabbari Technical Term Paper Name: Shiva S. Madishetti Topic Name: A High Capacity Multihop packet CDMA Wireless Network Authors: Ali Nabi Zadeh & Bijan Jabbari Abstract: A High Capacity Multihop packet CDMA Wireless

More information

Admission Control for Variable Spreading Gain CDMA Wireless Packet Networks

Admission Control for Variable Spreading Gain CDMA Wireless Packet Networks IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 49, NO. 2, MARCH 2000 565 Admission Control for Variable Spreading Gain CDMA Wireless Packet Networks Tsern-Huei Lee, Senior Member, IEEE, and Jui Teng Wang,

More information

Distributed Power Control and Routing for Clustered CDMA Wireless Ad Hoc Networks

Distributed Power Control and Routing for Clustered CDMA Wireless Ad Hoc Networks Distributed Power ontrol and Routing for lustered DMA Wireless Ad Hoc Networks Aylin Yener Electrical Engineering Department The Pennsylvania State University University Park, PA 6 yener@ee.psu.edu Shalinee

More information

Analysis of Macro - Femtocell Interference and Implications for Spectrum Allocation

Analysis of Macro - Femtocell Interference and Implications for Spectrum Allocation Analysis of Macro - Femtocell Interference and Implications for Spectrum Allocation Juan Espino, Jan Markendahl, Aurelian Bria Wireless@KTH, The Royal institute of Technology, Electrum 48, SE-4 4 Kista,

More information

Multihop Cellular: A Novel Architecture for Wireless Data Communications

Multihop Cellular: A Novel Architecture for Wireless Data Communications 30 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.4, NO.1, MARCH 2002 Multihop Cellular: A Novel Architecture for Wireless Data Communications Yu-Ching Hsu and Ying-Dar Lin Abstract: This work presents a

More information

How To Make A Multi-User Communication Efficient

How To Make A Multi-User Communication Efficient Multiple Access Techniques PROF. MICHAEL TSAI 2011/12/8 Multiple Access Scheme Allow many users to share simultaneously a finite amount of radio spectrum Need to be done without severe degradation of the

More information

FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY

FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY FIBRE TO THE BTS IMPROVING NETWORK FLEXIBILITY & ENERGY EFFICIENCY (Study Paper by FLA Division) Ram Krishna Dy. Director General (FLA) TEC New Delhi, DoT, Govt. of India. E-mail: ddgfla.tec@gov.in Mrs.

More information

Mobile Tracking and Resource Reservation Scheme for Cellular Networks

Mobile Tracking and Resource Reservation Scheme for Cellular Networks Mobile Tracking and Resource Reservation Scheme for Cellular Networks Subbiah Shenbagaraman, B. Prabhakaran, S. Venkatesan Department of Computer Science, University of Texas at Dallas, Richardson, USA,

More information

BSA Technical Information

BSA Technical Information BSA Technical Information Electrical Isolation of Co-Located Horizontally and Vertically Stacked Antennas Introduction: Service providers are facing rapidly increasing pressure from zoning boards to co-locate

More information

Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform

Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform Application Note Spectrum and Power Measurements Using the E6474A Wireless Network Optimization Platform By: Richard Komar Introduction With the rapid development of wireless technologies, it has become

More information

A survey on Spectrum Management in Cognitive Radio Networks

A survey on Spectrum Management in Cognitive Radio Networks A survey on Spectrum Management in Cognitive Radio Networks Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty Georgia Institute of Technology Communications Magazine, vol 46, April 2008,

More information

Divvela.Santhosh Raghava Rao [1],Sreevardhan cheerla [2]

Divvela.Santhosh Raghava Rao [1],Sreevardhan cheerla [2] Signal Strength Enhancement Using Cellular Repeater On Three Frequency Bands For Low Signal Coverage Areas (GSM900, GSM 1800/DCS, 3G) Divvela.Santhosh Raghava Rao [1],Sreevardhan cheerla [2] [1] B.tech

More information

Cell Planning in GSM Mobile

Cell Planning in GSM Mobile Cell Planning in Mobile JALAL JAMAL HAMAD-AMEEN M.Sc, College of Engineering, Electrical Engineering Dept. Salahaddin University, Erbil, IRAQ E-mail : jalal3120002000@yahoo.com Abstract: Cell planning

More information

D. J. Shyy The MITRE Corporation and Hamid Gharavi and K. Ban National Institute of Standards and Technology

D. J. Shyy The MITRE Corporation and Hamid Gharavi and K. Ban National Institute of Standards and Technology System Design Tradeoff for Supporting Soft Handoff for Packet Data Calls using cdma2000 Cellular Simulator D. J. Shyy The MITRE Corporation and Hamid Gharavi and K. Ban National Institute of Standards

More information

Definition of Traffic for Network Planning Projects

Definition of Traffic for Network Planning Projects Definition of Traffic for Network Planning Projects AWE Communications GmbH Otto-Lilienthal-Straße 36 D-71034 Böblingen Support@AWE-Com.com Issue Date Changes V0.1 Oct. 2012 First version of document V1.0

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA

More information

Maximizing Throughput and Coverage for Wi Fi and Cellular

Maximizing Throughput and Coverage for Wi Fi and Cellular Maximizing Throughput and Coverage for Wi Fi and Cellular A White Paper Prepared by Sebastian Rowson, Ph.D. Chief Scientist, Ethertronics, Inc. www.ethertronics.com March 2012 Introduction Ask consumers

More information

ECE/CS 372 introduction to computer networks. Lecture 13

ECE/CS 372 introduction to computer networks. Lecture 13 ECE/CS 372 introduction to computer networks Lecture 13 Announcements: HW #4 hard copy due today Lab #5 posted is due Tuesday June 4 th HW #5 posted is due Thursday June 6 th Pickup midterms Acknowledgement:

More information

SURVEY OF LTE AND LTE ADVANCED SYSTEM

SURVEY OF LTE AND LTE ADVANCED SYSTEM IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 5, May 2014, 1-6 Impact Journals SURVEY OF LTE AND LTE ADVANCED

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

A Framework for supporting VoIP Services over the Downlink of an OFDMA Network

A Framework for supporting VoIP Services over the Downlink of an OFDMA Network A Framework for supporting VoIP Services over the Downlink of an OFDMA Network Patrick Hosein Huawei Technologies Co., Ltd. 10180 Telesis Court, Suite 365, San Diego, CA 92121, US Tel: 858.882.0332, Fax:

More information

PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES RECOMMENDATION ITU-R M.1188

PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES RECOMMENDATION ITU-R M.1188 Rec. ITU-R M.1188 1 PART 5D TECHNICAL AND OPERATING CHARACTERISTICS OF MOBILE-SATELLITE SERVICES Rec. ITU-R M.1188 RECOMMENDATION ITU-R M.1188 IMPACT OF PROPAGATION ON THE DESIGN OF NON-GSO MOBILE-SATELLITE

More information

Master of Science (Computer Science and Engineering), August 2005, 82 pp., 16 tables, 25

Master of Science (Computer Science and Engineering), August 2005, 82 pp., 16 tables, 25 Nguyen, Son, Capacity and Throughput Optimization in Multi-cell 3G WCDMA Networks Master of Science (Computer Science and Engineering), August 2005, 82 pp., 16 tables, 25 figures, 50 titles. User modeling

More information

Relaying in CDMA Networks: Pathloss Reduction and Transmit Power Savings

Relaying in CDMA Networks: Pathloss Reduction and Transmit Power Savings Relaying in CDMA Networks: Pathloss Reduction and Transmit Power Savings Patrick Herhold, Wolfgang Rave, Gerhard Fettweis Technische Universität Dresden, Vodafone Chair Mobile Communications Systems, D-62

More information

On the Potential of Network Coding for Cooperative Awareness in Vehicular Networks

On the Potential of Network Coding for Cooperative Awareness in Vehicular Networks On the Potential of Network Coding for Cooperative Awareness in Vehicular Networks Miguel Sepulcre, Javier Gozalvez, Jose Ramon Gisbert UWICORE, Ubiquitous Wireless Communications Research Laboratory,

More information

PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE TRANSMISSIONS IN THE BAND 620 790 MHz

PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE TRANSMISSIONS IN THE BAND 620 790 MHz Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) PROTECTION OF THE BROADCASTING SERVICE FROM BROADCASTING SATELLITE SERVICE

More information