Basic Quantum Mechanics

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Basic Quantum Mechanics Postulates of QM - The state of a system with n position variables q, q, qn is specified by a state (or wave) function Ψ(q, q, qn) - To every observable (physical magnitude) there corresponds an Hermitian operator given by the following rules: a) The operator corresponding to the Cartesian position coordinate x is x. Similarly for y and z b) The operator corresponding to the x component of the linear momentum p x is ( h )( i x ) c) to obtain the operator corresponding to any other observable first write down the classical expression of the observable in terms of x, y, z, p x, p y, p z and then replace each quantity by its corresponding operator according rules and. 3- The only possible result which can be obtained when a measurement is made of an observable whose operator is A is an eigenvalue of A. 4- Let α be an observable whose operator A has a set of eigenfunctions Φ with corresponding eigenvalues a i. If a large number of measurements of α are made on a system in the state Ψ the value obtained is given by A = Ψ A Ψ dτ where the integral is taken over all space. 5- If the result of a measurement of α is a r, corresponding to the eigenfunction Φ r, then the state function after the measurement is Φ r 6- The time variation of the state function of a system is given by: Ψ = HΨ t i Where H is the Hammiltonian of the system Probability of result of a measurement Let us suppose a set of eigenvalues a of an operator A are discrete, and that the state function Ψ and all the eigenfunctions Φ are normalized. To find the probability p r that the result of the measurement of an observable α is a particular value a r we expand the wavefunction in terms of the eigenfunctions:

2 Ψ= c Φ Then the probability will be The coefficient c r is obtained as p r = c r c = Φ Ψ dτ If the coefficients c are known, an expression for the expectation value is A = p a = c a r Continuous eigenvalues. Let γ be an observable whose operator G has eigenvalues k which form a continuous spectrum, i.e. any real value k is a possible result of a measurement of γ. For simplicity we will consider only the one dimensional case for a system consisting of a single particle. If Φ(k,x) are the eigenfunctions of G the wavefunction Ψ can be written as ( ) ( ) (, ) Ψ x = g k Φ k x dk where the significance of the function g(k) is similar to the coefficients c. Specifically, g( k) dk is the probability that if the observable γ is measured, the value obtained lies in the range k k+ dk. Linear momentum An important example of an observable with continuous eigenvalues is the linear ikx Φ kx, = ce with eigenvalues momentum. The eigenfunctions of the operator p x are ( ) k. For the linear momentum the wave function can be expressed as ( ) ( ) ikx Ψ x = c g k e dk The functions g( k) ( x) ikx ( ) Ψ( ) g k x e dx Ψ are related through the Fourier transform. the proportionality constant can be obtained from the condition that ( ) dk = g k a) Time variation of a wave function

3 Suppose a system with a Hammiltonian that does not vary with time. If the wavefunction at a time t=0 is known the function at a later time is obtained as ie t Ψ () t = c u exp where u is the eigenvalue of H with energy E. Assuming that the values and the coefficients c are given by the relation ( 0) c = u Ψ dx IF the eigenvalues of the Hammiltonian have a continuous spectrum with corresponding eigenfunctions u k the wavefunction is expressed as ie (, ) ( ) exp kt Ψ x t = g k u k dk where ( ) = Ψ(,0) g k u x dx k Time variation of expectation value of an observable The time variation of the expectation value of an observable with operator A for a system with a wavefunction Ψ is = Ψ ( ) Ψ = t i i A AH HA dτ AH HA Schodinger equation One particle in one dimension moving in a potential V(x) will have a Hammiltonian function: px H = Ek + V ( x) = + V( x) m where p is the linear momentum of the particle. The first term in the kinetic energy and the second term is the potential energy. To find the expression of the Hammiltonian replace the impulse by ( i ) d dx H d = + V mdx

4 If u(x) is an eigenfunction of the Hammiltonian with eigenvalue E (this is the energy of the system), we can write Hu x ( ) = Eu( x) d mdx Or + V u( x) = E u( x) thus ( ) d u x m E V u x dx ( ) ( ) + = 0 This is the Schodinger equation in one dimension. In three dimensions H ( px + py + pz ) = + V ( x, y, z) and u( xyz) ( E V) u( xyz) m m,, +,, = 0 Parity Let us consider a one dimensional function f(x). If f ( x) = f ( x) the function is said to have even parity. If f ( x) = f ( x) the function has odd parity. A function that does not satisfy either of these two conditions is said to have mixed parity. A mixed parity function can always be expressed as a sum of two functions, one with even parity and the other with odd parity. Continuity The eigenfunction u is continuous everywhere. The derivatives of u are also continuous everywhere, except where the potential function has an infinite discontinuity (only possible in theory, cannot happen in an actual physical situation) Commuting operators In classical physics, we can know both the position and the momentum with no limitation. This is not the case on QM. Two observables can be known simultaneously only if a measurement doesn t change the state of the system. Otherwise, when measuring one observable it will change the eigenfunction of the other observable. This is the case if the wavefunction Ψ is an eigenfunction of both operators. Consider operators A and B. We measure the observable corresponding to A and then that corresponding to B. Let us assume that Ψ(x) is an eigenfunction of A and B. ( ) α ( ) α β ( ) B AΨ n x = n BΨ n x = n n Ψn x But it is also true that A BΨ ( x) = β AΨ ( x) = α β Ψ ( x) n n n n n n

5 So the system is unchanged by the measurement the wavefunction is an eigenfunction of both operators! In this case A BΨ n( x) = B AΨn( x). Two operators that have a common set of eigenfunctions are said to commute. For an arbitrary function if B A ( x) A B ( x) [ A B] ( x) Θn Θn, Θ n = 0 it is said that the commutator is zero and the two operators commute. Orbital angular momentum The operator for the components of the orbital momentum are Lx Ly L z. For the square of this magnitude the operator is L = Lx + Ly + Lz The operator L commutes with L x, L y, L z. The component operators do not commute with each other. The commutation rule for the angular momentum operators is L x, L i L y = z and cyclic permutations. The common eigenfunctions of L and L z are the spherical harmonics Y. The eigenvalues of L and L z are given by: ( ) LY l l Y L Y = m Y = + z Where l 0 and l m l The spherical harmonics are functions of the polar angles θ φ. They are orthogonal and normalized π π 0 0 π π 0 0 ' ' ' ' ( ) Y Y sinθ dθ dφ = l ' = l and m' = m ( ) Y Y sinθ dθ dφ = 0 otherwise The spherical harmonics l=0,, are Y00 = 4π 3 3 Y0 = cosθ Y ± = sinθ exp( ± iφ) 4π 8π Y0 = ( 3cos θ ) Y ± = cosθ sinθ exp( ± iφ) Y ± = sin θ exp( ± iφ) 6π 8π 3π

6 Ladder operators Ladder operators are defined as combination of L x and L y L = L + il L = L il + x y x y They satisfy the relations + = + + l, m+ { ( ) ( ) } L Y l l m m Y { ( ) ( ) } L Y = l l+ m m Y l, m If we consider the set of eigenfuctions as arranged on a ladder, the operator L + converts the function Y into the function one rung up, and L - into a function one rung down. This is the origin of the name ladder operators. They are also called raising operator and lowering operator. Ladder operators also fulfill L Y = L Y, = 0 + ll l l

The Schrödinger Equation

The Schrödinger Equation When we talked about the axioms of quantum mechanics, we gave a reduced list. We did not talk about how to determine the eigenfunctions for a given situation, or the time development

1 Lecture 3: Operators in Quantum Mechanics

1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators

1D 3D 1D 3D. is called eigenstate or state function. When an operator act on a state, it can be written as

Chapter 3 (Lecture 4-5) Postulates of Quantum Mechanics Now we turn to an application of the preceding material, and move into the foundations of quantum mechanics. Quantum mechanics is based on a series

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used.

UNIVERSITY OF LONDON BSc/MSci EXAMINATION June 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

Quantum Mechanics: Postulates

Quantum Mechanics: Postulates 5th April 2010 I. Physical meaning of the Wavefunction Postulate 1: The wavefunction attempts to describe a quantum mechanical entity (photon, electron, x-ray, etc.) through

Hermitian Operators An important property of operators is suggested by considering the Hamiltonian for the particle in a box: d 2 dx 2 (1)

CHAPTER 4 PRINCIPLES OF QUANTUM MECHANICS In this Chapter we will continue to develop the mathematical formalism of quantum mechanics, using heuristic arguments as necessary. This will lead to a system

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

Chemistry 431. NC State University. Lecture 3. The Schrödinger Equation The Particle in a Box (part 1) Orthogonality Postulates of Quantum Mechanics

Chemistry 431 Lecture 3 The Schrödinger Equation The Particle in a Box (part 1) Orthogonality Postulates of Quantum Mechanics NC State University Derivation of the Schrödinger Equation The Schrödinger

5.61 Fall 2012 Lecture #19 page 1

5.6 Fall 0 Lecture #9 page HYDROGEN ATOM Consider an arbitrary potential U(r) that only depends on the distance between two particles from the origin. We can write the Hamiltonian simply ħ + Ur ( ) H =

1 Variational calculation of a 1D bound state

TEORETISK FYSIK, KTH TENTAMEN I KVANTMEKANIK FÖRDJUPNINGSKURS EXAMINATION IN ADVANCED QUANTUM MECHAN- ICS Kvantmekanik fördjupningskurs SI38 för F4 Thursday December, 7, 8. 13. Write on each page: Name,

Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

Second postulate of Quantum mechanics: If a system is in a quantum state represented by a wavefunction ψ, then 2

. POSTULATES OF QUANTUM MECHANICS. Introducing the state function Quantum physicists are interested in all kinds of physical systems (photons, conduction electrons in metals and semiconductors, atoms,

Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics. Indian Institute of Technology, Delhi

Basic Quantum Mechanics Prof. Ajoy Ghatak Department of Physics. Indian Institute of Technology, Delhi Module No. # 02 Simple Solutions of the 1 Dimensional Schrodinger Equation Lecture No. # 7. The Free

Quantum Mechanics. Dr. N.S. Manton. Michælmas Term 1996. 1 Introduction 1

Quantum Mechanics Dr. N.S. Manton Michælmas Term 1996 Contents 1 Introduction 1 The Schrödinger Equation 1.1 Probabilistic Interpretation of ψ...................................1.1 Probability Flux and

Lecture 8. Generating a non-uniform probability distribution

Discrete outcomes Lecture 8 Generating a non-uniform probability distribution Last week we discussed generating a non-uniform probability distribution for the case of finite discrete outcomes. An algorithm

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology. Problem Set 5

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Tuesday March 5 Problem Set 5 Due Tuesday March 12 at 11.00AM Assigned Reading: E&R 6 9, App-I Li. 7 1 4 Ga. 4 7, 6 1,2

For the case of an N-dimensional spinor the vector α is associated to the onedimensional . N

1 CHAPTER 1 Review of basic Quantum Mechanics concepts Introduction. Hermitian operators. Physical meaning of the eigenvectors and eigenvalues of Hermitian operators. Representations and their use. on-hermitian

4. The Infinite Square Well

4. The Infinite Square Well Copyright c 215 216, Daniel V. Schroeder In the previous lesson I emphasized the free particle, for which V (x) =, because its energy eigenfunctions are so simple: they re the

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >

Lecture 3 SU(2) January 26, 2011. Lecture 3

Lecture 3 SU(2) January 26, 2 Lecture 3 A Little Group Theory A group is a set of elements plus a compostion rule, such that:. Combining two elements under the rule gives another element of the group.

From Fourier Series to Fourier Integral

From Fourier Series to Fourier Integral Fourier series for periodic functions Consider the space of doubly differentiable functions of one variable x defined within the interval x [ L/2, L/2]. In this

Introduction to Schrödinger Equation: Harmonic Potential

Introduction to Schrödinger Equation: Harmonic Potential Chia-Chun Chou May 2, 2006 Introduction to Schrödinger Equation: Harmonic Potential Time-Dependent Schrödinger Equation For a nonrelativistic particle

Fourier Analysis and its applications

Fourier Analysis and its applications Fourier analysis originated from the study of heat conduction: Jean Baptiste Joseph Fourier (1768-1830) Fourier analysis enables a function (signal) to be decomposed

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

4. Important theorems in quantum mechanics

TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

Quantum Physics II (8.05) Fall 2013 Assignment 4

Quantum Physics II (8.05) Fall 2013 Assignment 4 Massachusetts Institute of Technology Physics Department Due October 4, 2013 September 27, 2013 3:00 pm Problem Set 4 1. Identitites for commutators (Based

Harmonic Oscillator and Coherent States

Chapter 5 Harmonic Oscillator and Coherent States 5. Harmonic Oscillator In this chapter we will study the features of one of the most important potentials in physics, it s the harmonic oscillator potential

CHAPTER 2 FOURIER SERIES

CHAPTER 2 FOURIER SERIES PERIODIC FUNCTIONS A function is said to have a period T if for all x,, where T is a positive constant. The least value of T>0 is called the period of. EXAMPLES We know that =

CHEM344 HW#7 Due: Fri, Mar BEFORE CLASS!

CHEM344 HW#7 Due: Fri, Mar 14@2pm BEFORE CLASS! HW to be handed in: Atkins Chapter 8: Exercises: 8.11(b), 8.16(b), 8.19(b), Problems: 8.2, 8.4, 8.12, 8.34, Chapter 9: Exercises: 9.5(b), 9.7(b), Extra (do

The Math Circle, Spring 2004

The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the

FLAP P11.2 The quantum harmonic oscillator

F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P. Opening items. Module introduction. Fast track questions.3 Ready to study? The harmonic oscillator. Classical description of

Module -1: Quantum Mechanics - 2

Quantum Mechanics - Assignment Question: Module -1 Quantum Mechanics Module -1: Quantum Mechanics - 01. (a) What do you mean by wave function? Explain its physical interpretation. Write the normalization

arxiv:cond-mat/9301024v1 20 Jan 1993 ABSTRACT

Anyons as Dirac Strings, the A x = 0 Gauge LPTB 93-1 John McCabe Laboratoire de Physique Théorique, 1 Université Bordeaux I 19 rue du Solarium, 33175 Gradignan FRANCE arxiv:cond-mat/930104v1 0 Jan 1993

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid April 21, 2002 Chapter 7 Problem 7.2 Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle

We consider a hydrogen atom in the ground state in the uniform electric field

Lecture 13 Page 1 Lectures 13-14 Hydrogen atom in electric field. Quadratic Stark effect. Atomic polarizability. Emission and Absorption of Electromagnetic Radiation by Atoms Transition probabilities and

Appendix E - Elements of Quantum Mechanics

1 Appendix E - Elements of Quantum Mechanics Quantum mechanics provides a correct description of phenomena on the atomic or sub- atomic scale, where the ideas of classical mechanics are not generally applicable.

Angular Momentum, Hydrogen Atom, and Helium Atom

Chapter Angular Momentum, Hydrogen Atom, and Helium Atom Contents.1 Angular momenta and their addition..................4. Hydrogenlike atoms...................................38.3 Pauli principle, Hund

Operator methods in quantum mechanics

Chapter 3 Operator methods in quantum mechanics While the wave mechanical formulation has proved successful in describing the quantum mechanics of bound and unbound particles, some properties can not be

Area and Arc Length in Polar Coordinates

Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly

arxiv:1603.01211v1 [quant-ph] 3 Mar 2016

Classical and Quantum Mechanical Motion in Magnetic Fields J. Franklin and K. Cole Newton Department of Physics, Reed College, Portland, Oregon 970, USA Abstract We study the motion of a particle in a

- develop a theory that describes the wave properties of particles correctly

Quantum Mechanics Bohr's model: BUT: In 1925-26: by 1930s: - one of the first ones to use idea of matter waves to solve a problem - gives good explanation of spectrum of single electron atoms, like hydrogen

1 The Fourier Transform

Physics 326: Quantum Mechanics I Prof. Michael S. Vogeley The Fourier Transform and Free Particle Wave Functions 1 The Fourier Transform 1.1 Fourier transform of a periodic function A function f(x) that

Harmonic Oscillator Physics

Physics 34 Lecture 9 Harmonic Oscillator Physics Lecture 9 Physics 34 Quantum Mechanics I Friday, February th, 00 For the harmonic oscillator potential in the time-independent Schrödinger equation: d ψx

2m dx 2 = Eψ(x) (1) Total derivatives can be used since there is but one independent variable. The equation simplifies to. ψ (x) + k 2 ψ(x) = 0 (2)

CHAPTER 3 QUANTUM MECHANICS OF SOME SIMPLE SYSTEMS The Free Particle The simplest system in quantum mechanics has the potential energy V equal to zero everywhere. This is called a free particle since it

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Exam Solutions Dec. 13, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Exam Solutions Dec. 1, 2004 No materials allowed. If you can t remember a formula, ask and I might help. If you can t do one part of a problem,

1 Inner Products and Norms on Real Vector Spaces

Math 373: Principles Techniques of Applied Mathematics Spring 29 The 2 Inner Product 1 Inner Products Norms on Real Vector Spaces Recall that an inner product on a real vector space V is a function from

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM

5.6 Physical Chemistry 5 Helium Atom page HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next simplest system: the Helium atom. In this situation,

Vector surface area Differentials in an OCS

Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

Solutions to Sample Midterm 2 Math 121, Fall 2004

Solutions to Sample Midterm Math, Fall 4. Use Fourier series to find the solution u(x, y) of the following boundary value problem for Laplace s equation in the semi-infinite strip < x : u x + u

Lecture-XXIV. Quantum Mechanics Expectation values and uncertainty

Lecture-XXIV Quantum Mechanics Expectation values and uncertainty Expectation values We are looking for expectation values of position and momentum knowing the state of the particle, i,e., the wave function

Fourier Series and Sturm-Liouville Eigenvalue Problems

Fourier Series and Sturm-Liouville Eigenvalue Problems 2009 Outline Functions Fourier Series Representation Half-range Expansion Convergence of Fourier Series Parseval s Theorem and Mean Square Error Complex

Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs

Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in

Mathematical Formulation of the Superposition Principle

Mathematical Formulation of the Superposition Principle Superposition add states together, get new states. Math quantity associated with states must also have this property. Vectors have this property.

MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then

MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.

Lecture 4. Reading: Notes and Brennan

Lecture 4 Postulates of Quantum Mechanics, Operators and Mathematical Basics of Quantum Mechanics Reading: Notes and Brennan.3-.6 ECE 645 - Dr. Alan Doolittle Postulates of Quantum Mechanics Classical

Section 4 Molecular Rotation and Vibration

Section 4 Molecular Rotation and Vibration Chapter 3 Treating the full internal nuclear-motion dynamics of a polyatomic molecule is complicated. It is conventional to examine the rotational movement of

4 Sums of Random Variables

Sums of a Random Variables 47 4 Sums of Random Variables Many of the variables dealt with in physics can be expressed as a sum of other variables; often the components of the sum are statistically independent.

Time dependence in quantum mechanics Notes on Quantum Mechanics

Time dependence in quantum mechanics Notes on Quantum Mechanics http://quantum.bu.edu/notes/quantummechanics/timedependence.pdf Last updated Thursday, November 20, 2003 13:22:37-05:00 Copyright 2003 Dan

Review B: Coordinate Systems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics 8.02 Review B: Coordinate Systems B.1 Cartesian Coordinates... B-2 B.1.1 Infinitesimal Line Element... B-4 B.1.2 Infinitesimal Area Element...

An Introduction to Partial Differential Equations in the Undergraduate Curriculum

An Introduction to Partial Differential Equations in the Undergraduate Curriculum J. Tolosa & M. Vajiac LECTURE 11 Laplace s Equation in a Disk 11.1. Outline of Lecture The Laplacian in Polar Coordinates

Introduces the bra and ket notation and gives some examples of its use.

Chapter 7 ket and bra notation Introduces the bra and ket notation and gives some examples of its use. When you change the description of the world from the inutitive and everyday classical mechanics to

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

To ensure that P{(X, Y ) B} is nonnegative and that it equals one when B is the whole of R 2, we must require

Page Chapter Joint densities Consider the general problem of describing probabilities involving two random variables, X and Y. If both have discrete distributions, with X taking values x, x 2,... and Y

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

The Essentials of Quantum Mechanics

The Essentials of Quantum Mechanics Prof. Mark Alford v7, 2008-Oct-22 In classical mechanics, a particle has an exact, sharply defined position and an exact, sharply defined momentum at all times. Quantum

1. the function must be periodic; 3. it must have only a finite number of maxima and minima within one periodic;

Fourier Series 1 Dirichlet conditions The particular conditions that a function f(x must fulfil in order that it may be expanded as a Fourier series are known as the Dirichlet conditions, and may be summarized

P.A.M. Dirac Received May 29, 1931

P.A.M. Dirac, Proc. Roy. Soc. A 133, 60 1931 Quantised Singularities in the Electromagnetic Field P.A.M. Dirac Received May 29, 1931 1. Introduction The steady progress of physics requires for its theoretical

Mixed states and pure states

Mixed states and pure states (Dated: April 9, 2009) These are brief notes on the abstract formalism of quantum mechanics. They will introduce the concepts of pure and mixed quantum states. Some statements

Classical Physics Prof. V. Balakrishnan Department of Physics Indian Institution of Technology, Madras. Lecture No. # 13

Classical Physics Prof. V. Balakrishnan Department of Physics Indian Institution of Technology, Madras Lecture No. # 13 Now, let me formalize the idea of symmetry, what I mean by symmetry, what we mean

Introduction to Complex Numbers in Physics/Engineering

Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The

Vector Math Computer Graphics Scott D. Anderson

Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about

Thermodynamics: Lecture 8, Kinetic Theory

Thermodynamics: Lecture 8, Kinetic Theory Chris Glosser April 15, 1 1 OUTLINE I. Assumptions of Kinetic Theory (A) Molecular Flux (B) Pressure and the Ideal Gas Law II. The Maxwell-Boltzmann Distributuion

Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

The Quantum Theory of the Emission and Absorption of Radiation.

P.A.M. Dirac, Proc. Roy. Soc., A114, 243 1927 The Quantum Theory of the Emission and Absorption of Radiation. P. A. M. Dirac, St. John s College, Cambridge, and Institute for Theoretical Physics, Copenhagen.

Fourier Series Chapter 3 of Coleman

Fourier Series Chapter 3 of Coleman Dr. Doreen De eon Math 18, Spring 14 1 Introduction Section 3.1 of Coleman The Fourier series takes its name from Joseph Fourier (1768-183), who made important contributions

Computing Euler angles from a rotation matrix

Computing Euler angles from a rotation matrix Gregory G. Slabaugh Abstract This document discusses a simple technique to find all possible Euler angles from a rotation matrix. Determination of Euler angles

Area in Polar Coordinates

Area in Polar Coordinates If we have a circle of radius r, and select a sector of angle θ, then the area of that sector can be shown to be 1. r θ Area = (1/)r θ As a check, we see that if θ =, then the

5. Orthogonal matrices

L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

Figure 1: u2 (x,y) D u 1 (x,y) yρ(x, y, z)dv. xρ(x, y, z)dv. M yz = E

Contiune on.7 Triple Integrals Figure 1: [ ] u2 (x,y) f(x, y, z)dv = f(x, y, z)dz da u 1 (x,y) Applications of Triple Integrals Let be a solid region with a density function ρ(x, y, z). Volume: V () =

Fourier Series. A Fourier series is an infinite series of the form. a + b n cos(nωx) +

Fourier Series A Fourier series is an infinite series of the form a b n cos(nωx) c n sin(nωx). Virtually any periodic function that arises in applications can be represented as the sum of a Fourier series.

CHAPTER 12 MOLECULAR SYMMETRY

CHAPTER 12 MOLECULAR SYMMETRY In many cases, the symmetry of a molecule provides a great deal of information about its quantum states, even without a detailed solution of the Schrödinger equation. A geometrical

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

1 Complex Numbers in Quantum Mechanics

1 Complex Numbers in Quantum Mechanics Complex numbers and variables can be useful in classical physics. However, they are not essential. To emphasize this, recall that forces, positions, momenta, potentials,

Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

2.2 Magic with complex exponentials

2.2. MAGIC WITH COMPLEX EXPONENTIALS 97 2.2 Magic with complex exponentials We don t really know what aspects of complex variables you learned about in high school, so the goal here is to start more or

HSC Mathematics - Extension 1. Workshop E4

HSC Mathematics - Extension 1 Workshop E4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong

202 6TheMechanicsofQuantumMechanics. ) ψ (r) =± φ (r) ψ (r) (6.139) (t)

0 6TheMechanicsofQuantumMechanics It is easily shown that ˆ has only two (real) eigenvalues, ±1. That is, if ˆ ψ (r) = λψ (r), ˆ ψ (r) = ˆ ψ ( r) = ψ (r) = λ ˆ ψ ( r) = λ ψ (r) (6.137) so λ =±1. Thus,

Lecture 2. Observables

Lecture 2 Observables 13 14 LECTURE 2. OBSERVABLES 2.1 Observing observables We have seen at the end of the previous lecture that each dynamical variable is associated to a linear operator Ô, and its expectation

Quantum Mechanics I. Peter S. Riseborough. August 29, 2013

Quantum Mechanics I Peter S. Riseborough August 9, 3 Contents Principles of Classical Mechanics 9. Lagrangian Mechanics........................ 9.. Exercise............................. Solution.............................3

1 Scalars, Vectors and Tensors

DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS PH350 Classical Physics Handout 1 8.8.2009 1 Scalars, Vectors and Tensors In physics, we are interested in obtaining laws (in the form of mathematical

8.1 Examples, definitions, and basic properties

8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A k-form ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)-form σ Ω k 1 (M) such that dσ = ω.

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition

MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification

Part 3: The Maxwell-Boltzmann Gas

PHYS393 Statistical Physics Part 3: The Maxwell-Boltzmann Gas The Boltzmann distribution In the previous parts of this course, we derived the Boltzmann distribution: n j = N Z e ε j kt, (1) We applied

Unified Lecture # 4 Vectors

Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

Complex Numbers. w = f(z) z. Examples

omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If

Rutgers - Physics Graduate Qualifying Exam Quantum Mechanics: September 1, 2006

Rutgers - Physics Graduate Qualifying Exam Quantum Mechanics: September 1, 2006 QA J is an angular momentum vector with components J x, J y, J z. A quantum mechanical state is an eigenfunction of J 2 J

Simple harmonic motion

PH-122- Dynamics Page 1 Simple harmonic motion 02 February 2011 10:10 Force opposes the displacement in A We assume the spring is linear k is the spring constant. Sometimes called stiffness constant Newton's