# 4 Operations On Data

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 4 Operations On Data 4.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, students should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations on bit patterns. Distinguish between logic and arithmetic shift operations. Perform addition and subtraction on integers when they are stored in two s complement format. Perform addition and subtraction on integers when stored in sign-and-magnitude format. Perform addition and subtraction operations on reals stored in floating-point format

2 4-11 Logic Operations Logic operations refer to those operations that apply the same basic operation on individual bits of a pattern,, or on two corresponding bits in two patterns.. A logic operation at the pattern level is n logic operations, of the same type, at the bit level where n is the number of bits in the pattern. 4.3 Logic Operations at Bit Level A bit can take one of the two values: 0 or 1. If we interpret 0 as the value false and 1 as the value true, we can apply the operations defined in Boolean algebra to manipulate bits. Boolean algebra, named in honor of George Boole, belongs to a special field of mathematics called logic. Boolean algebra and its application to building logic circuits in computers are briefly discussed in Appendix E. In this section, we show briefly four bit-level operations that are used to manipulate bits: NOT, AND, OR, and XOR

3 Logic Operations at Bit Level 4.5 NOT The NOT operator is a unary operator: it takes only one input. The output bit is the complement of the input. AND The AND operator is a binary operator: it takes two inputs. The output bit is 1 if both inputs are 1s and the output is 0 in the other three cases. x AND

4 OR The OR operator is a binary operator: it takes two inputs. The output bit is 0 if both inputs are 0s and the output is 1 in other three cases. x OR 1 1 XOR The XOR operator is a binary operator like the OR operator, with only one difference: the output is 0 if both inputs are 1s. 4.7 x XOR 1 NOT x Example 4.1 In English we use the conjunction or sometimes to mean an inclusive-or or,, and sometimes to means an exclusive-or or. a. The sentence I I would like to have a car or a house uses or in the inclusive sense I I would like to have a car, a house or both. b. The sentence Today is either Monday or Tuesday uses or in the exclusive sense today is either Monday or Tuesday, but it cannot be both

5 Logic Operations at Pattern Level The same four operators (NOT, AND, OR, and XOR) can be applied to an n-bit pattern. The effect is the same as applying each operator to each individual bit for NOT and to each corresponding pair of bits for the other three operators. 4.9 Example 4.3 Use the NOT operator on the bit pattern The solution is shown below. Note that the NOT operator changes every 0 to 1 and every 1 to

6 Example 4.4 Use the AND operator on the bit patterns and The solution is shown below. Note that only one bit in the output is 1, where both corresponding inputs are 1s Example 4.5 Use the OR operator on the bit patterns and The solution is shown below. Note that only one bit in the output is 0, where both corresponding inputs are 0s

7 Example 4.6 Use the XOR operator on the bit patterns and The solution is shown below. Compare the output in this example with the one in Example 4.5. The only difference is that when the two inputs are 1s, the result is 0 (the effect of exclusion) Applications The four logic operations can be used to modify a bit pattern. Complementing (NOT) Unsetting (AND) Setting (OR) Flipping (XOR)

8 Example 4.7 Use a mask to unset (clear) the five leftmost bits of a pattern. Test the mask with the pattern The mask is The result of applying the mask is: 4.15 Example 4.8 Use a mask to set the five leftmost bits of a pattern. Test the mask with the pattern The mask is The result of applying the mask is:

9 Example 4.9 Use a mask to flip the five leftmost bits of a pattern. Test the mask with the pattern The mask is The result of applying the mask is: Shift Operations Shift operations move the bits in a pattern, changing the positions of the bits. They can move bits to the left or to the right.. We can divide shift operations into two categories: logical shift operations and arithmetic shift operations

10 Logical Shift Operations A logical shift operation is applied to a pattern that does not represent a signed number. The reason is that these shift operations may change the sign of the number that is defined by the leftmost bit in the pattern. We distinguish two types of logical shift operations, as described below: Logical shift Logical circular shift (Rotate) 4.19 Logical Right / Left Shift Operations Figure 4.3 Logical shift operations Example 4.10 Use a logical left shift operation on the bit pattern The leftmost bit is lost and a 0 is inserted as the rightmost bit. Discarded 4.20 Added 10

11 An Example: Logical Right / Left Shift Operations 4.21 Logical Right / Left Circular Shift Operations Figure 4.4 Circular shift operations Example 4.11 Use a circular left shift operation on the bit pattern The solution is shown below. The leftmost bit is circulated and becomes the rightmost bit

12 Arithmetic Shift Operations Arithmetic shift operations assume that the bit pattern is a signed integer in two s complement format. Arithmetic right shift is used to divide an integer by two, while arithmetic left shift is used to multiply an integer by two Example 4.12 Use an arithmetic right shift operation on the bit pattern The pattern is an integer in two s s complement format. The solution is shown below. The leftmost bit is retained and also copied to its right neighbor bit. The original number was 103 and the new number is 52,, which is the result of dividing 103 by 2 truncated to the smaller integer

13 Example 4.13 Use an arithmetic left shift operation on the bit pattern The pattern is an integer in two s s complement format. The solution is shown below. The leftmost bit is lost and a 0 is inserted as the rightmost bit. The original number was 39 and the new number is 78.. The original number is multiplied by two. The operation is valid because no underflow occurred Example 4.14 Use an arithmetic left shift operation on the bit pattern The pattern is an integer in two s s complement format. The solution is shown below. The leftmost bit is lost and a 0 is inserted as the rightmost bit. The original number was 127 and the new number is 2. Here the result is not valid because an overflow has occurred.. The expected answer = 254 cannot be represented by an 8-bit 8 pattern

14 Example 4.15 Combining logic operations and logical shift operations give us some tools for manipulating bit patterns. Assume that we have a pattern and we need to use the third bit (from the right) of this pattern in a decision-making process.. We want to know if this particular bit is 0 or 1. The following shows how we can find out. We can then test the result: if it is an unsigned integer 1, the target bit was 1, whereas if the result is an unsigned integer 0, the target bit was Arithmetic Operations Arithmetic operations involve adding, subtracting, multiplying and dividing.. We can apply these operations to integers and floating-point numbers

15 Arithmetic Operations on Integers All arithmetic operations such as addition, subtraction, multiplication and division can be applied to integers. Although multiplication (division) of integers can be implemented using repeated addition (subtraction), the procedure is not efficient. There are more efficient procedures for multiplication and division, such as Booth procedures, but these are beyond the scope of this book. For this reason, we only discuss addition and subtraction of integers here Two s Complement Integers When the subtraction operation is encountered, the computer simply changes it to an addition operation, but makes two s complement of the second number. In other words: A B A + (B + 1) Where B is the one s complement of B and (B + 1) means the two s complement of B

16 We should remember that we add integers column by column. The following table shows the sum and carry (C) Addition and subtraction of integers in two s complement format

17 Example 4.16 Two integers A and B are stored in two s s complement format. Show how B is added to A. A = ( ) 2 B = ( ) 2 The operation is adding. A is added to B and the result is stored in R. (+17) + (+22) = (+39) = Example 4.17 Two integers A and B are stored in two s s complement format. Show how B is added to A. A = ( ) 2 B = ( ) 2 The operation is adding. A is added to B and the result is stored in R. (+24) + (-17)( = (+7) =

18 Example 4.18 Two integers A and B are stored in two s s complement format. Show how B is subtracted from A. A = ( ) 2 B = ( ) 2 The operation is subtracting. A is added to (B + 1) and the result is stored in R. (+24) - (-17) = (+41) = Example 4.19 Two integers A and B are stored in two s s complement format. Show how B is subtracted from A. A = ( ) 2 B = ( ) 2 The operation is subtracting. A is added to (B + 1) and the result is stored in R. ( 35) (+20) = ( 55).(

19 Example 4.20 Two integers A and B are stored in two s s complement format. Show how B is added to A. A = ( ) 2 B = ( ) 2 The operation is adding. A is added to B and the result is stored in R We expect the result to be = 130, but the answer is 126. The error is due to overflow,, because the expected answer (+130) is not in the range 128 to Sign-and-Magnitude Integers Addition and subtraction for integers in sign-and-magnitude representation looks very complex. We have four different combination of signs (two signs, each of two values) for addition and four different conditions for subtraction. This means that we need to consider eight different situations. However, if we first check the signs, we can reduce these cases, as shown in Figure

20 Addition and subtraction of integers in sign-and-magnitude format 4.39 Example 4.22 Two integers A and B are stored in sign-and and-magnitude format. Show how B is added to A. A = ( ) 2 B = ( ) 2 The operation is adding: the sign of B is not changed.. S = A S XOR B S = 1; R M = A M + (B M +1). Since there is no overflow, we need to take the two s s complement of R M. The sign of R is the sign of B. (+17) + ( 22) = ( 5)( =

21 Example 4.23 Two integers A and B are stored in sign-and and-magnitude format. Show how B is subtracted from A. A = ( ) 2 B = ( ) 2 The operation is subtracting: S B = S B. S = A S XOR B S = 1, R M = A M + (B M +1). Since there is an overflow, the value of R M is final. The sign of R is the sign of A. ( 81) ( 22) = ( 59)( = Arithmetic Operations on Reals All arithmetic operations such as addition, subtraction, multiplication and division can be applied to reals stored in floating-point format. Multiplication of two reals involves multiplication of two integers in sign-and-magnitude representation. Division of two reals involves division of two integers in sign-and-magnitude representations. Since we did not discuss the multiplication or division of integers in signand-magnitude representation, we will not discuss the multiplication and division of reals, and only show addition and subtractions for reals

22 Addition and Subtraction of Reals Addition and subtraction of real numbers stored in floatingpoint numbers is reduced to addition and subtraction of two integers stored in sign-and-magnitude (combination of sign and mantissa) after the alignment of decimal points. Figure 4.8 shows a simplified version of the procedure (there are some special cases that we have ignored) Addition and subtraction of reals in floating-point format

23 Example 4.24 Show how the computer finds the result of (+5.75) + ( ) = ( ). As we saw in Chapter 3, these two numbers are stored in floating- point format,, as shown below, but we need to remember that each number has a hidden 1 (which is not stored, but assumed) Example 4.24 (Continued) The first few steps in the UML diagram (Figure 4.8) are not needed. We de-normalize the numbers by adding the hidden 1s to the mantissa and incrementing the exponent.. Now both de- normalized mantissas are 24 bits and include the hidden 1s. They should be stored in a location that can hold all 24 bits. Each exponent is incremented. A R=A+B

24 Example 4.24 (Continued) Now we do sign-and and-magnitude addition,, treating the sign and the mantissa of each number as one integer stored in sign-and and- magnitude representation. There is no overflow in the mantissa, so we normalize. The mantissa is only 23 bits, no rounding is needed. E = ( ) 2 = 134, M = In other words, the result is ( ) = ( ) 2 = Example 4.25 Show how the computer finds the result of (+5.75) + ( ) = These two numbers can be stored in floating-point format, as shown below: De-normalization results in: B S=/S= M=M 2s R=A+B R=R 2s M=M 2s

25 Example 4.25 (Continued) Alignment is not needed (both exponents are the same), so we apply addition operation on the combinations of sign and mantissa.. The result is shown below, in which the sign of the result is negative: Now we need to normalize. We decrement the exponent three times and shift the de-normalized mantissa to the left three positions: 4.49 Example 4.25 (Continued) The mantissa is now 24 bits, so we round it to 23 bits. The result is R = = ,, as expected

### Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

### Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer.

Digital Logic 1 Data Representations 1.1 The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The system we

### Chapter 4. Computer Arithmetic

Chapter 4 Computer Arithmetic 4.1 Number Systems A number system uses a specific radix (base). Radices that are power of 2 are widely used in digital systems. These radices include binary (base 2), quaternary

### Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic

Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1

### Quiz for Chapter 3 Arithmetic for Computers 3.10

Date: Quiz for Chapter 3 Arithmetic for Computers 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in RED

### CPE 323 Data Types and Number Representations

CPE 323 Data Types and Number Representations Aleksandar Milenkovic Numeral Systems: Decimal, binary, hexadecimal, and octal We ordinarily represent numbers using decimal numeral system that has 10 as

### 2.1 Binary Numbers. 2.3 Number System Conversion. From Binary to Decimal. From Decimal to Binary. Section 2 Binary Number System Page 1 of 8

Section Binary Number System Page 1 of 8.1 Binary Numbers The number system we use is a positional number system meaning that the position of each digit has an associated weight. The value of a given number

### Borland C++ Compiler: Operators

Introduction Borland C++ Compiler: Operators An operator is a symbol that specifies which operation to perform in a statement or expression. An operand is one of the inputs of an operator. For example,

### Number Systems and. Data Representation

Number Systems and Data Representation 1 Lecture Outline Number Systems Binary, Octal, Hexadecimal Representation of characters using codes Representation of Numbers Integer, Floating Point, Binary Coded

### Number Systems! Why Bits (Binary Digits)?!

Number Systems Why Bits (Binary Digits)? Computers are built using digital circuits Inputs and outputs can have only two values True (high voltage) or false (low voltage) Represented as and Can represent

### Lecture 2. Binary and Hexadecimal Numbers

Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations

### Here 4 is the least significant digit (LSD) and 2 is the most significant digit (MSD).

Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

### TECH. Arithmetic & Logic Unit. CH09 Computer Arithmetic. Number Systems. ALU Inputs and Outputs. Binary Number System

CH09 Computer Arithmetic CPU combines of ALU and Control Unit, this chapter discusses ALU The Arithmetic and Logic Unit (ALU) Number Systems Integer Representation Integer Arithmetic Floating-Point Representation

### CHAPTER THREE. 3.1 Binary Addition. Binary Math and Signed Representations

CHAPTER THREE Binary Math and Signed Representations Representing numbers with bits is one thing. Doing something with them is an entirely different matter. This chapter discusses some of the basic mathematical

### CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

### Fixed-point Representation of Numbers

Fixed-point Representation of Numbers Fixed Point Representation of Numbers Sign-and-magnitude representation Two s complement representation Two s complement binary arithmetic Excess code representation

### Binary Representation and Computer Arithmetic

Binary Representation and Computer Arithmetic The decimal system of counting and keeping track of items was first created by Hindu mathematicians in India in A.D. 4. Since it involved the use of fingers

### Data Representation Binary Numbers

Data Representation Binary Numbers Integer Conversion Between Decimal and Binary Bases Task accomplished by Repeated division of decimal number by 2 (integer part of decimal number) Repeated multiplication

### Computer Organization and Architecture

Computer Organization and Architecture Chapter 9 Computer Arithmetic Arithmetic & Logic Unit Performs arithmetic and logic operations on data everything that we think of as computing. Everything else in

### Bits, Data Types, and Operations. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

Bits, Data Types, and Operations University of Texas at Austin CS3H - Computer Organization Spring 2 Don Fussell How do we represent data in a computer? At the lowest level, a computer is an electronic

### ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

### The string of digits 101101 in the binary number system represents the quantity

Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

### Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

### Data Storage 3.1. Foundations of Computer Science Cengage Learning

3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

### Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n

### Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Binary Numbers Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

### Fractional Numbers. Fractional Number Notations. Fixed-point Notation. Fixed-point Notation

2 Fractional Numbers Fractional Number Notations 2010 - Claudio Fornaro Ver. 1.4 Fractional numbers have the form: xxxxxxxxx.yyyyyyyyy where the x es constitute the integer part of the value and the y

### Presented By: Ms. Poonam Anand

Presented By: Ms. Poonam Anand Know the different types of numbers Describe positional notation Convert numbers in other bases to base 10 Convert base 10 numbers into numbers of other bases Describe the

### Arithmetic of Number Systems

2 Arithmetic of Number Systems INTRODUCTION Arithmetic operations in number systems are usually done in binary because designing of logic networks is much easier than decimal. In this chapter we will discuss

### Binary Numbers. Binary Numbers. Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

Binary Numbers Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

### Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:

Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how

### comp 180 Lecture 21 Outline of Lecture Floating Point Addition Floating Point Multiplication HKUST 1 Computer Science

Outline of Lecture Floating Point Addition Floating Point Multiplication HKUST 1 Computer Science IEEE 754 floating-point standard In order to pack more bits into the significant, IEEE 754 makes the leading

### Two s Complement Arithmetic

Two s Complement Arithmetic We now address the issue of representing integers as binary strings in a computer. There are four formats that have been used in the past; only one is of interest to us. The

### Integer Numbers. The Number Bases of Integers Textbook Chapter 3

Integer Numbers The Number Bases of Integers Textbook Chapter 3 Number Systems Unary, or marks: /////// = 7 /////// + ////// = ///////////// Grouping lead to Roman Numerals: VII + V = VVII = XII Better:

### Introduction Number Systems and Conversion

UNIT 1 Introduction Number Systems and Conversion Objectives 1. Introduction The first part of this unit introduces the material to be studied later. In addition to getting an overview of the material

### MT1 Number Systems. In general, the number a 3 a 2 a 1 a 0 in a base b number system represents the following number:

MT1 Number Systems MT1.1 Introduction A number system is a well defined structured way of representing or expressing numbers as a combination of the elements of a finite set of mathematical symbols (i.e.,

### CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 47 2.2 Positional Numbering Systems 48 2.3 Converting Between Bases 48 2.3.1 Converting Unsigned Whole Numbers 49 2.3.2 Converting Fractions

### Unit 2: Number Systems, Codes and Logic Functions

Unit 2: Number Systems, Codes and Logic Functions Introduction A digital computer manipulates discrete elements of data and that these elements are represented in the binary forms. Operands used for calculations

### Data types. lecture 4

Data types lecture 4 Information in digital computers is represented using binary number system. The base, i.e. radix, of the binary system is 2. Other common number systems: octal (base 8), decimal (base

### ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

### By the end of the lecture, you should be able to:

Extra Lecture: Number Systems Objectives - To understand: Base of number systems: decimal, binary, octal and hexadecimal Textual information stored as ASCII Binary addition/subtraction, multiplication

### 1 Basic Computing Concepts (4) Data Representations

1 Basic Computing Concepts (4) Data Representations The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The

### SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Numbers

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics Numbers. Factors 2. Multiples 3. Prime and Composite Numbers 4. Modular Arithmetic 5. Boolean Algebra 6. Modulo 2 Matrix Arithmetic 7. Number Systems

### Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand

Digital Arithmetic Digital Arithmetic: Operations and Circuits Dr. Farahmand Binary Arithmetic Digital circuits are frequently used for arithmetic operations Fundamental arithmetic operations on binary

### Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,

### Integer and Real Numbers Representation in Microprocessor Techniques

Brno University of Technology Integer and Real Numbers Representation in Microprocessor Techniques Microprocessor Techniques and Embedded Systems Lecture 1 Dr. Tomas Fryza 30-Sep-2011 Contents Numerical

### Number Representation and Arithmetic in Various Numeral Systems

1 Number Representation and Arithmetic in Various Numeral Systems Computer Organization and Assembly Language Programming 203.8002 Adapted by Yousef Shajrawi, licensed by Huong Nguyen under the Creative

### Number Systems Richard E. Haskell

NUMBER SYSTEMS D Number Systems Richard E. Haskell Data inside a computer are represented by binary digits or bits. The logical values of these binary digits are denoted by and, while the corresponding

### Arithmetic-logic units

Arithmetic-logic units An arithmetic-logic unit, or ALU, performs many different arithmetic and logic operations. The ALU is the heart of a processor you could say that everything else in the CPU is there

### Computer is a binary digital system. Data. Unsigned Integers (cont.) Unsigned Integers. Binary (base two) system: Has two states: 0 and 1

Computer Programming Programming Language Is telling the computer how to do something Wikipedia Definition: Applies specific programming languages to solve specific computational problems with solutions

### Number Representation

Number Representation Number System :: The Basics We are accustomed to using the so-called decimal number system Ten digits ::,,,3,4,5,6,7,8,9 Every digit position has a weight which is a power of Base

### CSE 1400 Applied Discrete Mathematics Conversions Between Number Systems

CSE 400 Applied Discrete Mathematics Conversions Between Number Systems Department of Computer Sciences College of Engineering Florida Tech Fall 20 Conversion Algorithms: Decimal to Another Base Conversion

### Chapter 2: Number Systems

Chapter 2: Number Systems Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This two-valued number system is called binary. As presented earlier, there are many

### Logic Design. Dr. Yosry A. Azzam

Logic Design Dr. Yosry A. Azzam Binary systems Chapter 1 Agenda Binary Systems : Binary Numbers, Binary Codes, Binary Logic ASCII Code (American Standard Code for Information Interchange) Boolean Algebra

### School of Informatics, University of Edinburgh

CS1Ah Lecture Note 5 Java Expressions Many Java statements can contain expressions, which are program phrases that tell how to compute a data value. Expressions can involve arithmetic calculation and method

### Chap 3 Data Representation

Chap 3 Data Representation 3-11 Data Types How to representation and conversion between these data types? 3-11 Data Types : Number System Radix : Decimal : radix 10 Binary : radix 2 3-11 Data Types : Number

### Digital Fundamentals

Digital Fundamentals with PLD Programming Floyd Chapter 2 29 Pearson Education Decimal Numbers The position of each digit in a weighted number system is assigned a weight based on the base or radix of

### Solution for Homework 2

Solution for Homework 2 Problem 1 a. What is the minimum number of bits that are required to uniquely represent the characters of English alphabet? (Consider upper case characters alone) The number of

### NUMBERING SYSTEMS C HAPTER 1.0 INTRODUCTION 1.1 A REVIEW OF THE DECIMAL SYSTEM 1.2 BINARY NUMBERING SYSTEM

12 Digital Principles Switching Theory C HAPTER 1 NUMBERING SYSTEMS 1.0 INTRODUCTION Inside today s computers, data is represented as 1 s and 0 s. These 1 s and 0 s might be stored magnetically on a disk,

### Bit operations carry* 0110 a 0111 b a+b. 1 and 3 exclusive OR (^) 2 and 4 and (&) 5 or ( )

Bit operations 1 and 3 exclusive OR (^) 2 and 4 and (&) 5 or ( ) 01100 carry* 0110 a 0111 b 01101 a+b * Always start with a carry-in of 0 Did it work? What is a? What is b? What is a+b? What if 8 bits

### Chapter I: Digital System and Binary Numbers

Chapter I: Digital System and Binary Numbers 1-1Digital Systems Digital systems are used in: - Communication - Business transaction - Traffic Control - Medical treatment - Internet The signals in digital

### Decimal Numbers: Base 10 Integer Numbers & Arithmetic

Decimal Numbers: Base 10 Integer Numbers & Arithmetic Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Example: 3271 = (3x10 3 ) + (2x10 2 ) + (7x10 1 )+(1x10 0 ) Ward 1 Ward 2 Numbers: positional notation Number

### Introduction to Telecommunications and Computer Engineering Unit 2: Number Systems and Logic

Introduction to Telecommunications and Computer Engineering Unit 2: Number Systems and Logic Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oon.org Acknowledgements

### Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1

Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be

### Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit

Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until

### School for Professional Studies UNDERGRADUATE PROGRAM COMPUTER SCIENCE FUNDAMENTALS SUPPLEMENTAL COURSE MATERIALS CS208-00T

School for Professional Studies UNDERGRADUATE PROGRAM COMPUTER SCIENCE FUNDAMENTALS SUPPLEMENTAL COURSE MATERIALS CS208-00T Table of Contents Suggested 8-week Schedule... Chapter 1: NUMBERING SYSTEMS AND

### Binary Numbers Again. Binary Arithmetic, Subtraction. Binary, Decimal addition

Binary Numbers Again Recall than N binary digits (N bits) can represent unsigned integers from 0 to 2 N -1. 4 bits = 0 to 15 8 bits = 0 to 255 16 bits = 0 to 65535 Besides simply representation, we would

### ELET 7404 Embedded & Real Time Operating Systems. Fixed-Point Math. Chap. 9, Labrosse Book. Fall 2007

ELET 7404 Embedded & Real Time Operating Systems Fixed-Point Math Chap. 9, Labrosse Book Fall 2007 Fixed-Point Math Most low-end processors, such as embedded processors Do not provide hardware-assisted

### 2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal

2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal

### Lecture 1 Introduction, Numbers, and Number System Page 1 of 8

Lecture Introduction, Numbers and Number System Contents.. Number Systems (Appendix B)... 2. Example. Converting to Base 0... 2.2. Number Representation... 2.3. Number Conversion... 3. To convert a number

### FLOATING POINT NUMBERS

FLOATING POINT NUMBERS Introduction Richard Hayden (with thanks to Naranker Dulay) rh@doc.ic.ac.uk http://www.doc.ic.ac.uk/~rh/teaching or https://www.doc.ic.ac.uk/~wl/teachlocal/arch1 or CATE Numbers:

### 5 Combinatorial Components. 5.0 Full adder. Full subtractor

5 Combatorial Components Use for data transformation, manipulation, terconnection, and for control: arithmetic operations - addition, subtraction, multiplication and division. logic operations - AND, OR,

### A First Book of C++ Chapter 2 Data Types, Declarations, and Displays

A First Book of C++ Chapter 2 Data Types, Declarations, and Displays Objectives In this chapter, you will learn about: Data Types Arithmetic Operators Variables and Declarations Common Programming Errors

### CMPS 10 Winter Homework Assignment 5

CMPS 10 Winter 2011- Homework Assignment 5 Problems: Chapter 4 (p.184): 1abc, 3abcd, 4ab, 5abc, 6, 7, 9abcd, 15abcd, 17, 18, 19, 20 1. Given our discussion of positional numbering systems in Section 4.2.1,

### Approximation Errors in Computer Arithmetic (Chapters 3 and 4)

Approximation Errors in Computer Arithmetic (Chapters 3 and 4) Outline: Positional notation binary representation of numbers Computer representation of integers Floating point representation IEEE standard

### To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:

Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents

### Representation of Data

Representation of Data In contrast with higher-level programming languages, C does not provide strong abstractions for representing data. Indeed, while languages like Racket has a rich notion of data type

### CSCI 230 Class Notes Binary Number Representations and Arithmetic

CSCI 230 Class otes Binary umber Representations and Arithmetic Mihran Tuceryan with some modifications by Snehasis Mukhopadhyay Jan 22, 1999 1 Decimal otation What does it mean when we write 495? How

### 1. Which of the following Boolean operations produces the output 1 for the fewest number of input patterns?

Test Bank Chapter One (Data Representation) Multiple Choice Questions 1. Which of the following Boolean operations produces the output 1 for the fewest number of input patterns? ANSWER: A A. AND B. OR

### This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers

This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition

### COMPUTER ARCHITECTURE IT0205

COMPUTER ARCHITECTURE IT0205 M.Thenmozhi/Kayalvizhi Jayavel/M.B.Panbu Asst.Prof.(Sr.G)/Asst.Prof.(Sr.G)/Asst.Prof.(O.G) Department of IT SRM University, Kattankulathur 1 Disclaimer The contents of the

### 1. Convert the following binary exponential expressions to their 'English'

Answers to Practice Problems Practice Problems - Integer Number System Conversions 1. Convert the decimal integer 427 10 into the following number systems: a. 110101011 2 c. 653 8 b. 120211 3 d. 1AB 16

### MIPS floating-point arithmetic

MIPS floating-point arithmetic Floating-point computations are vital for many applications, but correct implementation of floating-point hardware and software is very tricky. Today we ll study the IEEE

### This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30));

Introduction to Embedded Microcomputer Systems Lecture 5.1 2.9. Conversions ASCII to binary n = 100*(Data[0]-0x30) + 10*(Data[1]-0x30) + (Data[2]-0x30); This 3-digit ASCII string could also be calculated

### The Mathematics Driving License for Computer Science- CS10410

The Mathematics Driving License for Computer Science- CS10410 Approximating Numbers, Number Systems and 2 s Complement by Nitin Naik Approximating Numbers There are two kinds of numbers: Exact Number and

### Radix Number Systems. Number Systems. Number Systems 4/26/2010. basic idea of a radix number system how do we count:

Number Systems binary, octal, and hexadecimal numbers why used conversions, including to/from decimal negative binary numbers floating point numbers character codes basic idea of a radix number system

### Switching Circuits & Logic Design

Switching Circuits & Logic Design Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2013 1 1 Number Systems and Conversion Babylonian number system (3100 B.C.)

### EEE130 Digital Electronics I Lecture #2

EEE130 Digital Electronics I Lecture #2 -Number Systems, Operations and Codes- By Dr. Shahrel A. Suandi Topics to be discussed 2-1 Decimal Numbers 2-2 Binary Numbers 2-3 Decimal-to-Binary Conversion 2-4

### Chapter II Binary Data Representation

Chapter II Binary Data Representation The atomic unit of data in computer systems is the bit, which is actually an acronym that stands for BInary digit. It can hold only 2 values or states: 0 or 1, true

### Restoring division. 2. Run the algorithm Let s do 0111/0010 (7/2) unsigned. 3. Find remainder here. 4. Find quotient here.

Binary division Dividend = divisor q quotient + remainder CS/COE447: Computer Organization and Assembly Language Given dividend and divisor, we want to obtain quotient (Q) and remainder (R) Chapter 3 We

### CHAPTER TWO. 2.1 Unsigned Binary Counting. Numbering Systems

CHAPTER TWO Numbering Systems Chapter one discussed how computers remember numbers using transistors, tiny devices that act like switches with only two positions, on or off. A single transistor, therefore,

### COMP2121: Microprocessors and Interfacing

Interfacing Lecture 3: Number Systems (I) http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2005 Overview Positional notation Decimal, hexadecimal and binary One complement Two s complement

### Signed Binary Arithmetic

Signed Binary Arithmetic In the real world of mathematics, computers must represent both positive and negative binary numbers. For example, even when dealing with positive arguments, mathematical operations

### Experiment 5. Arithmetic Logic Unit (ALU)

Experiment 5 Arithmetic Logic Unit (ALU) Objectives: To implement and test the circuits which constitute the arithmetic logic circuit (ALU). Background Information: The basic blocks of a computer are central

### 4 Combinational Components

Chapter 4 Combinational Components Page of 8 4 Combinational Components In constructing large digital circuits, instead of starting with the basic gates as building blocks, we often start with larger building

### Floating Point Numbers. Question. Learning Outcomes. Number Representation - recap. Do you have your laptop here?

Question Floating Point Numbers 6.626068 x 10-34 Do you have your laptop here? A yes B no C what s a laptop D where is here? E none of the above Eddie Edwards eedwards@doc.ic.ac.uk https://www.doc.ic.ac.uk/~eedwards/compsys

### The Essentials of Computer Organization and Architecture. Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003

The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 2 Instructor's Manual Chapter Objectives Chapter 2, Data Representation,