# , to obtain a way to calculate stress from the energy function U(r).

Save this PDF as:

Size: px
Start display at page:

Download ", to obtain a way to calculate stress from the energy function U(r)."

## Transcription

1 BIOEN LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals, plastics, ceramics, and covalently bound solids like diamonds. We will consider the molecular structure of these materials and how this determines the materials properties. First, we learn to estimate the Young s modulus of these materials from the molecular structure, which determines their behavior at sufficiently small deformations. Next we ask what happens when we deform them beyond the point where the stress-strain relationship becomes nonlinear, meaning the ratio of stress to strain is no longer constant and the Young s modulus no longer applies. Only mechanical testing experiments can provide the exact Young s modulus of a material, but one can estimate the Young s modulus from knowledge about the molecular structure of the material. This is useful when designing a material, determining the right mechanical test for a material, or simply understanding materials properties better. In general, materials are made up of atoms or molecules, which we call nodes for the purposes of this discussion, and these interact with each other through what we call bonds. For diamond, the nodes are the carbon atoms, and the bonds are the covalent bonds between carbon atoms. For a collagen scaffold, a node is where two fibers are cross-linked, and the bond is the length of fiber between two cross-links. Consider now an idealized material that has the nodes in a square matrix as in Figure 1. Let r 0 be the equilibrium bond length in unstressed material. What do stress, strain, and the Young s modulus mean on the nanoscale level of single bonds? If we apply a stress, σ, to the material, how much force is applied to each bond? Consider a single bond that is Figure 1. Idealized material parallel to the direction of force. How is it spaced from the bonds that are parallel to it? Because the matrix is square, each node and thus bond has a cross-sectional area of r 0, so structure geometry. with cubic node the force per bond is f = r 0 σ. We also remember what we learned last lecture: f = du, to obtain dr a way to calculate stress from the energy function U(r). σ = f du r = dr (r) 0 r 0 Next we ask if the resulting strain on the material is ε, then how much does each bond stretch? The original bond length is r 0, so it stretches r r 0 = Δr = r 0 ε by the definition of strain. Thus, ε = Δr = r r 0 r 0 r 0 We can combine this to relate stress to strain using the energy function. That is, if we know U(r), then we calculate the value at which this is minimum to get r 0, and then can calculate both stress and strain for any bond length r. The ratio is of particular interest: 1

2 σ ε = f r 0 r 0 Δr = f r 0 (r r 0 ) = du dr (r) r 0 (r r 0 ) Depending on the Energy function, this may not be a linear relationship. However, for sufficiently small deformations, we can use the linear approximation: f = du = k(r r dr 0), where k = d U (r dt 0). For these small deformations, σ ε = k(r r 0) r 0 (r r 0 ) = k d U = dr (r 0) r 0 r 0 This is a constant relationship between stress and strain, and thus is the Young s modulus: E = k d U = dr (r 0) r 0 r 0 Thus, we can use the full version of the energy function to relate stress to strain, and can use the linear spring form to estimate the Young s modulus. Limitations: If a material is stretched so that the bonds are stretched beyond the linear spring approximation, the linear approximation will not be valid, and the material will show nonlinear properties and eventually fail. This derivation assumed that the material was a perfect square lattice, but most materials have different crystalline lattices or even noncrystalline Figure. Other bond-node geometries affect these calculations. lattices. This introduces some error to our calculation. The area may not be exactly r 0, and bonds may be angled relative to the direction of force. Indeed, the material may stretch as bond angles change as well as when bond length increases, as in Figure. This derivation also assumed that all bonds were the same. In fact, many materials, especially biological materials, have many different types of bonds. In this case, the weakest of the bonds is the primary determinant of the Young s modulus, just as the stiffness of springs in parallel is dominated by the softest springs. Thus, for mixed materials, we consider the mean length between the softer bonds. Molecular Structure and Elasticity of Various Solids Now we will consider the different types of bonds that make up materials, and learn their energy functions and typical parameters of these functions so we can estimate the Young s modulus.

3 Covalent solids: Covalent solids are held together by covalent bonds. Covalent bond energy is approximated by a spring, with U(r) = 1 k(r r 0), where k is the spring constant of the bond. Since this bond energy is already a linear spring form, we obtain the same answer if we use the linear approximation or full function: E = k/r 0. An example of a covalent solid is a diamond in which carbon atoms form a tetrahedryl lattice. For a typical Figure 3. Covalent Bond energy covalent solid, k = 150 N/m and r 0 = 1.5e 10 m. Thus, E 10 1 N/m. Note that 10 9 N/m = 1 GPa, so we would expect a covalent solid to have a Young s modulus of around 1000 GPa. In fact, diamond has a modulus of E = 100 GPa, so this estimate is good. Metallic solids. In metals, the electrons in the outer valence shells are shared by many atoms and thus are delocalized. Thus, while the atoms still form regular crystal structures like covalent solids, they tolerate irregularities so that the overall structure is more disordered. The bond stiffness in metallic solids is weaker than covalent, at about N/m, so the Young s moduli of metals are several fold weaker than for covalent solids. Ionic solids Ionic solids include salts like NaCl and ceramics like ZrO (zirconia), Alumina, and hydroxyappetite, which forms the inorganic part of bone. The crystalline structures of these solids have alternating positive and negative ions. The bond force between each pair is a complicated sum of the following forces: Figure 4. Ionic Solid The attractive force between that pair, which is U = q 1q 1, where q 4πε 0 ε r r 1 and q are the charges of the two ions (e.g. 1.6e-19 C for Na), ε 0 = 8.3e 1 C Nm is the permittivity of free space, ε r = 6 is the dielectric constant of typical salts. The van der Waals repulsion between that pair of atoms The sum of attractive and repulsive forces of neighboring atoms, which are significant for quite some distance since they only drop with the inverse of the distance. Calculating these forces from the information above is beyond the scope of this class, but in general, ionic bonds stiffnesses are known to be around 8 to 4 N/m and bond lengths are also longer than in covalent or metallic bonds, so salts are much softer. For example, the Young s modulus of NaCl is 40 GPa. 3

4 Van der Waal s solids Finally, consider a van der Waal s solid, such as a hard plastic. These materials are made up of polymers that have many intramolecular covalent bonds, but these interact through intramolecular and intermolecular van der Waal s (VDW) bonds. As we will see below, the VDW bonds are weaker than the covalent bonds, so they determine the Young s modulus of VDW solids such as hard plastic. The Lennard Jones Potential approximates VDW energies: U(r) = U 0 r 0 r 1 r 0 r 6, Here, r 0 = r i + r j is the sum of the VDW radii of the two atom types. U 0 = U i U j, where U i is the bond energy for atom type i. For example, a N-C bond would have r 0 = = 3.5Å and U 0 = 4.7E 7.E = 5.8E J. While energy estimates vary by method and covelent connections, the table to the right provides values for some atom types for r i and U i. Note from the equation and the figure that: U(0) = U 0 ( 1 6 ) = U(r 0 ) = U 0 (1 ) = U 0 U( ) = U 0 (0 0) = 0 In the homework, you will show that VDW solids have Young s moduli of a few GPa. Proteins are polypeptides, which are covalent polymers, but fold up into alpha helices and beta sheets, that are held together by hydrogen bonds. Finally, these secondary structure elements are held together by VDW interactions, at least in globular proteins. The VDW interactions are the softest of these, so globular proteins have a Young s modulus of a few GPa, and are fairly isotropic. For examples, the Young s modulus of microtubules and actin filaments have both been measured at around GPa. However, proteins are not always globular, and can thus have a wide range of behaviors. We will consider many of these in the next few lectures. Hydrogels Element radius (Å) energy (J) H E- C E- N E- O E- Like plastics, hydrogels are made up of polymers. However, the polymers are hydrophilic and soak up water. We learned before that water causes viscosity in these materials. The presence of water between the polymers also prevents most of the intramolecular and intermolecular van der Waals bonding, so a mixture of these hydrophilic polymers would form a viscous liquid instead of a hard plastic. Cross-linking between the polymers creates nodes, so the polymers form bonds that can be addressed quantitatively as described above. Hydrogels are often very soft relative to other surfaces, and can tolerate large strains, even greater than 1. The next lectures will address the nonlinear behaviors that often arise for hydrogels, including biological tissues. 4

5 Nonlinear Materials Properties. Review of Nonlinear Materials Properties and Failure Hooke s law (σ = Eε) applies below a critical point called the proportional limit characterized by the stress and strain at this point: σ PL and ε PL. Above the proportional limit, the stress-strain relationship becomes nonlinear, meaning the ratio of stress to strain is no longer constant, but either increases or decreases with further stress or strain. For some materials, the proportional limit is clearly defined, while for others, the boundary is less clear and can only be identified after defining an allowable deviation from linearity. In the nonlinear regime above the proportional limit, we cannot define a Young s Modulus, since by definition that requires a constant ratio of stress to strain. Instead, we define the tangent Young s modulus as the slope of the stress/strain curve: E T = dσ/dε. If the tangent Young s modulus decreases with strain (d σ/dε < 0), we refer to this as yielding. If the tangent Young s modulus increases with strain (d σ/dε < 0), we refer to this as strain hardening. Below a critical point called the elastic limit, the material relaxes back exactly to its original shape when force is removed. The elastic recovery occurs because the bonds described above never break within this limit, but instead are simply stretched, so return to the original low-energy position in the absence of force, which is the equilibrium bond length. Usually, all deformations below the proportional limit are elastic, so one can usually guaranteed that the material is undamaged as long as the stress is still proportional to the strain during loading. If a material is stretched beyond a critical point, the atomic or molecular bonds break. For covalent solids, metals, plastics and ceramics (the materials we discussed on Friday), this occurs at about the proportional limit; that is, the bonds break shortly beyond the point where they are stretched beyond the linear range. We will see that this is not the case for most gels and soft and biological materials. For ductile materials, bonds can reform between two atoms or molecules that were not previously bonded. In this case, the material deforms substantially beyond the proportional limit. But, when the force is removed, it will not return to its original shape, since the molecular bonds have reformed into new connections that determine the shape. 5

6 The fractional change in length after stress is removed is called residual strain. Irreversible deformation like this is referred to as plastic deformation. However, as the plastically deformed material is relaxed, there is a small amount of elastic recovery as the bonds return to their equilibrium length. However, due generally in the amount expected from the proportional limit. The yield point (characterized by yield stress σ Y and yield strain ε Y ), is the point between the elastic and plastic regime. While the proportional limit can be identified while increasing the load on a material, the yield point can only be identified when the load is added and then removed. Thus, a material is repeatedly stretched and relaxed to increasingly greater strains to identify the yield point. The exact yield point is impossible to identify due to errors in measurements, so by convention, it is approximated by the elastic limit, which is defined as the stress and strain that will cause a permanent 0.% deformation in the material upon relaxation. If the relaxed material is now stressed again below the yield point, it behaves elastically. For brittle materials, the rupture of bonds causes the material to fracture, or break catastrophically along the points of most stress. In brittle materials, bonds do not readily reform, so the material fails completely when the original bonds are overstretched. Even ductile materials will fracture eventually, as the material is deformed in some way that does not allow bonds to reform. The maximum stress σ MAX is the highest stress the material can withstand prior to fracture. Because some materials may reduce the strain prior to fracture, the maximum stress is not necessarily the stress at fracture. The breaking strain ε MAX is the strain at fracture. The tensile strength of a material is σ MAX during tension, while the compressive strength is σ MAX for compression. These are often not the same. Molecular Basis of Plastic Deformation and Failure Above the proportional limit, different materials behavior very differently in terms of whether they yield or strain harden and where they fracture relative to their elastic limit (brittle vs ductile). Thus, we now consider specific materials. Note that you can calculate the strain at the proportional limit by dividing the yield stress or by the Young s modulus, since the material are generally linear before they yield. Metals The shared electrons in metal atoms allows bonds to easily break and reform so that the material can rearrange along slip planes when exposed to shear stress: 6

7 Metals are usually polycrystalline, with many small regions that are crystalline and regular, but each small region is oriented randomly, which is why the crystalline materials is still isotropic. The stress needed to cause a small region to slip depends on its orientation relative to the stress, so that only a few ideally oriented ones slip at the plastic limit (yield point), but more and more slip as stress increases higher. Because of this, the stress-strain curve gradually slopes for typical metals: To understand how much deformation is allowed before slippage, note that the yeild stress of aluminum is 95 MPa, while the Young s modulus is 69 GPa, so the yield strain is about 95E6/69E9 ~ 0.1%. For stainless steel, the value is 180 GPa and 50 MPa, or 0.3%. Thus, metals can only deform by 0.1% to 0.3% before they undergo plastic deformation, but do not fracture because they are ductile. Ceramics. In contrast, ceramics are generally resistant to slip along planes because of the electrostatic interactions. They also leave the proportional limit at about 0.1 to 0.3% strain. However, the resistance to slip means they are brittle and fracture when the bonds break. Some polymers are also brittle. Amorphous polymers. Most polymers are amorphous, with the covalently bonded polymers oriented randomly, and interactions within and between chains are primarily VDW interactions. Because VDW interactions are long range and packing is noncrystalline, the polymers can slide along each other, alowing yielding. The yielding is plastic because the VDW bonds have broken and 7

8 reformed. Finally, because there is no crystaline organization, the orientation of the stress to the material doesn t matter like in metals, so the material continues to deform at the yield stress. Thus, the stress-strain curve flattens out and the tangent Young s modulus becomes nearly zero. Nevertheless, above some point, the polymers become aligned in a way that limits further slipping, which causes the plastic to exhibit strain hardening. However, as the material continues to stretch, the cross-section gets smaller due to the lateral strain. At sufficiently large deformations, this effect cannot be ignored. The true stress is the force divided by the actual cross-sectional area measured at that force. However, most graphs, including that above, display the engineering stress, which is defined to be the force applied divided by the original unstressed cross-sectional area. The engineering stress represents the direct measurement in a tensile test, without needing to measure the cross-sectional area at each point. It also can predict how a object will behave in an engineering application. As the crosssectional area decreases, and the material is already yielding, the true stress will stay the same but the engineering stress will drop as shown in the sketch above, due to the ever smaller crosssection. In an engineering situation, this drop leads to catastrophic failure as the member supports less and less stress. As for all materials, sufficient stress and strain will eventually cause fracture. Polymers typically have a much higher yield strain than do ceramics or metals, allowing 1 to 3% strain. 8

### Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

### σ = F / A o Chapter Outline Introduction Mechanical Properties of Metals How do metals respond to external loads?

Mechanical Properties of Metals How do metals respond to external loads? and Tension Compression Shear Torsion Elastic deformation Chapter Outline Introduction To understand and describe how materials

### Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

### Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

### Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

### Chapter 2. Atomic Structure and Interatomic Bonding

Chapter 2. Atomic Structure and Interatomic Bonding Interatomic Bonding Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Bonding Forces and Energies Considering the interaction

### Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

### PLASTIC DEFORMATION AND STRESS-STRAIN CURVES

PLASTIC DEFORMATION AND STRESS-STRAIN CURVES Introduction Background Unit: Plastic Deformation and Stress-Strain Curves In the last unit we studied the elastic response of materials to externally applied

### phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

### Question 6.5: A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm

14:440:407 Ch6 Question 6.3: A specimen of aluminum having a rectangular cross section 10 mm 12.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

### Stress Strain Relationships

Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

### CHAPTER 7: DISLOCATIONS AND STRENGTHENING

CHAPTER 7: DISLOCATIONS AND STRENGTHENING ISSUES TO ADDRESS... Why are dislocations observed primarily in metals and alloys? Mech 221 - Notes 7 1 DISLOCATION MOTION Produces plastic deformation, in crystalline

### Plastic Behaviour - Tensile Strength

Plastic Behaviour - Tensile Strength Transition of mechanical behaviour from elastic to plastic depends upon the material type and its condition as tested (hot-rolled, cold-rolled, heat treated, etc.).

### M n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol

14.4 (a) Compute the repeat unit molecular weight of polystyrene. (b) Compute the number-average molecular weight for a polystyrene for which the degree of polymerization is 25,000. (a) The repeat unit

### Chapter 12 Elasticity

If I have seen further than other men, it is because I stood on the shoulders of giants. Isaac Newton 12.1 The Atomic Nature of Elasticity Elasticity is that property of a body by which it experiences

### Several important material properties are determined on the type and characteristic interatomic/interionic/intermolecular bonds:

Interatomic and intermolecular forces. What will be covered? 1. Binding energy: basic concepts 2. Ionic bonding. 3. Chemical bonding. a. Primary bonds. b. Secondary bonds. Why do we need to know this material?

### CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.1 Using mechanics of materials principles (i.e., equations of mechanical equilibrium applied to a free-body diagram),

### Uniaxial Tension and Compression Testing of Materials. Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng

Uniaxial Tension and Compression Testing of Materials Nikita Khlystov Daniel Lizardo Keisuke Matsushita Jennie Zheng 3.032 Lab Report September 25, 2013 I. Introduction Understanding material mechanics

### - in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons

Free Electrons in a Metal - in a typical metal each atom contributes one electron to the delocalized electron gas describing the conduction electrons - if these electrons would behave like an ideal gas

### Torsion Testing. Objectives

Laboratory 4 Torsion Testing Objectives Students are required to understand the principles of torsion testing, practice their testing skills and interpreting the experimental results of the provided materials

### Solution for Homework #1

Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

### Yield Criteria for Ductile Materials and Fracture Mechanics of Brittle Materials. τ xy 2σ y. σ x 3. τ yz 2σ z 3. ) 2 + ( σ 3. σ 3

Yield Criteria for Ductile Materials and Fracture Mechanics of Brittle Materials Brittle materials are materials that display Hookean behavior (linear relationship between stress and strain) and which

### 2C Intermolecular forces, structure and properties:

Electronegativity and polarity Polar and non-polar bonds: 1) Non-Polar bonds: 2C Intermolecular forces, structure and properties: A covalent bond shares an electron pair: In a hydrogen molecule, the electrons

### Fatigue :Failure under fluctuating / cyclic stress

Fatigue :Failure under fluctuating / cyclic stress Under fluctuating / cyclic stresses, failure can occur at loads considerably lower than tensile or yield strengths of material under a static load: Fatigue

### (10 4 mm -2 )(1000 mm 3 ) = 10 7 mm = 10 4 m = 6.2 mi

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 8.1 To provide some perspective on the dimensions of atomic defects,

### Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

### Mechanics of Tendon, and Ligament

Mechanics of Tendon, and Ligament Outline! review of tendon and ligament anatomy! nonlinear stiffness! hysteresis Ozkaya and Nordin Chapter 9, p. 211-213! deformation and energy absorption during running!

### Chapter 13 The Chemistry of Solids

Chapter 13 The Chemistry of Solids Jeffrey Mack California State University, Sacramento Metallic & Ionic Solids Crystal Lattices Regular 3-D arrangements of equivalent LATTICE POINTS in space. Lattice

### Stress Strain Behavior (I) Stress Strain Behavior (II) Stress Strain Behavior (III)

Chapter Outline: Characteristics, Applications, and Processing of Polymers Mechanical properties Stress-Strain Behavior Deformation of Semicrystalline Polymers Crystallization, Melting, Glass Transition

### 2-Introduction to Structure and Bonding in Materials

2-Introduction to Structure and Bonding in Materials 2-1-Sub-Atomic Structure Electrons and their interaction with the nucleus of the atom. The Bohr model is a simplified view of the arrangement of sub-atomic

### Distinguishing strength from toughness. Understanding fracture toughness.

Lecture notes version 20 Oct 2010 Chapter 8 Fracture and fracture toughness A fractured Liberty Ship 8.1 Introduction and synopsis Distinguishing strength from toughness. Understanding fracture toughness.

### Tensile Testing. Objectives

Laboratory 1 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine. Students are able

### Hydrogen Bonds The electrostatic nature of hydrogen bonds

Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely

### Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure

### 3 rd Year Dental Materials Science

3 rd Year Dental Materials Science Dr. Graham Cross School of Physics and CRANN SFI Nanoscience Building, Rm 1.5 http://www.tcd.ie/physics/people/graham.cross/ Graham.Cross@tcd.ie 16.11.2007 Dental Materials

### Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

### Folding of Proteins - Simulation using Monte Carlo Approach

A Report On Folding of Proteins - Simulation using Monte Carlo Approach Prepared By Ramji T. Venkatasubramanian In Partial fulfillment of course Computational Nanomechanics ME 8253 Spring Semester, May

### Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

### A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

### TENSILE TESTING PRACTICAL

TENSILE TESTING PRACTICAL MTK 2B- Science Of Materials Ts epo Mputsoe 215024596 Summary Material have different properties all varying form mechanical to chemical properties. Taking special interest in

### BME 315 Biomechanics Material Properties of Tendon: introduction

: introduction Adapted by R. Lakes from D. Thelen and C. Decker, U. Wisconsin, 09 I. Introduction In this lab, we will investigate the material properties of a tendon. Tendons and ligaments are very similar

### Adam Zaborski handouts for Afghans

Tensile test Adam Zaborski handouts for Afghans Outline Tensile test purpose Universal testing machines and test specimens Stress-strain diagram Mild steel : proportional stage, elastic limit, yielding

### Topic 4. Chemical bonding and structure

Topic 4. Chemical bonding and structure There are three types of strong bonds: Ionic Covalent Metallic Some substances contain both covalent and ionic bonding or an intermediate. 4.1 Ionic bonding Ionic

### σ y ( ε f, σ f ) ( ε f

Typical stress-strain curves for mild steel and aluminum alloy from tensile tests L L( 1 + ε) A = --- A u u 0 1 E l mild steel fracture u ( ε f, f ) ( ε f, f ) ε 0 ε 0.2 = 0.002 aluminum alloy fracture

### Classes of materials

Classes of materials POLYMERS CERAMICS METALS DUCTILITY Varies Poor Good CONDUCTIVITY (ELECTRICAL & THERMAL) Low Low High HARDNESS/STRENGTH Low medium Very high Medium high CORROSION RESISTANCE Fair good

### INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 13 Liquids and Solids by Christopher Hamaker 1 Chapter 13 Properties of Liquids Unlike gases, liquids do

### Section 3: Crystal Binding

Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride

### CERAMICS: Properties 2

CERAMICS: Properties 2 (Brittle Fracture Analysis) S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 sbayne@umich.edu 2 Nova Southeastern College of Dental

### MAE 20 Winter 2011 Assignment 5

MAE 20 Winter 2011 Assignment 5 6.7 For a bronze alloy, the stress at which plastic deformation begins is 275 MPa (40,000 psi), and the modulus of elasticity is 115 GPa (16.7 10 6 psi). (a) What is the

### The elements used in commercial codes can be classified in two basic categories:

CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

### MECHANICS OF MATERIALS

T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading - Contents Stress & Strain: xial oading

### Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

### PROPERTIES OF MATERIALS

1 PROPERTIES OF MATERIALS 1.1 PROPERTIES OF MATERIALS Different materials possess different properties in varying degree and therefore behave in different ways under given conditions. These properties

### Properties of Matter

Mr. Patrick J Camilleri B.Ed (Hons) M.Ed Science (Sheffield) Department of Physics JC Malta Properties of Matter Basics You Should Know Elasticity. Young modulus 1. Hooke's law. Extension α tension (force

### Long term performance of polymers

1.0 Introduction Long term performance of polymers Polymer materials exhibit time dependent behavior. The stress and strain induced when a load is applied are a function of time. In the most general form

### Tensile Testing Laboratory

Tensile Testing Laboratory By Stephan Favilla 0723668 ME 354 AC Date of Lab Report Submission: February 11 th 2010 Date of Lab Exercise: January 28 th 2010 1 Executive Summary Tensile tests are fundamental

### Chemical Bonding. There are three types of bonding:

Chemical Bonding What is a chemical bond? If a system has a lower energy when the atoms are close together than when apart, then bonds exist between those atoms. A bond is an electrostatic force that holds

### KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

### Periodic Table. inert gases. Columns: Similar Valence Structure. give up 1e - give up 2e - Oaccept 2e- accept 1e - give up 3e -

Periodic Table give up 1e - give up 2e - give up 3e - H Li Be Na Mg K Ca Columns: Similar Valence Structure Sc Oaccept 2e- accept 1e - inert gases S Se F Cl Br He Ne Ar Kr Adapted from Fig. 2.6, Callister

### Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed

### Ceramic Materials. Chapter 3: Bond Energy and Properties

Ceramic Materials Chapter 3: Bond Energy and Properties F. Filser & L.J. Gauckler ETH-Zürich, Departement Materials frank.filser@mat.ethz.ch HS 27 1 Goal of this Chapter is to develop semiquantitative

### POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

### Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

### Physics 551: Solid State Physics F. J. Himpsel

Physics 551: Solid State Physics F. J. Himpsel Background Most of the objects around us are in the solid state. Today s technology relies heavily on new materials, electronics is predominantly solid state.

### Tensile Testing of Steel

C 265 Lab No. 2: Tensile Testing of Steel See web for typical report format including: TITL PAG, ABSTRACT, TABL OF CONTNTS, LIST OF TABL, LIST OF FIGURS 1.0 - INTRODUCTION See General Lab Report Format

### MCEN 2024, Spring 2008 The week of Apr 07 HW 9 with Solutions

MCEN 2024, Spring 2008 The week of Apr 07 HW 9 with Solutions The Quiz questions based upon HW9 will open on Thursday, Apr. 11 and close on Wednesday, Apr 17 at 1:30 PM. References to A&J: Chapters 13,

### Non-Covalent Bonds (Weak Bond)

Non-Covalent Bonds (Weak Bond) Weak bonds are those forces of attraction that, in biological situations, do not take a large amount of energy to break. For example, hydrogen bonds are broken by energies

### Solid Type of solid Type of particle

QUESTION (2015:3) Complete the table below by stating the type of solid, the type of particle, and the attractive forces between the particles in each solid. Solid Type of solid Type of particle Cu(s)

### Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present

### Structures and Stiffness

Structures and Stiffness ENGR 10 Introduction to Engineering Ken Youssefi/Thalia Anagnos Engineering 10, SJSU 1 Wind Turbine Structure The Goal The support structure should be optimized for weight and

### The breaking of bonds and the forming of bonds occur during chemical reactions.

Chemical Bonding The breaking of bonds and the forming of bonds occur during chemical reactions. Aspirin The formula for a molecule of aspirin is C 9 H 8 O 4 Is it an ionic or covalent (molecular) compound?

### CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

### Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

### Covalent Bonding and Intermolecular Forces

Intermolecular forces are electromagnetic forces that hold like molecules together. Strong intermolecular forces result in a high melting point and a solid state at room temperature. Molecules that are

### KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

1 KINETIC TERY F MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature TE STATES F MATTER 1. Gas a) ideal gas - molecules move freely - molecules have

### 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

### CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

### Intermolecular Forces

Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

### CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

### Mechanical properties 3 Bend test and hardness test of materials

MME131: Lecture 15 Mechanical properties 3 Bend test and hardness test of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Bend test of brittle materials Hardness testing

### Problem Set VIII Liquids, Solids, Intermolecular Forces and Phase Diagrams

Chem 121 Problem set VIII LUTI - 1 Problem et VIII Liquids, olids, Intermolecular orces and Phase Diagrams 1a) this is a point on the vapour pressure curve 1b) gas 1c) gas to liquid Water C 2 2a) solid

### (10 4 mm -2 )(1000 mm 3 ) = 10 7 mm = 10 4 m = 6.2 mi

14:440:407 Fall 010 Additional problems and SOLUTION OF HOMEWORK 07 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 To provide

### COVALENT BOND VS IONIC BOND

COVALENT BOND VS IONIC BOND You have seen how elements are similar to us and as you know them closely you will find some more similarities to our behaviour. You must have experienced the law of attraction

### Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

### MUKAVEMET KIRILMA HİPOTEZLERİ

1 MUKAVEMET KIRILMA HİPOTEZLERİ 17. Theories of failure or yield criteria (1) Maximum shearing stress theory (2) Octahedral shearing stress theory (3) Maximum normal stress theory for brittle materials.

### LECTURE SUMMARY September 30th 2009

LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes

### POWER SCREWS (ACME THREAD) DESIGN

POWER SCREWS (ACME THREAD) DESIGN There are at least three types of power screw threads: the square thread, the Acme thread, and the buttress thread. Of these, the square and buttress threads are the most

### Introduction to Ionic Bonds

Introduction to Ionic Bonds The forces that hold matter together are called chemical bonds. There are four major types of bonds. We need to learn in detail about these bonds and how they influence the

### Properties of Materials

CHAPTER 1 Properties of Materials INTRODUCTION Materials are the driving force behind the technological revolutions and are the key ingredients for manufacturing. Materials are everywhere around us, and

### A8 Thermal properties of materials

A8 Thermal properties of materials Thermal properties the melting temperature, T m, and the glass temperature (temperatura de transição vítrea), T g, relate directly to the strength of the bonds in the

CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

### CHAPTER 9 :- MECHANICAL PROPERTIES OF SOLIDS ONE MARK QUESTIONS: 1. What is elasticity of a body? 2. What is plasticity? 3. Which property of a body

1 CHAPTER 9 :- MECHANICAL PROPERTIES OF SOLIDS ONE MARK QUESTIONS: 1. What is elasticity of a body? 2. What is plasticity? 3. Which property of a body is responsible for regaining original shape and size

### FAILURE MODES and MATERIALS PROPERTIES. Component failures. Ductile and Brittle Fracture COMPONENT FAILURES. COMPONENT FAILURE MODES examples:

FAILURE MODES and MATERIALS PROPERTIES MECH2300 - Materials Lecture 10 R. W. Truss Materials Engineering R.Truss@uq.edu.au COMPONENT FAILURES Structures lectures es on component es cause response in component

### Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

### States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

### Physics 172H. Lecture 6 Ball-Spring Model of Solids, Friction. Read

Physics 172H Lecture 6 Ball-Spring Model of Solids, Friction Read 4.1-4.8 Model of solid: chemical bonds d radial force (N) 0 F linear If atoms don t move too far away from equilibrium, force looks like

### Physics 3 Summer 1989 Lab 7 - Elasticity

Physics 3 Summer 1989 Lab 7 - Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and

### Mechanical Properties

Mechanical Properties Hardness Hardness can be defined as resistance to deformation or indentation or resistance to scratch. Hardness Indentation Scratch Rebound Indentation hardness is of particular interest