Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc"

Transcription

1 Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc O B J E C T I V E 1. Using a simple calorimeter, Determine the heat of fusion of ice and the heat of vaporization of liquid Nitrogen. Introduction When a chemical or physical change takes place heat is given off or absorbed. That is, the change is either exothermic or endothermic. It is important for chemists to be able to measure this heat. Measurements of this sort are made in a device called a calorimeter. The technique used in making these measurements is called calorimetry. In simplest terms, a calorimeter is an insulated container made up of two chambers (see figure above). The outer chamber contains a known mass of water. In the inner chamber, the experimenter places the materials that are to lose or gain heat while undergoing a physical or chemical change. The basic principal on which the calorimeter works is that when two bodies at different temperatures are in contact with one another, heat will flow from the warmer body to the colder body. Thus, the heat lost by one body will be gained by the other. This exchange of heat of heat will continue until the two bodies are at the same temperature. In a calorimeter, heat is exchanged between the water and the materials undergoing change until the temperatures are the same. The experimenter can thus make a direct measurement of the temperature change of the water. From this information, the heat gained (lost) by the water can be calculated. The experimenter then uses these data to determine the heat lost (or gained) by the materials undergoing change.

2 Nitrogen is the major (79%) component of air. Even though nitrogen is a gas at room temperature (Boiling Point = 77K) it is possible to obtain it in the liquid state. In part two of this lab we will determine the heat of vaporization of nitrogen by making use of the ideas of conservation of energy, change of state, calorimetry and specific heat. Unlike most calorimeters, the simple Styrofoam-cup calorimeter used in this experiment will have only one chamber. In part 1 of this experiment, you will place the ice directly into a measured amount of water. The heat required to melt ice will be supplied by the water. By measuring the temperature change (DT) of the water, you can calculate the quantity of heat exchanged between the water and the ice. Using these experimental data, you will calculate the heat of fusion of ice. The following relationships will be used in part one of this experiment: heat lost (or gained) original mass change in specific heat a. by the water in = of water in X temperature X capacity the calorimeter the calorimeter of the water of water In symbols, this word formula becomes: q = m X DT X c b. heat given off by the water = heat absorbed by the ice c. heat absorbed by the ice = heat of fusion of ice mass of melted ice The specific heat capacity of a substance is the quantity of heat energy needed to raise the temperature of 1 gram of a substance by 1 C. The specific heat capacity of water is J/(g X C). Materials 250-mL beaker water wire gauze 100-mL graduated cylinder ice ring stand lab burner liquid nitrogen thermometer Styrofoam cup Procedure - Part A 1. In a 250-mL beaker, heat about 125 ml of water to a temperature in excess of 50 C. 2. Immediately, measure precisely 75 ml of this heated water in a graduated cylinder and pour it into a Styrofoam cup. Record this volume of water in the data table as V1. 3. Measure accurately and record the temperature of the water in the Styrofoam cup as T1. 4. Immediately add 4-5 ice cubes. Make sure there is always ice in the calorimeter throughout the experiment.

3 5. Carefully and continuously stir the ice-water mixture with the thermometer. Continuously monitor the temperature of the ice-water mixture until the temperature stops dropping. Record this temperature as T2 6. As soon as the temperature stops dropping, carefully pour the water into a clean dry beaker without transferring any of the remaining ice. 7. Measure and record the volume the water at the end of the experiment as V2. Procedure - Part B 8. In a 250-mL beaker, heat about 100 ml of water to a temperature in excess of 70 C. 9. Determine and record the mass of a Styrofoam calorimeter (call this cup #1) to the nearest 0.1 g. 10. Add the hot water to cup #1 and determine the total mass (mass x). Set the Styrofoam cup in a 600-mL beaker to make the set-up more stable. 11. Take a second Styrofoam cup (cup #2). Place it on the scale and rezero (tare) the scale. Add about 60 g of liquid nitrogen to cup #2, and record the mass to the nearest 0.1 g. Note: The liquid nitrogen will immediately begin to boil to vapor so go immediately to your lab station while your partner is doing step While the liquid nitrogen is being massed determine the temperature of the warm water right before adding the liquid nitrogen to the nearest 0.1 C 13. Record this value as T1 right before you add the liquid nitrogen. The temperature will probably be below 70 C, don t worry (be happy) just use whatever temperature the water is currently. 14. Remove the thermometer and immediately add all of your measured liquid nitrogen to the cup with hot water. Wait for the boiling to stop. Do not put the thermometer back in until the sizzling has stopped. You may have to fan the fog away with your hand. If any ice has formed make sure it has melted before taking you final temperature. 15. Record the lowest temperature you can record of the cooled water (again to the nearest 0.1 C) (T2). 16. Determine the final mass of the Styrofoam cup and cool water (mass y).

4 Name Date Calorimetry: Determining the Heat of Fusion of Ice and the Heat of Vaporization of Liquid Nitrogen - Chemistry I Acc Prelab Questions 1. As the warm water cools down explain what happens in terms of energy on a molecular level. 2. In this lab when the water loses energy where does the energy go? 3. What does a low heat of vaporization value for a substance tell you about its behavior and the forces that hold it together? 4. Why do we use a Styrofoam cup and not a metal cup as a calorimeter? Data and Observations Part A V1 = ml T1 = C V2 = ml T2 = C Part B cup 1 mass g mass of the liquid N 2 g cup 1 plus water mass at the start (mass x) = g T1 = C cup 1 plus water mass at the end (mass y) = g T2 = C

5 Information needed for Calculation question #B6 Today s Outside Temperature F ( F = (9/5) C + 32) C Today s Atmospheric Pressure inches Hg Calculations - part A 1. Using the known density of water, find the mass (m1) of the original volume water (V1). 2. Find the volume of the water produced from the melted ice (V3 = V2 - V1) 3. Find the mass(m3) of this water(v3) produced from the ice. 4. Find the change in the temperature of the ice (DT = T1 T2). 5. Find the heat lost by original mass of water (q = m1 X DT X c) 6. Find the heat of fusion of ice (q/m3) 7. Calculate % error. (the accepted value is 336 J/g) Calculations - part B 1. Calculate the change in temperature of the water in part B.

6 2. Calculate the energy (heat) lost by the water in joules. 3. Calculate the heat of vaporization of nitrogen in joules/gram N Using the results of this experiment, determine the number of joules required to vaporize one mole of liquid nitrogen. This is called the molar heat of vaporization. 5. The accepted value for the heat of vaporization of nitrogen is 5.58 kj/mol. Calculate your percent error. 6. Calculate the volume of the nitrogen gas that you produced under today s conditions of pressure and temperature. Discussion and Synthesis 1. List possible sources of error in this experiment.

7 2. How might the use of a calorimeter as shown in Figure 1 reduce some of these errors? 3. One source of error is flow of heat between the water in the cup and surroundings. Explain how this error is reduced by starting with water at a temperature above room temperature and ending with water at a temperature below room temperature? 4. In what way does calorimetry make use of the law of conservation of energy? 5. Is the process of melting exothermic or endothermic? Give evidence to support your answer. 6. Write a chemical equation to represent each of the following for nitrogen and include the energy term in joules/mol in the equation. State whether the process is endothermic or exothermic. a. Vaporization b. Condensation 7. What is the identity of the fog that was produced when the liquid nitrogen was added to the water? Explain.

8 8. Pigs don t sweat. Explain why on hot days they roll in the mud using ideas from this lab. 9. Which posses more kinetic energy, liquid N 2 at its boiling point or N 2 gas at its boiling point? Explain. 10. A solid substance with a mass of g is at its melting point temperature in a calorimeter. While the substance changes from a solid to a liquid at the same temperature, the grams of water in the calorimeter goes from an initial temperature of 80.0 C to a final temperature of 30.0 C. a. How much heat did the water in the calorimeter lose while the substance melted? b. What is the heat of fusion of the substance that melted? 11. The result listed below were obtained in an experiment on an unknown liquid (liquid Y). Calculate the heat of vaporization of the unknown liquid in units of J/g. Show all work. Mass of liquid-y: 42.6 g Mass of water: 96.1 g T1 of water : 55.0 C T2 of Water: 44.5 C

9 12. The heat of fusion of nitrogen is 25.7 J/g. Why is the heat of fusion lower than that for the heat vaporization? 13. Explain how your refrigerator works in terms of energy transfer to keep food cold. Where does the heat from the food go and how?

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter.

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter. Thermochemistry Experiment 10 Thermochemistry is the study of the heat energy involved in chemical reactions and changes of physical state. Heat energy is always spontaneously transferred from hotter to

More information

q = (mass) x (specific heat) x T = m c T (1)

q = (mass) x (specific heat) x T = m c T (1) Experiment: Heat Effects and Calorimetry Heat is a form of energy, sometimes called thermal energy, which can pass spontaneously from an object at a high temperature to an object at a lower temperature.

More information

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law

Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law Heats of Transition, Heats of Reaction, Specific Heats, and Hess s Law GOAL AND OVERVIEW A simple calorimeter will be made and calibrated. It will be used to determine the heat of fusion of ice, the specific

More information

PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY. Calorimetry

PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY. Calorimetry PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY Calorimetry Equipment Needed: Large styrofoam cup, thermometer, hot water, cold water, ice, beaker, graduated cylinder,

More information

Calorimetry and Enthalpy. Chapter 5.2

Calorimetry and Enthalpy. Chapter 5.2 Calorimetry and Enthalpy Chapter 5.2 Heat Capacity Specific heat capacity (c) is the quantity of thermal energy required to raise the temperature of 1g of a substance by 1⁰C The units for specific heat

More information

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510)

Name Date Class THERMOCHEMISTRY. SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) 17 THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY HEAT AND WORK (pages 505 510) This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

More information

Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction

Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction Lab Session 9, Experiment 8: Calorimetry, Heat of Reaction Specific heat is an intensive property of a single phase (solid, liquid or gas) sample that describes how the temperature of the sample changes

More information

Name: Introduction to Calorimetry

Name: Introduction to Calorimetry Name: Introduction to Calorimetry Purpose: The goal of this experiment is to gain experience in the practice of calorimetry; the main method by which chemists measure the energy changes in chemical reactions.

More information

2 To use calorimetry results to calculate the specific heat of an unknown metal. 3 To determine heat of reaction ( H) from calorimetry measurements.

2 To use calorimetry results to calculate the specific heat of an unknown metal. 3 To determine heat of reaction ( H) from calorimetry measurements. Calorimetry PURPOSE To determine if a Styrofoam cup calorimeter provides adequate insulation for heat transfer measurements, to identify an unknown metal by means of its heat capacity and to determine

More information

Built to specifications:

Built to specifications: Experiment: Heat of Fusion (H f ) for Water Minneapolis Community and Technical College v.5.10 I. Introduction The heat of fusion (H f ) is the amount of energy required to melt or freeze a substance and

More information

Calorimetry - Specific Heat and Latent Heat

Calorimetry - Specific Heat and Latent Heat Chapter 3 Calorimetry - Specific Heat and Latent Heat Name: Lab Partner: Section: 3.1 Purpose The purpose of this experiment is to study the relationship between heat and temperature. Calorimetry will

More information

Example: orange juice from frozen concentrate.

Example: orange juice from frozen concentrate. Dilution: a process in which the concentration (molarity) of a solution is lowered. The amount of solute (atoms, moles, grams, etc.) remains the same, but the volume is increased by adding more solvent.

More information

CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM

CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM Experiment 12J FV 7/16/06 CALORIMETRY AND HESS LAW: FINDING H o FOR THE COMBUSTION OF MAGNESIUM MATERIALS: Styrofoam coffee cup and lid, thermometer, magnetic stirrer, magnetic stir bar, 50-mL and 100-

More information

Calorimetry Experiments

Calorimetry Experiments Calorimetry Experiments Pre-Lab: Today s laboratory period will include a variety of activities designed to re-familiarize you with safe practices for chemistry laboratory, the space and equipment you

More information

LAB FOUR. Name. Lab Partner(s) Section Date. In this experiment you will use calorimetry to determine the specific heat of a metal.

LAB FOUR. Name. Lab Partner(s) Section Date. In this experiment you will use calorimetry to determine the specific heat of a metal. Name Lab Partner(s) Section Date Specific Heat of a Metal Objective In this experiment you will use calorimetry to determine the specific heat of a metal. Introduction When a substance is heated, the motion

More information

Lab 9. Hess s Law. Reaction B. NaOH (s) + HCl (aq) NaCl (aq) + H 2 O (l) Reaction C. NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l)

Lab 9. Hess s Law. Reaction B. NaOH (s) + HCl (aq) NaCl (aq) + H 2 O (l) Reaction C. NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l) Lab 9. Hess s Law Prelab Assignment Before coming to lab: This exercise does not require a report in your lab notebook. Use a pen to record your data, observations, calculations and analysis in the spaces

More information

Experiment 6 Coffee-cup Calorimetry

Experiment 6 Coffee-cup Calorimetry 6-1 Experiment 6 Coffee-cup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined

More information

Name Chemistry / / Melting/Freezing/Boiling & Condensing

Name Chemistry / / Melting/Freezing/Boiling & Condensing Name Chemistry / / Melting/Freezing/Boiling & Condensing As a substance melts, freezes, boils or condenses, heat is either absorbed or released. But, as this change in state occurs, there is no change

More information

EXPERIMENT 12N CALORIMETRY

EXPERIMENT 12N CALORIMETRY EXPERIMENT 12N CALORIMETRY FV 7/28/2016 MATERIALS: PURPOSE: OBJECTIVES: Styrofoam cup and lid, stir bar, magnetic stir plate, digital thermometer, 250 ml beaker, two 100 ml graduated cylinders, aluminum

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

Instruction Manual and Experiment Guide F. Basic Calorimetry Set TD-8557A

Instruction Manual and Experiment Guide F. Basic Calorimetry Set TD-8557A Instruction Manual and Experiment Guide 012-03060F Basic Calorimetry Set TD-8557A Al Cu W Table of Contents Introduction......................................................................... 1 Notes

More information

Transfer of heat energy often occurs during chemical reactions. A reaction

Transfer of heat energy often occurs during chemical reactions. A reaction Chemistry 111 Lab: Thermochemistry Page I-3 THERMOCHEMISTRY Heats of Reaction The Enthalpy of Formation of Magnesium Oxide Transfer of heat energy often occurs during chemical reactions. A reaction may

More information

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants

More information

Simple Experiments in Thermochemistry

Simple Experiments in Thermochemistry Simple Experiments in Thermochemistry Purpose: To demonstrate the law of conservation of energy and propose a method for making a chemical heat pack using the heats of solution of sodium bicarbonate and

More information

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

More information

Heat evolved by the reaction = Heat absorbed by the water + Heat absorbed by the bomb

Heat evolved by the reaction = Heat absorbed by the water + Heat absorbed by the bomb ENERGY OF A PEANUT AN EXPERIMENT IN CALORIMETRY 2011, 2010, 2002, 1995, by David A. Katz. All rights reserved. Reproduction permitted for educational use provided original copyright is included. INTRODUCTION:

More information

Water Lab. Objective: To distill samples of water that contains volatile and nonvolatile components.

Water Lab. Objective: To distill samples of water that contains volatile and nonvolatile components. Water Lab I. Distillation Hypothesis: Water can be purified by distillation. Objective: To distill samples of water that contains volatile and nonvolatile components. Materials and Equipment: Sodium chloride,

More information

Calorimetry Lab - Specific Heat Capacity

Calorimetry Lab - Specific Heat Capacity Introduction Calorimetry Lab - Specific Heat Capacity Experience tells us that if a hot piece of metal is added to water, the temperature of the water will rise. If several different metals having the

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry I. Nature of Energy Energy units SI unit is joule, J From E = 1/2 mv 2, 1J = 1kg. m 2 /s 2 Traditionally, we use the calorie as a unit of energy. 1 cal = 4.184J (exactly) The

More information

Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction

Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction Explorations in Thermodynamics: Calorimetry, Enthalpy & Heats of Reaction Dena K. Leggett, Ph.D. and Jon H. Hardesty, Ph.D. Collin County Community College Dept. of Chemistry 1. Introduction: One of the

More information

PHYSICS 220 LAB #9: CALORIMETRY

PHYSICS 220 LAB #9: CALORIMETRY Name: Partners: PHYSICS 220 LAB #9: CALORIMETRY If you pour cold cream into a hot cup of coffee, the mixture comes to an intermediate equilibrium temperature. If you put a piece of ice in a glass of water,

More information

Experiment 10B DETERMINING THE MOLAR MASS OF A GAS

Experiment 10B DETERMINING THE MOLAR MASS OF A GAS Experiment 10B DETERMINING THE MOLAR MASS OF A GAS FV 3-31-16 MATERIALS: Dry 250 ml Erlenmeyer flask, piece of foil (~3 x 3 ), 800 ml beaker, 500 ml graduated cylinder, iron ring, ring stand, wire gauze,

More information

L A T E N T H E A T O F F U S I O N

L A T E N T H E A T O F F U S I O N Class Date Name Partner(s) L A T E N T H E A T O F F U S I O N Materials LoggerPro Software and Real Time Physics Thermodynamics Experiment Files Stainless Steel Temperature Probes (2) Styrofoam Cup Film

More information

Use tongs and wear goggles when removing the samples from the pot of boiling water. Protect your eyes against accidental splashes!

Use tongs and wear goggles when removing the samples from the pot of boiling water. Protect your eyes against accidental splashes! Calorimetry Lab Purpose: Students will measure latent heat and specific heat. PLEASE READ the entire handout before starting. You won t know what to do unless you understand how it works! Introduction:

More information

L q + w. CHM 1041 Thermochemistry Heats of Solution (Reaction) J. Bieber. Section: Date:

L q + w. CHM 1041 Thermochemistry Heats of Solution (Reaction) J. Bieber. Section: Date: CHM 1041 Thermochemistry Heats of Solution (Reaction) J. Bieber Name: Partner: Section: Date: To study quantitatively the heat of solution when (1) a salt dissolves in water and (2) to study the heats

More information

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

More information

Prelab attached (p 8-9) (g)! MgO (s) + heat (1)

Prelab attached (p 8-9) (g)! MgO (s) + heat (1) CHEM 151 ENTHALPY OF FORMATION OF MgO FALL 2008 Fill-in Prelab attached (p 8-9) Stamp Here Name Partner Lecture instructor Date INTRODUCTION Chemical reactions either produce heat as they proceed (exothermic)

More information

Chemistry 1215 Make up Lab Enthalpy of Neutralization

Chemistry 1215 Make up Lab Enthalpy of Neutralization hemistry 1215 Make up Lab Enthalpy of Neutralization Objective In this experiment you will determine the molar enthalpy of neutralization of an acid. Introduction The study of energy and its transformations

More information

Final Exam. Wednesday, December 10. 1:30 4:30 pm. University Centre Rooms

Final Exam. Wednesday, December 10. 1:30 4:30 pm. University Centre Rooms 16.102 Final Exam Wednesday, December 10 1:30 4:30 pm University Centre Rooms 210 224 30 questions, multiple choice The whole course, equal weighting Formula sheet provided 26 Lab and Tutorial Marks Final

More information

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

Specific Heat (Temperature Sensor)

Specific Heat (Temperature Sensor) 43 Specific Heat (Temperature Sensor) Thermodynamics: Calorimetry; specific heat Equipment List DataStudio file: 43 Specific Heat.ds Qty Items Part Numbers 1 PASCO Interface (for one sensor) 1 Temperature

More information

3.3 Phase Changes Charactaristics of Phase Changes phase change

3.3 Phase Changes Charactaristics of Phase Changes phase change When at least two states of the same substance are present, scientists describe each different state as a phase. A phase change is the reversible physical change that occurs when a substance changes from

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Exothermic verses Endothermic Grade Level and Course: 8 th Grade Physical Science & 9-12 High School Chemistry Materials: 100 ml beakers or plastic cups.1 M CH3COOH

More information

Enthalpy of Neutralization. Introduction

Enthalpy of Neutralization. Introduction Enthalpy of Neutralization Introduction Energy changes always accompany chemical reactions. If energy, in the form of heat, is liberated the reaction is exothermic and if energy is absorbed the reaction

More information

Physics 101: Lecture 25 Heat

Physics 101: Lecture 25 Heat Final Physics 101: Lecture 25 Heat Today s lecture will cover Textbook Chapter 14.1-14.5 Physics 101: Lecture 25, Pg 1 Internal Energy Energy of all molecules including Random motion of individual molecules»

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

MOLECULAR WEIGHT DETERMINATION OF AN ORGANIC LIQUID

MOLECULAR WEIGHT DETERMINATION OF AN ORGANIC LIQUID 1 MOLECULAR WEIGHT DETERMINATION OF AN ORGANIC LIQUID I. OBJECTIVES In this experiment the molecular weight of a volatile, unknown organic liquid will be determined. From this information and quantitative

More information

Specific Heat Capacity and Latent Heat Mixed Questions

Specific Heat Capacity and Latent Heat Mixed Questions Specific Heat Capacity and Latent Heat Mixed Questions 1. 12 000 J of heat energy raises the temperature of a 2kg block of a metal from 20 0 C to 30 0 C. What is the specific heat capacity of the metal?

More information

state and explain how the internal energy and the absolute (kelvin) temperature are related....

state and explain how the internal energy and the absolute (kelvin) temperature are related.... 6 N08/4/PHYSI/SP2/ENG/TZ0/XX+ A2. This question is about ideal gases. (a) State what is meant by an ideal gas....... For an ideal gas define internal energy. state and explain how the internal energy and

More information

Energy Changes in Chemical Reactions. System loses heat (negative); gains heat (positive) Describe the difference between the two.

Energy Changes in Chemical Reactions. System loses heat (negative); gains heat (positive) Describe the difference between the two. Energy Changes in Chemical Reactions Most reactions give off or absorb energy Energy is the capacity to do work or supply heat. Heat: transfer of thermal (kinetic) energy between two systems at different

More information

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry 1. The ΔE of a system that releases 14.4 J of heat and does 4.8 J of work on the surroundings is J. (a). 19.2 J (b). 14.4 J (c). 4.8 J (d). - 19.2 J Explanation: The ΔE can be

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Terms for you to learn that will make this unit understandable: Energy (E) the ability to do work or produce heat ; the sum of all potential and kinetic energy in a system

More information

Energy. Work. Potential Energy. Kinetic Energy. Learning Check 2.1. Energy. Energy. makes objects move. makes things stop. is needed to do work.

Energy. Work. Potential Energy. Kinetic Energy. Learning Check 2.1. Energy. Energy. makes objects move. makes things stop. is needed to do work. Chapter 2 Energy and Matter Energy 2.1 Energy Energy makes objects move. makes things stop. is needed to do work. 1 2 Work Potential Energy Work is done when you climb. you lift a bag of groceries. you

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 1. What is a hydrocarbon? PREPARATION FOR CHEMISTRY LAB: COMBUSTION 2. Give an example of a combustion reaction? 3. What products form in the complete combustion of a hydrocarbon? Are these products

More information

Mixing Warm and Cold Water

Mixing Warm and Cold Water Mixing Warm and Cold Water A Continuing Investigation of Thermal Pollution By Kevin White 1 Context: This lesson is intended for students conducting an ongoing study of thermal pollution. Perhaps, students

More information

Latent Heat Calculations

Latent Heat Calculations Latent Heat Calculations What heat quantities are needed to change a substance from a liquid to a gas? How much energy is needed to melt a solid to a liquid? Is it the same for each substance? Let s look

More information

Determination of Molecular Mass by Freezing Point Depression

Determination of Molecular Mass by Freezing Point Depression Determination of Molecular Mass by Freezing Point Depression Objectives: To determine the molecular mass of an unknown solid using the colligative property of freezing point depression. Background: When

More information

Unit 14 Thermochemistry

Unit 14 Thermochemistry Unit 14 Thermochemistry Name May 5 6 Unit 13 Acids and Bases Test Intro to Thermochemistry Videos (p.2-3) HW: p. 4-5 9 10 11 12 13 Thermochemistry Interpret graphs Heat of reaction & Specific Heat Heat

More information

Experiment 1: Colligative Properties

Experiment 1: Colligative Properties Experiment 1: Colligative Properties Determination of the Molar Mass of a Compound by Freezing Point Depression. Objective: The objective of this experiment is to determine the molar mass of an unknown

More information

Exp 13 Volumetric Analysis: Acid-Base titration

Exp 13 Volumetric Analysis: Acid-Base titration Exp 13 Volumetric Analysis: Acid-Base titration Exp. 13 video (time: 47:17 minutes) Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume

More information

HEAT OF FORMATION OF AMMONIUM NITRATE

HEAT OF FORMATION OF AMMONIUM NITRATE 303 HEAT OF FORMATION OF AMMONIUM NITRATE OBJECTIVES FOR THE EXPERIMENT The student will be able to do the following: 1. Calculate the change in enthalpy (heat of reaction) using the Law of Hess. 2. Find

More information

SOLUTIONS EXPERIMENT 13

SOLUTIONS EXPERIMENT 13 SOLUTIONS EXPERIMENT 13 OBJECTIVE The objective of this experiment is to demonstrate the concepts of concentrations of solutions and the properties of solution. Colloids will be demonstrated. EQUIPMENT

More information

Thermodynamics. Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life

Thermodynamics. Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life Thermodynamics Energy can be used * to provide heat * for mechanical work * to produce electric work * to sustain life Thermodynamics is the study of the transformation of energy into heat and for doing

More information

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Version Freezing Point Depression: Why Don t Oceans Freeze? Teacher Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another compound.

More information

I. CALORIMETRY CALORIMETRY

I. CALORIMETRY CALORIMETRY CALORIMETRY I. CALORIMETRY If the process (e.g. chemical reaction, phase conversion) requires heat to proceed, it is said to be endothermic. For endothermic process, q > 0. If the process (e.g. chemical

More information

Making in the Classroom

Making in the Classroom Making in the Classroom Exothermic & Endothermic Reactions Theme What is the theme or topic to be presented? Exothermic and Endothermic reactions as demonstrated through the creation of hand warmers and

More information

Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales

Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales Heat and Temperature Thermometers and Temperature Scales The mercury-based one you see here relies on the fact that mercury expands at a predictable rate with temperature. The scale of the thermometer

More information

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry. Example 4. Energy and Enthalpy Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

More information

1. The Determination of Boiling Point

1. The Determination of Boiling Point 1. The Determination of Boiling Point Objective In this experiment, you will first check your thermometer for errors by determining the temperature of two stable equilibrium systems. You will then use

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

HEAT OF FUSION MECHANICAL EQUIVALENT OF HEAT AND PART A. HEAT OF FUSION

HEAT OF FUSION MECHANICAL EQUIVALENT OF HEAT AND PART A. HEAT OF FUSION HEAT OF FUSION AND MECHANICAL EQUIVALENT OF HEAT CAUTION: Please handle thermometers gently. Broken mercury-filled thermometers should be taken to Rm. B-31 for disposal as mercury is very toxic. If a red-liquid

More information

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work.

ENERGY. Thermochemistry. Heat. Temperature & Heat. Thermometers & Temperature. Temperature & Heat. Energy is the capacity to do work. ENERGY Thermochemistry Energy is the capacity to do work. Chapter 6 Kinetic Energy thermal, mechanical, electrical, sound Potential Energy chemical, gravitational, electrostatic Heat Heat, or thermal energy,

More information

Calorimeter: A device in which the heat associated with a specific process is measured.

Calorimeter: A device in which the heat associated with a specific process is measured. 1 CALORIMETRY p. 661-667 (simple), 673-675 (bomb) Calorimeter: A device in which the heat associated with a specific process is measured. There are two basic types of calorimeters: 1. Constant-pressure

More information

UNIT 1 THERMOCHEMISTRY

UNIT 1 THERMOCHEMISTRY UNIT 1 THERMOCHEMISTRY THERMOCHEMISTRY LEARNING OUTCOMES Students will be expected to: THERMOCHEMISTRY STSE analyse why scientific and technological activities take place in a variety individual and group

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL (Student Instructions) Determination of the Formula of a Hydrate A Greener Approach Objectives To experimentally determine the formula of a hydrate salt. To learn to think in terms

More information

Thermochemistry I: Endothermic & Exothermic Reactions

Thermochemistry I: Endothermic & Exothermic Reactions THERMOCHEMISTRY I 77 Thermochemistry I: Endothermic & Exothermic Reactions OBJECTIVES: Learn elementary concepts of calorimetry and thermochemistry Practice techniques of careful temperature, mass, and

More information

Entropy & Enthalpy Changes A Lab Investigation

Entropy & Enthalpy Changes A Lab Investigation Entropy & Enthalpy Changes A Lab Investigation Summary In this investigation, students will explore basic thermodynamic concepts, including spontaneity, entropy, and enthalpy through a series of guided

More information

Chemistry Guide

Chemistry Guide 551534 - Chemistry Guide 1- Contents Question Item Objective Type Skill 1 0102 M03.02.04 Multiple-choice answer Mastery of Problem Solving 2 0099 M03.03.02 Multiple-choice answer Mastery of Concepts 3

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

Chapter 5 Thermo. Energy & Chemistry. Energy & Chemistry. Units of Energy. Energy & Chemistry. Potential & Kinetic Energy. Some Basic Principles

Chapter 5 Thermo. Energy & Chemistry. Energy & Chemistry. Units of Energy. Energy & Chemistry. Potential & Kinetic Energy. Some Basic Principles 1 Energy & Chemistry effrey Mack California State University, Sacramento Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions Questions that need to be addressed: How do we measure

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

Physical Properties of a Pure Substance, Water

Physical Properties of a Pure Substance, Water Physical Properties of a Pure Substance, Water The chemical and physical properties of a substance characterize it as a unique substance, and the determination of these properties can often allow one to

More information

Chapter 4 Practice Quiz

Chapter 4 Practice Quiz Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:

More information

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume 6 Absorption of Heat According to the First Law, E = q + w = q - P V, assuming P-V work is the only kind that can occur. Therefore, E = q V. The subscript means that the process occurs at constant volume.

More information

Freezing Point Depression

Freezing Point Depression Name: Date: Lab Partners: Lab section: Freezing Point Depression The addition of salt to water lowers the freezing point of water. This is the mechanism by which roads are cleared of ice in the winter

More information

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables.

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables. Determination of Molar Mass by Freezing Point Depression M. Burkart & M. Kim Experimental Notes: Students work in pairs. Safety: Goggles and closed shoes must be worn. Dispose of all chemical in the plastic

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long

More information

Energy in Thermal Processes: The First Law of Thermodynamics

Energy in Thermal Processes: The First Law of Thermodynamics Energy in Thermal Processes: The First Law of Thermodynamics 1. An insulated container half full of room temperature water is shaken vigorously for two minutes. What happens to the temperature of the water?

More information

Phase change lab questions Period: Physical Science

Phase change lab questions Period: Physical Science Phase change lab questions Period: Physical Science Name: Date: Pre-lab: (As always, write in complete sentences) 1. What should happen to the temperature of a substance while the substance is melting?

More information

A Survey of Thermodynamics

A Survey of Thermodynamics A Survey of Thermodynamics Objective In this lab various topics relating to the study of thermodynamics will be explored. First, the flow of heat will be examined. Here an ice cube will be placed in a

More information

Heat of Solution. Purpose To calculate the heat of solution for sodium hydroxide (NaOH) and ammonium nitrate (NH 4 NO 3 )

Heat of Solution. Purpose To calculate the heat of solution for sodium hydroxide (NaOH) and ammonium nitrate (NH 4 NO 3 ) Heat of Solution Purpose To calculate the heat of solution for sodium hydroxide (NaOH) and ammonium nitrate (NH 4 NO 3 ) Background For a given solute, the heat of solution is the change in enerrgy that

More information

Thermochemistry: Calorimetry and Hess s Law

Thermochemistry: Calorimetry and Hess s Law Thermochemistry: Calorimetry and Hess s Law Some chemical reactions are endothermic and proceed with absorption of heat while others are exothermic and proceed with an evolution of heat. The magnitude

More information

Chapter 5 Energy Relationships in Chemistry: Thermochemistry

Chapter 5 Energy Relationships in Chemistry: Thermochemistry Chapter 5 Energy Relationships in Chemistry: Thermochemistry In order to study thermochemical changes, we first have to define (a) system that specify part of the universe of interest to us. (b) surrounding

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

EXPERIMENT 16: Charles Law of Gases V vs T

EXPERIMENT 16: Charles Law of Gases V vs T EXPERIMENT 16: Charles Law of Gases V vs T Materials: Thermometer Bunsen burner Ring stand Clamps 600ml beakers (2) Closed-tip syringe Ice Water Objectives 1. To put to work the model to verify Charles

More information

EXPERIMENT 15 FREEZING POINT: A COLLIGATIVE PROPERTY OF SOLUTIONS

EXPERIMENT 15 FREEZING POINT: A COLLIGATIVE PROPERTY OF SOLUTIONS EXPERIMENT 15 FREEZING POINT: A COLLIGATIVE PROPERTY OF SOLUTIONS INTRODUCTION Scientists seldom work alone today. Instead they work in teams on projects, sharing the labor of carrying out the experiments

More information