# Multiplicity. Chapter 6

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are just the points of intersection of the line y = 0 with the curve defined by y f(x) = 0. Is it true that any line intersects the graph of f in n points? Obviously not, since vertical lines seem intersect the graph in just one point. The situation improves upon introducing the projective plane because we get additional points at infinity as points of intersection. Still, we have to worry about how to count multiplicities. Defining the multiplicity of a point of intersection of two curves is difficult in general; the intersection between lines and curves is easier to understand, so let us do this now. We will do this for points of intersection in the affine plane. Assume that C : f(x, y) = 0 is an algebraic curve over some algebraically closed field K. The x-coordinates of the points of intersection of C and the line l : y = mx + b satisfy the equation g(x) = f(x, mx + b) = 0. Now there are two cases: the polynomial g vanishes; this happens if and only if l is a component of C. If this is not the case, then g has finite degree, and if P = (a, b) is a point on C l, then g(a) = 0. Thus we can write g(x) = (x a) m h(x) for some polynomial h with h(a) 0, and we say that l and C intersect in P with multiplicity m. For lines x = a we similarly define the multiplicity m by f(a, y) = y m h(y) with h(b) 0. Note that deg g deg f since cancellation might occur; if this happens, some of the points of intersections are at infinity. Consider e.g. the hyperbola f(x, y) = xy 1 = 0 and the line y = tx. We find g(x) = f(x, tx) = x(tx) 1, which has degree 2 for t 0 (giving two points of intersection with multiplicity 1 each) and degree 0 if t = 0 (implying that there is a point of intersection at infinity with multiplicity 2 but we will deal with the projective case later). Proposition Let T be a tangent to the curve C : f(x, y) = 0 at P = (a, b). Then T and C intersect with multiplicity 2 at P. 28

2 Proof. The equation of the tangent is 0 = f 1 (x a) + f 2 (y b), where f 1 = f x (a, b) and f 2 = f y (a, b). Assume that f 2 0; then we can solve for y and get y = f1 f 2 (x a) + b. Plugging this into f(x, y) = 0 and observing that f(x, y) = f(a, b) + f 1 (x a) + f 2 (y b) +... we get ( g(x) = 0 + f 1 (x a) + f 2 f ) 1 (x a) +... f 2 = f 1 (x a) f 1 (x a) +... = , where the dots represent terms of degree 2. This proves the claim. Of course we also have to consider the case f 2 = 0 (i.e., x = a); I ll leave that to you. Another example of lines intersecting curves with multiplicity 2 is given by Proposition Let P = (r, s) be a singular point on C f : f(x, Y ) = 0. Then any line through P intersects C with multiplicity 2. Proof. Let P = (a, b) be singular and y = m(x a)+b a line through P. Observe that f(x, y) = f(a, b) + f 1 (x a) + f 2 (y b) + terms divisible by (x a) 2, (x a)(y b), or (y b) 2. Since P is a singular on C, we have f(a, b) = f 1 = f 2 = 0. Plugging in f(a, b) = 0 and y b = m(x a) shows that g(x) has only terms divisible by (x a) 2, hence the line intersects C with multiplicity 2 at P. Let us now define multiplicity for projective curves. Let C # : F (X, Y, Z) = 0 be the projective closure of the affine curve C : f(x, y) = 0; thus F is the homogenization of f, and each term in F has degree equal to n = deg f. Let P = [r : s : t] be a point on C, and consider a line L : ax + by + cz = 0 going through P. For computing the point of intersection, assume first that e.g. b 0; then the polynomial G K[X, Z] defined by F (X, Y, Z) = F (bx, by, bz) = F (bx, ax az, bz) = G(X, Z) is a polynomial with the property that the points [X : Y : Z] with G(X, Z) = 0 are the points of intersection of L and C #. Note first that either G = 0 (in this case, the line is a component of C # ), or G has degree n: in fact, every term in F has the form a ijk X i Y j Z k with i + j + k = n, and after substituting by = ax cz, all the terms will have degree n. Assume that G has degree n; then we can factor G into linear factors over the algebraically closed field K and get G(X, Y ) = (tx rz) m H(X, Z), where H(r, t) 0. 29

3 Then we say that L and C # intersect with multiplicity m at P. If b = 0, then we similarly replace cz by ax by or ax by by cz; it is an easy exercise to show that these methods yield the same result if abc 0. Proposition Let C : F (X, Y, Z) = 0 be a projective algebraic curve and L a line not contained in C. Then L and C have exactly deg F points of intersections, counted with multiplicity. Proof. Clear, since the polynomial G constructed above has degree F, hence splits into deg F linear factors over some algebraically closed field. Let us do a few examples. First consider the elliptic curve E : Y 2 = X 3 + X and the line l : X = 0. It intersects E in P = (0, 0) and at the point at infinity. Let us compute the corresponding multiplicites. Plugging the line equation X = 0 into the one for E we end up with Y 2 = 0: this is an equation in Y with a double root at P. For computing the multiplicity at O = [0 : 1 : 0] we have to work projectively; write E # : Y 2 Z X 3 XZ 2 = 0 and l # : X = 0. Plugging this into the equation for E # we get Y 2 Z = 0; this polynomial has a double root at P (as before) and a single root at O. We can express the fact that l # and E # intersect twice at P and once at O by writing l # E # = 2P + O. The object on the right hand side is called the intersection divisor of l # and C #. 6.1 Types of Singularities Using the notion of multiplicity, we can give unified definitions of a couple of objects. A point P on a curve C is called singular if every line through P intersects C at P with multiplicity 2. A singular point P is called a double point if at least one line through P intersects C with exact multiplicity 2. More generally, P is said to be singular with multiplicity m if every line through P intersects C at P with multiplicity m. A tangent to C at a nonsingular point P is the unique (!) line that intersects C at P with multiplicity 2. A line through a singular point P with multiplicity m is called a tangent to C at P if it intersects C with multiplicity m + 1. Note that there might be more than one such tangent (think of the 5-leaved rose). 30

4 A double point with exactly two tangents is called a node. A double point with a unique tangent is called a cusp. A curve C has a line L as an asymptote if L is a tangent to C at some nonsingular point at infinity. Denote the intersection multiplicity of a line L with a curve C at P by m(p, L C); then the multiplicity of P is m(p ; C) = min m(p, L C), where the minimum is taken over all lines L through P. As an example for asymptotes, consider the hyperbola C : XY = Z 2. The points at infinity are P = [0 : 1 : 0] and Q = [1 : 0 : 0]. The line L P : X = 0 intersects the hyperbola at P with multiplicity 2, hence is an asymptote. Similarly for L Q : Y = 0. The line Z = 0 at infinity, on the other hand, intersects C at P and Q with multiplicity Singular Conics and Cubics Below, we will work over algebraically closed fields. Proposition Singular conics are degenerate. Proof. Let P be a singular point on the conic; let Q be any other point. Then the line P Q will intersect the conic at least twice in P and once in Q; by Proposition 6.0.5, the line P Q must be contained in C, and this means that the conic is degenerate (it will be a pair of lines). Proposition An irreducible singular cubic has exactly one singular point, and this singular point has multiplicity 2. Proof. If the cubic C had two singular points P and Q, the line P Q would intersect C with multiplicity 4, hence the cubic would contain a line, and therefore be reducible. Assume that the singular point P has multiplicity 3; then the line P Q, for Q P any point on C, would intersect C with multiplicity 4, showing again that C would have to contain the line. Now we can add something to our knowledge on curves that can be parametrized: Proposition Every nondegenerate conic with a K-rational point can be parametrized over K. Proof. Clear. Let me remind you that this parametrization gives a bijection between the K-rational points on C and the projective line P 1 K. Proposition Any singular irreducible cubic can be parametrized over some algebraically closed field K. 31

5 Proof. Let P be the singular point; given any point Q P, the line P Q has the form y = mx + b except for the finitely many points of intersection Q 1,..., Q n of the line x = x P with C. This line P Q will intersect the cubic at least twice in P and at least once in Q; since C has degree 3, it will actually intersect C with exact multiplicity 2 at P and multiplicity 1 at P. Thus the points Q on C \ {Q 1,..., Q n } correspond bijectively to the elements m K. Here s a more computational proof. By shifting the coordinate system (this does not affect the singularity of points), we may assume that the singular point has coordinates (0, 0). Then the cubic must have the form C : f(x, y) = 0 for some f(x, y) = ax 3 + bx 2 y + cxy 2 + dy 3 ex 2 fxy gy 2 K[x, y] (no linear terms because (0, 0) is singular; moreover, we cannot have e = f = g = 0 since then C would have a singularity of multiplicity 3). Now consider the lines y = tx; plugging this into the equation for C gives 0 = x 3 (a + bt + ct 2 + dt 3 ) x 2 (e + ft + gt 2 ) = 0. Since x = 0 corresponds to the known point (0, 0), the second point of intersection Q is given by x = e + ft + gt 2 a + bt + ct 2 + dt 3, y = tx. Each value of t except the three values where the denominator vanishes gives a point with coordinates in K, and all points except the at most three points on the intersection of x = 0 and C are actually hit. 32

### Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

### Polynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if

1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c

### CONICS ON THE PROJECTIVE PLANE

CONICS ON THE PROJECTIVE PLANE CHRIS CHAN Abstract. In this paper, we discuss a special property of conics on the projective plane and answer questions in enumerative algebraic geometry such as How many

### Differentiability and some of its consequences Definition: A function f : (a, b) R is differentiable at a point x 0 (a, b) if

Differentiability and some of its consequences Definition: A function f : (a, b) R is differentiable at a point x 0 (a, b) if f(x)) f(x 0 ) x x 0 exists. If the it exists for all x 0 (a, b) then f is said

### The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

### QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE THREE: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE R 12

QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE THREE: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE R 12 JOAN C. ARTÉS1, JAUME LLIBRE 1 AND NICOLAE VULPE 2 Abstract. A quadratic polynomial

### Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00

18.781 Problem Set 7 - Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list

### 5-6 The Remainder and Factor Theorems

Use synthetic substitution to find f (4) and f ( 2) for each function. 1. f (x) = 2x 3 5x 2 x + 14 Divide the function by x 4. The remainder is 58. Therefore, f (4) = 58. Divide the function by x + 2.

### Techniques of Differentiation Selected Problems. Matthew Staley

Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4

### Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

### TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

### Situation: Dividing Linear Expressions

Situation: Dividing Linear Expressions Date last revised: June 4, 203 Michael Ferra, Nicolina Scarpelli, Mary Ellen Graves, and Sydney Roberts Prompt: An Algebra II class has been examining the product

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### (a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### Rational Polynomial Functions

Rational Polynomial Functions Rational Polynomial Functions and Their Domains Today we discuss rational polynomial functions. A function f(x) is a rational polynomial function if it is the quotient of

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### some algebra prelim solutions

some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no

### Introduction to polynomials

Worksheet 4.5 Polynomials Section 1 Introduction to polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n, (n N) where p 0, p 1,..., p n are constants and x os

### Tangent and normal lines to conics

4.B. Tangent and normal lines to conics Apollonius work on conics includes a study of tangent and normal lines to these curves. The purpose of this document is to relate his approaches to the modern viewpoints

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

### Senior Math Circles February 4, 2009 Conics I

1 University of Waterloo Faculty of Mathematics Conics Senior Math Circles February 4, 2009 Conics I Centre for Education in Mathematics and Computing The most mathematically interesting objects usually

### The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

### Computer Algebra for Computer Engineers

p.1/14 Computer Algebra for Computer Engineers Preliminaries Priyank Kalla Department of Electrical and Computer Engineering University of Utah, Salt Lake City p.2/14 Notation R: Real Numbers Q: Fractions

### Proof. The map. G n i. where d is the degree of D.

7. Divisors Definition 7.1. We say that a scheme X is regular in codimension one if every local ring of dimension one is regular, that is, the quotient m/m 2 is one dimensional, where m is the unique maximal

### 2.1 Functions. 2.1 J.A.Beachy 1. from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair

2.1 J.A.Beachy 1 2.1 Functions from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 21. The Vertical Line Test from calculus says that a curve in the xy-plane

### 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N.

CHAPTER 3: EXPONENTS AND POWER FUNCTIONS 1. The algebra of exponents 1.1. Natural Number Powers. It is easy to say what is meant by a n a (raised to) to the (power) n if n N. For example: In general, if

### Solutions for 2015 Algebra II with Trigonometry Exam Written by Ashley Johnson and Miranda Bowie, University of North Alabama

Solutions for 0 Algebra II with Trigonometry Exam Written by Ashley Johnson and Miranda Bowie, University of North Alabama. For f(x = 6x 4(x +, find f(. Solution: The notation f( tells us to evaluate the

### Lecture 2: Homogeneous Coordinates, Lines and Conics

Lecture 2: Homogeneous Coordinates, Lines and Conics 1 Homogeneous Coordinates In Lecture 1 we derived the camera equations λx = P X, (1) where x = (x 1, x 2, 1), X = (X 1, X 2, X 3, 1) and P is a 3 4

### Practice with Proofs

Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

### Planar Curve Intersection

Chapter 7 Planar Curve Intersection Curve intersection involves finding the points at which two planar curves intersect. If the two curves are parametric, the solution also identifies the parameter values

### PYTHAGOREAN TRIPLES PETE L. CLARK

PYTHAGOREAN TRIPLES PETE L. CLARK 1. Parameterization of Pythagorean Triples 1.1. Introduction to Pythagorean triples. By a Pythagorean triple we mean an ordered triple (x, y, z) Z 3 such that x + y =

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### The Australian Journal of Mathematical Analysis and Applications

The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO

### MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

### Ruled surfaces of degree 4

Chapter 4 Ruled surfaces of degree 4 In this section, we describe the models from Series XIII of Schilling s collection. The series consists of 10 models that illustrate a classification of the ruled surfaces

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

### Lecture 5 : Continuous Functions Definition 1 We say the function f is continuous at a number a if

Lecture 5 : Continuous Functions Definition We say the function f is continuous at a number a if f(x) = f(a). (i.e. we can make the value of f(x) as close as we like to f(a) by taking x sufficiently close

### Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

### Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

### Worksheet 4.7. Polynomials. Section 1. Introduction to Polynomials. A polynomial is an expression of the form

Worksheet 4.7 Polynomials Section 1 Introduction to Polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n (n N) where p 0, p 1,..., p n are constants and x is a

### 1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

### Review for Calculus Rational Functions, Logarithms & Exponentials

Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for

### FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

7 Quadratic Expressions A quadratic expression (Latin quadratus squared ) is an expression involving a squared term, e.g., x + 1, or a product term, e.g., xy x + 1. (A linear expression such as x + 1 is

### A Grand Tour of Pedals of Conics

Forum Geometricorum Volume 4 (2004) 143 151. FORUM GEOM IN 1534-1178 A Grand Tour of Pedals of Conics Roger C. Alperin Abstract. We describe the pedal curves of conics and some of their relations to origami

### Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

### Solution. a) The line in question has parameterization γ(t) = (0, t, t). Plugging this into the equation of the surface yields

Emory University Department of Mathematics & CS Math 211 Multivariable Calculus Spring 2012 Midterm # 1 (Tue 21 Feb 2012) Practice Exam Solution Guide Practice problems: The following assortment of problems

### 1 Chapter I Solutions

1 Chapter I Solutions 1.1 Section 1 (TODO) 1 2 Chapter II Solutions 2.1 Section 1 1.16b. Given an exact sequence of sheaves 0 F F F 0 over a topological space X with F flasque show that for every open

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

### Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

### MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

### correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

### Quotient Rings of Polynomial Rings

Quotient Rings of Polynomial Rings 8-7-009 Let F be a field. is a field if and only if p(x) is irreducible. In this section, I ll look at quotient rings of polynomial rings. Let F be a field, and suppose

### Roots and Coefficients of a Quadratic Equation Summary

Roots and Coefficients of a Quadratic Equation Summary For a quadratic equation with roots α and β: Sum of roots = α + β = and Product of roots = αβ = Symmetrical functions of α and β include: x = and

### Domain and Range. Many problems will ask you to find the domain of a function. What does this mean?

Domain and Range The domain of a function is the set of values that we are allowed to plug into our function. This set is the x values in a function such as f(x). The range of a function is the set of

### Prompt Students are studying multiplying binomials (factoring and roots) ax + b and cx + d. A student asks What if we divide instead of multiply?

Prompt Students are studying multiplying binomials (factoring and roots) ax + b and cx + d. A student asks What if we divide instead of multiply? Commentary In our foci, we are assuming that we have a

### Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.

Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### PROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS

PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,

### 7. Some irreducible polynomials

7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

### Rolle s Theorem. q( x) = 1

Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### 5 Indefinite integral

5 Indefinite integral The most of the mathematical operations have inverse operations: the inverse operation of addition is subtraction, the inverse operation of multiplication is division, the inverse

### REVIEW EXERCISES DAVID J LOWRY

REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and

### Putnam Notes Polynomials and palindromes

Putnam Notes Polynomials and palindromes Polynomials show up one way or another in just about every area of math. You will hardly ever see any math competition without at least one problem explicitly concerning

### PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

### Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions

Module MA1S11 (Calculus) Michaelmas Term 2016 Section 3: Functions D. R. Wilkins Copyright c David R. Wilkins 2016 Contents 3 Functions 43 3.1 Functions between Sets...................... 43 3.2 Injective

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### Derivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.

Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,

### arxiv:1609.07900v1 [math.ag] 26 Sep 2016

Contour curves and isophotes on rational ruled surfaces Jan Vršek arxiv:1609.07900v1 [math.ag] 26 Sep 2016 Abstract The ruled surfaces, i.e., surfaces generated by one parametric set of lines, are widely

### The Mean Value Theorem

The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

### So here s the next version of Homework Help!!!

HOMEWORK HELP FOR MATH 52 So here s the next version of Homework Help!!! I am going to assume that no one had any great difficulties with the problems assigned this quarter from 4.3 and 4.4. However, if

### A polynomial of degree n is a function of the form. f(x) = 3x 2-2x -4. Also, identify domain & range.

f(x) = 3x 2-2x -4. Also, identify domain & range. Identify polynomial functions. Recognize characteristics of graphs of polynomials. Determine end behavior. Use factoring to find zeros of polynomials.

### Calculus Card Matching

Card Matching Card Matching A Game of Matching Functions Description Give each group of students a packet of cards. Students work as a group to match the cards, by thinking about their card and what information

### 2. THE x-y PLANE 7 C7

2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### MCS 563 Spring 2014 Analytic Symbolic Computation Wednesday 15 January. Elimination Methods

Elimination Methods In this lecture we define projective coordinates, give another application, explain the Sylvester resultant method, illustrate how to cascade resultants to compute discriminant, and

### INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24 RAVI VAKIL Contents 1. Degree of a line bundle / invertible sheaf 1 1.1. Last time 1 1.2. New material 2 2. The sheaf of differentials of a nonsingular curve

### Polynomials Classwork

Polynomials Classwork What Is a Polynomial Function? Numerical, Analytical and Graphical Approaches Anatomy of an n th -degree polynomial function Def.: A polynomial function of degree n in the vaiable

### Polynomial Invariants

Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### The x-intercepts of the graph are the x-values for the points where the graph intersects the x-axis. A parabola may have one, two, or no x-intercepts.

Chapter 10-1 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax

### x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

### 3.7 Complex Zeros; Fundamental Theorem of Algebra

SECTION.7 Complex Zeros; Fundamental Theorem of Algebra 2.7 Complex Zeros; Fundamental Theorem of Algebra PREPARING FOR THIS SECTION Before getting started, review the following: Complex Numbers (Appendix,

### Factoring Cubic Polynomials

Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than

### Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### 2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

### Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method