# 4. Describing Bivariate Data

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 4. Describing Bivariate Data A. Introduction to Bivariate Data B. Values of the Pearson Correlation C. Properties of Pearson's r D. Computing Pearson's r E. Variance Sum Law II F. Exercises A dataset with two variables contains what is called bivariate data. This chapter discusses ways to describe the relationship between two variables. For example, you may wish to describe the relationship between the heights and weights of people to determine the extent to which taller people weigh more. The introductory section gives more examples of bivariate relationships and presents the most common way of portraying these relationships graphically. The next five sections discuss Pearson's correlation, the most common index of the relationship between two variables. The final section, Variance Sum Law II, makes use of Pearson's correlation to generalize this law to bivariate data. 164

2 Introduction to Bivariate Data by Rudy Guerra and David M. Lane Prerequisites Chapter 1: Variables Chapter 1: Distributions Chapter 2: Histograms Chapter 3: Measures of Central Tendency Chapter 3: Variability Chapter 3: Shapes of Distributions Learning Objectives 1. Define bivariate data 2. Define scatter plot 3. Distinguish between a linear and a nonlinear relationship 4. Identify positive and negative associations from a scatter plot Measures of central tendency, variability, and spread summarize a single variable by providing important information about its distribution. Often, more than one variable is collected on each individual. For example, in large health studies of populations it is common to obtain variables such as age, sex, height, weight, blood pressure, and total cholesterol on each individual. Economic studies may be interested in, among other things, personal income and years of education. As a third example, most university admissions committees ask for an applicant's high school grade point average and standardized admission test scores (e.g., SAT). In this chapter we consider bivariate data, which for now consists of two quantitative variables for each individual. Our first interest is in summarizing such data in a way that is analogous to summarizing univariate (single variable) data. By way of illustration, let's consider something with which we are all familiar: age. Let s begin by asking if people tend to marry other people of about the same age. Our experience tells us yes, but how good is the correspondence? One way to address the question is to look at pairs of ages for a sample of married couples. Table 1 below shows the ages of 10 married couples. Going across the columns we see that, yes, husbands and wives tend to be of about the same age, with men having a tendency to be slightly older than their wives. This is no big 165

3 surprise, but at least the data bear out our experiences, which is not always the case. Table 1. Sample of spousal ages of 10 White American Couples. Husband Wife The pairs of ages in Table 1 are from a dataset consisting of 282 pairs of spousal ages, too many to make sense of from a table. What we need is a way to summarize the 282 pairs of ages. We know that each variable can be summarized by a histogram (see Figure 1) and by a mean and standard deviation (See Table 2). Figure 1. Histograms of spousal ages. Table 2. Means and standard deviations of spousal ages. Mean Standard Deviation Husbands Wives Each distribution is fairly skewed with a long right tail. From Table 1 we see that not all husbands are older than their wives and it is important to see that this fact is lost when we separate the variables. That is, even though we provide summary statistics on each variable, the pairing within couple is lost by separating the variables. We cannot say, for example, based on the means alone what percentage of couples has younger husbands than wives. We have to count across pairs to find this out. Only by maintaining the pairing can meaningful answers be found about couples per se. Another example of information not available from the separate descriptions of husbands and wives' ages is the mean age of husbands with wives 166

4 of a certain age. For instance, what is the average age of husbands with 45-year-old wives? Finally, we do not know the relationship between the husband's age and the wife's age. We can learn much more by displaying the bivariate data in a graphical form that maintains the pairing. Figure 2 shows a scatter plot of the paired ages. The x- axis represents the age of the husband and the y-axis the age of the wife Wife's'Age Husband's'Age Figure 2. Scatter plot showing wife s age as a function of husband s age. There are two important characteristics of the data revealed by Figure 2. First, it is clear that there is a strong relationship between the husband's age and the wife's age: the older the husband, the older the wife. When one variable (Y) increases with the second variable (X), we say that X and Y have a positive association. Conversely, when Y decreases as X increases, we say that they have a negative association. Second, the points cluster along a straight line. When this occurs, the relationship is called a linear relationship. Figure 3 shows a scatter plot of Arm Strength and Grip Strength from 149 individuals working in physically demanding jobs including electricians, construction and maintenance workers, and auto mechanics. Not surprisingly, the stronger someone's grip, the stronger their arm tends to be. There is therefore a 167

5 positive association between these variables. Although the points cluster along a line, they are not clustered quite as closely as they are for the scatter plot of spousal age Arm\$Strength Grip\$Strength Figure 3. Scatter plot of Grip Strength and Arm Strength. Not all scatter plots show linear relationships. Figure 4 shows the results of an experiment conducted by Galileo on projectile motion. In the experiment, Galileo rolled balls down an incline and measured how far they traveled as a function of the release height. It is clear from Figure 4 that the relationship between Release Height and Distance Traveled is not described well by a straight line: If you drew a line connecting the lowest point and the highest point, all of the remaining points would be above the line. The data are better fit by a parabola. 168

6 Distance)Traveled Release)Height Figure 4. Galileo's data showing a non-linear relationship. Scatter plots that show linear relationships between variables can differ in several ways including the slope of the line about which they cluster and how tightly the points cluster about the line. A statistical measure of the strength of the relationship between two quantitative variables that takes these factors into account is the subject of the next section. 169

7 Values of the Pearson Correlation by David M. Lane Prerequisites Chapter 4: Introduction to Bivariate Data Learning Objectives 1. Describe what Pearson's correlation measures 2. Give the symbols for Pearson's correlation in the sample and in the population 3. State the possible range for Pearson's correlation 4. Identify a perfect linear relationship The Pearson product-moment correlation coefficient is a measure of the strength of the linear relationship between two variables. It is referred to as Pearson's correlation or simply as the correlation coefficient. If the relationship between the variables is not linear, then the correlation coefficient does not adequately represent the strength of the relationship between the variables. The symbol for Pearson's correlation is ρ when it is measured in the population and r when it is measured in a sample. Because we will be dealing almost exclusively with samples, we will use r to represent Pearson's correlation unless otherwise noted. Pearson's r can range from -1 to 1. An r of -1 indicates a perfect negative linear relationship between variables, an r of 0 indicates no linear relationship between variables, and an r of 1 indicates a perfect positive linear relationship between variables. Figure 1 shows a scatter plot for which r =

8 y !1!2!3!4!5!6!3!2! x Figure 1. A perfect linear relationship, r =

9 y 0!2!4!6!3!2! x Figure 2. A perfect negative linear relationship, r = y 1 0!1!2!3!3!2! x 172

10 Figure 3. A scatter plot for which r = 0. Notice that there is no relationship between X and Y. With real data, you would not expect to get values of r of exactly -1, 0, or 1. The data for spousal ages shown in Figure 4 and described in the introductory section has an r of Wife's'Age Husband's'Age Figure 4. Scatter plot of spousal ages, r =

11 Arm\$Strength Grip\$Strength Figure 5. Scatter plot of Grip Strength and Arm Strength, r = The relationship between grip strength and arm strength depicted in Figure 5 (also described in the introductory section) is

12 Properties of Pearson's r by David M. Lane Prerequisites Chapter 1: Linear Transformations Chapter 4: Introduction to Bivariate Data Learning Objectives 1. State the range of values for Pearson's correlation 2. State the values that represent perfect linear relationships 3. State the relationship between the correlation of Y with X and the correlation of X with Y 4. State the effect of linear transformations on Pearson's correlation A basic property of Pearson's r is that its possible range is from -1 to 1. A correlation of -1 means a perfect negative linear relationship, a correlation of 0 means no linear relationship, and a correlation of 1 means a perfect positive linear relationship. Pearson's correlation is symmetric in the sense that the correlation of X with Y is the same as the correlation of Y with X. For example, the correlation of Weight with Height is the same as the correlation of Height with Weight. A critical property of Pearson's r is that it is unaffected by linear transformations. This means that multiplying a variable by a constant and/or adding a constant does not change the correlation of that variable with other variables. For instance, the correlation of Weight and Height does not depend on whether Height is measured in inches, feet, or even miles. Similarly, adding five points to every student's test score would not change the correlation of the test score with other variables such as GPA. 175

13 Computing Pearson's r by David M. Lane Prerequisites Chapter 1: Summation Notation Chapter 4: Introduction to Bivariate Data Learning Objectives 1. Define X and x 2. State why Σxy = 0 when there is no relationship 3. Calculate r There are several formulas that can be used to compute Pearson's correlation. Some formulas make more conceptual sense whereas others are easier to actually compute. We are going to begin with a formula that makes more conceptual sense. We are going to compute the correlation between the variables X and Y shown in Table 1. We begin by computing the mean for X and subtracting this mean from all values of X. The new variable is called x. The variable y is computed similarly. The variables x and y are said to be deviation scores because each score is a deviation from the mean. Notice that the means of x and y are both 0. Next we create a new column by multiplying x and y. Before proceeding with the calculations, let's consider why the sum of the xy column reveals the relationship between X and Y. If there were no relationship between X and Y, then positive values of x would be just as likely to be paired with negative values of y as with positive values. This would make negative values of xy as likely as positive values and the sum would be small. On the other hand, consider Table 1 in which high values of X are associated with high values of Y and low values of X are associated with low values of Y. You can see that positive values of x are associated with positive values of y and negative values of x are associated with negative values of y. In all cases, the product of x and y is positive, resulting in a high total for the xy column. Finally, if there were a negative relationship then positive values of x would be associated with negative values of y and negative values of x would be associated with positive values of y. This would lead to negative values for xy. 176

14 Table 1. Calculation of r. X Y x y xy x 2 y Total Mean Pearson's r is designed so that the correlation between height and weight is the same whether height is measured in inches or in feet. To achieve this property, ing Pearson s Pearson's correlation is computed by dividing the sum of the xy column (Σxy) by Computing r Pearson s r the square root of the product of the sum of the x 2 column (Σx 2 ) and the sum of the Computing y 2 column Pearson s (Σy 2 ). The resulting r formula is: = = = and therefore 30 = (16)(60) = 30 = = (16)(60) = = = = (16)(60) = = = An alternative computational formula that avoids the step of computing deviation scores is: = (= ) ( ) ( ) ( ) = ( ) ( ) Sum Variance Law II Sum Law II Variance Sum Law II 177 ± = + ± = +

15 = 30 = (16)(60) Variance = 30 Sum 960 Law = 30 II = = Sum Law II by David Computing Computing M. Lane Pearson s Pearson s r = 30 (16)(60) = = = Prerequisites Chapter 1: Variance Sum Law I Chapter 4: Values of Pearson's Correlation = Learning Objectives ( ) 1. State the variance sum law when ( ) X and Y are not assumed to be independent 2. = Compute the variance of the sum of two variables if the variance of each and their correlation ( is known ) 3. Compute the variance 30 = ( ) of the difference between (16)(60) = = = two variables if the variance of each and their correlation is known ance Sum Law II Recall that when the variables X and Y are independent, the variance of the sum or difference between X and Y can be written as follows: = ± = + ( ) ( ) which is read: The ± variance = of X plus + or minus Y is equal to the variance of X plus the variance ± = of Y. Variance Sum Law When X and + Y are II correlated, ± 2 the following formula should be used: ± = + ± 2 ± = + where ρ is the correlation between X and Y in the population. For example, if the variance of verbal SAT were 10,000, = 10, ,000 the variance of quantitative SAT were 11,000 ± + (2)(0.5)10,00011,000 and the correlation between these ± = two tests + were ± , then the variance of total SAT (verbal + quantitative) would be: = 10, ,000 + (2)(0.5)10,00011,000 = 10, ,000 (2)(0.5)10,00011,000 10,000 11,000 (2)(0.5)10,00011,000 = 10, ,000 + (2)(0.5)10,00011,000 = 10, ,000 (2)(0.5)10,00011,000 which is equal to 31,488. The variance of the difference is: 10,000 11,000 (2)(0.5)10,00011,000 = 10, ,000 (2)(0.5)10,00011,

16 which is equal to 10,512. If the variances and the correlation are computed in a sample, then the following notation is used to express the variance sum law: ± = + ± 2 179

17 Statistical Literacy by David M. Lane Prerequisites Chapter 4: Values of Pearson's Correlation The graph below showing the relationship between age and sleep is based on a graph that appears on this web page. What do you think? Why might Pearson's correlation not be a good way to describe the relationship? Pearson's correlation measures the strength of the linear relationship between two variables. The relationship here is not linear. As age increases, hours slept decreases rapidly at first but then levels off. 180

18 Exercises Prerequisites All material presented in the Describing Bivariate Data chapter 1. Describe the relationship between variables A and C. Think of things these variables could represent in real life. 2. Make up a data set with 10 numbers that has a positive correlation. 3. Make up a data set with 10 numbers that has a negative correlation. 4. If the correlation between weight (in pounds) and height (in feet) is 0.58, find: (a) the correlation between weight (in pounds) and height (in yards) (b) the correlation between weight (in kilograms) and height (in meters). 5. Would you expect the correlation between High School GPA and College GPA to be higher when taken from your entire high school class or when taken from only the top 20 students? Why? 181

19 6. For a certain class, the relationship between the amount of time spent studying and the test grade earned was examined. It was determined that as the amount of time they studied increased, so did their grades. Is this a positive or negative association? 7. For this same class, the relationship between the amount of time spent studying and the amount of time spent socializing per week was also examined. It was determined that the more hours they spent studying, the fewer hours they spent socializing. Is this a positive or negative association? 8. For the following data: a. Find the deviation scores for Variable A that correspond to the raw scores of 2 and 8. b. Find the deviation scores for Variable B that correspond to the raw scores of 5 and 4. c. Just from looking at these scores, do you think these variables are positively or negatively correlated? Why? d. Now calculate the correlation. Were you right? 9. Students took two parts of a test, each worth 50 points. Part A has a variance of 25, and Part B has a variance of 49. The correlation between the test scores is 0.6. (a) If the teacher adds the grades of the two parts together to form a final test grade, what would the variance of the final test grades be? (b) What would the variance of Part A - Part B be? 10. True/False: The correlation in real life between height and weight is r=1. 182

20 11. True/False: It is possible for variables to have r=0 but still have a strong association. 12. True/False: Two variables with a correlation of 0.3 have a stronger linear relationship than two variables with a correlation of True/False: After polling a certain group of people, researchers found a 0.5 correlation between the number of car accidents per year and the driver s age. This means that older people get in more accidents. 14. True/False: The correlation between R and T is the same as the correlation between T and R. 15. True/False: To examine bivariate data graphically, the best choice is two side by side histograms. 16. True/False: A correlation of r=1.2 is not possible. Questions from Case Studies Angry Moods (AM) case study 17. (AM) What is the correlation between the Control-In and Control-Out scores? 18. (AM) Would you expect the correlation between the Anger-Out and Control- Out scores to be positive or negative? Compute this correlation. Flatulence (F) case study 19. (F) Is there are relationship between the number of male siblings and embarrassment in front of romantic interests? Create a scatterplot and compute r. Stroop (S) case study 20. (S) Create a scatterplot showing words on the X-axis and colors on the Y- axis. 183

21 21. (S) Compute the correlation between colors and words. 22. (S) Sort the data by color-naming time. Choose only the 23 fastest colornamers. (a) What is the new correlation? (b) What is the technical term for the finding that this correlation is smaller than the correlation for the full dataset? Animal Research (AR) case study 23. (AR) What is the overall correlation between the belief that animal research is wrong and belief that animal research is necessary? ADHD Treatment (AT) case study 24. (AT) What is the correlation between the participants correct number of responses after taking the placebo and their correct number of responses after taking 0.60 mg/kg of MPH? 184

### 9. Sampling Distributions

9. Sampling Distributions Prerequisites none A. Introduction B. Sampling Distribution of the Mean C. Sampling Distribution of Difference Between Means D. Sampling Distribution of Pearson's r E. Sampling

### 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

### Chapter 10 - Practice Problems 1

Chapter 10 - Practice Problems 1 1. A researcher is interested in determining if one could predict the score on a statistics exam from the amount of time spent studying for the exam. In this study, the

### LEARNING OBJECTIVES SCALES OF MEASUREMENT: A REVIEW SCALES OF MEASUREMENT: A REVIEW DESCRIBING RESULTS DESCRIBING RESULTS 8/14/2016

UNDERSTANDING RESEARCH RESULTS: DESCRIPTION AND CORRELATION LEARNING OBJECTIVES Contrast three ways of describing results: Comparing group percentages Correlating scores Comparing group means Describe

### The correlation coefficient

The correlation coefficient Clinical Biostatistics The correlation coefficient Martin Bland Correlation coefficients are used to measure the of the relationship or association between two quantitative

### Introduction to Regression. Dr. Tom Pierce Radford University

Introduction to Regression Dr. Tom Pierce Radford University In the chapter on correlational techniques we focused on the Pearson R as a tool for learning about the relationship between two variables.

### Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

### Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

### PEARSON R CORRELATION COEFFICIENT

PEARSON R CORRELATION COEFFICIENT Introduction: Sometimes in scientific data, it appears that two variables are connected in such a way that when one variable changes, the other variable changes also.

### Correlation key concepts:

CORRELATION Correlation key concepts: Types of correlation Methods of studying correlation a) Scatter diagram b) Karl pearson s coefficient of correlation c) Spearman s Rank correlation coefficient d)

### Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

### Report of for Chapter 2 pretest

Report of for Chapter 2 pretest Exam: Chapter 2 pretest Category: Organizing and Graphing Data 1. "For our study of driving habits, we recorded the speed of every fifth vehicle on Drury Lane. Nearly every

### Regression. In this class we will:

AMS 5 REGRESSION Regression The idea behind the calculation of the coefficient of correlation is that the scatter plot of the data corresponds to a cloud that follows a straight line. This idea can be

### 7. Normal Distributions

7. Normal Distributions A. Introduction B. History C. Areas of Normal Distributions D. Standard Normal E. Exercises Most of the statistical analyses presented in this book are based on the bell-shaped

### Lecture 5: Correlation and Linear Regression

Lecture 5: Correlation and Linear Regression 3.5. (Pearson) correlation coefficient The correlation coefficient measures the strength of the linear relationship between two variables. The correlation is

### Section 3 Part 1. Relationships between two numerical variables

Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.

### MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

### AP * Statistics Review. Linear Regression

AP * Statistics Review Linear Regression Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production

### CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

### Chapter 3: Central Tendency

Chapter 3: Central Tendency Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately describes the center of the distribution and represents

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### The aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree

PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and

### Chapter 3: Data Description Numerical Methods

Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,

### Module 2 Project Maths Development Team Draft (Version 2)

5 Week Modular Course in Statistics & Probability Strand 1 Module 2 Analysing Data Numerically Measures of Central Tendency Mean Median Mode Measures of Spread Range Standard Deviation Inter-Quartile Range

### 10-3 Measures of Central Tendency and Variation

10-3 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.

### A correlation exists between two variables when one of them is related to the other in some way.

Lecture #10 Chapter 10 Correlation and Regression The main focus of this chapter is to form inferences based on sample data that come in pairs. Given such paired sample data, we want to determine whether

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

### c. Construct a boxplot for the data. Write a one sentence interpretation of your graph.

MBA/MIB 5315 Sample Test Problems Page 1 of 1 1. An English survey of 3000 medical records showed that smokers are more inclined to get depressed than non-smokers. Does this imply that smoking causes depression?

### Describing Relationships between Two Variables

Describing Relationships between Two Variables Up until now, we have dealt, for the most part, with just one variable at a time. This variable, when measured on many different subjects or objects, took

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### 2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles.

Math 1530-017 Exam 1 February 19, 2009 Name Student Number E There are five possible responses to each of the following multiple choice questions. There is only on BEST answer. Be sure to read all possible

### Correlation of Common Core Content Standards to CMP3 Content. Number Standard for Mathematical Content CMP3 Unit: Investigation

Correlation of Common Core Content Standards to CMP3 Content GRADE 8 8.NS.A Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1 8.NS.A.2 Understand informally

### Chapter 2: Looking at Data Relationships (Part 1)

Chapter 2: Looking at Data Relationships (Part 1) Dr. Nahid Sultana Chapter 2: Looking at Data Relationships 2.1: Scatterplots 2.2: Correlation 2.3: Least-Squares Regression 2.5: Data Analysis for Two-Way

### . 58 58 60 62 64 66 68 70 72 74 76 78 Father s height (inches)

PEARSON S FATHER-SON DATA The following scatter diagram shows the heights of 1,0 fathers and their full-grown sons, in England, circa 1900 There is one dot for each father-son pair Heights of fathers and

### The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

### AP Statistics 2000 Scoring Guidelines

AP Statistics 000 Scoring Guidelines The materials included in these files are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought

### Homework 11. Part 1. Name: Score: / null

Name: Score: / Homework 11 Part 1 null 1 For which of the following correlations would the data points be clustered most closely around a straight line? A. r = 0.50 B. r = -0.80 C. r = 0.10 D. There is

### Comments 2 For Discussion Sheet 2 and Worksheet 2 Frequency Distributions and Histograms

Comments 2 For Discussion Sheet 2 and Worksheet 2 Frequency Distributions and Histograms Discussion Sheet 2 We have studied graphs (charts) used to represent categorical data. We now want to look at a

### Lecture 11: Chapter 5, Section 3 Relationships between Two Quantitative Variables; Correlation

Lecture 11: Chapter 5, Section 3 Relationships between Two Quantitative Variables; Correlation Display and Summarize Correlation for Direction and Strength Properties of Correlation Regression Line Cengage

### Measures of Central Tendency and Variability: Summarizing your Data for Others

Measures of Central Tendency and Variability: Summarizing your Data for Others 1 I. Measures of Central Tendency: -Allow us to summarize an entire data set with a single value (the midpoint). 1. Mode :

### Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2

Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables

### Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

### Algebra I: Lesson 5-4 (5074) SAS Curriculum Pathways

Two-Variable Quantitative Data: Lesson Summary with Examples Bivariate data involves two quantitative variables and deals with relationships between those variables. By plotting bivariate data as ordered

### Mathematics Common Core Cluster. Mathematics Common Core Standard. Domain

Mathematics Common Core Domain Mathematics Common Core Cluster Mathematics Common Core Standard Number System Know that there are numbers that are not rational, and approximate them by rational numbers.

### Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade

Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade

### Methods for Describing Data Sets

1 Methods for Describing Data Sets.1 Describing Data Graphically In this section, we will work on organizing data into a special table called a frequency table. First, we will classify the data into categories.

### not to be republished NCERT Measures of Central Tendency

You have learnt in previous chapter that organising and presenting data makes them comprehensible. It facilitates data processing. A number of statistical techniques are used to analyse the data. In this

### Prentice Hall Mathematics: Algebra 1 2007 Correlated to: Michigan Merit Curriculum for Algebra 1

STRAND 1: QUANTITATIVE LITERACY AND LOGIC STANDARD L1: REASONING ABOUT NUMBERS, SYSTEMS, AND QUANTITATIVE SITUATIONS Based on their knowledge of the properties of arithmetic, students understand and reason

### Chapter 6 Random Variables

Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340-344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:

### Introduction to Estimation

10. Estimation A. Introduction B. Degrees of Freedom C. Characteristics of Estimators D. Confidence Intervals 1. Introduction 2. Confidence Interval for the Mean 3. t distribution 4. Confidence Interval

### AMS7: WEEK 8. CLASS 1. Correlation Monday May 18th, 2015

AMS7: WEEK 8. CLASS 1 Correlation Monday May 18th, 2015 Type of Data and objectives of the analysis Paired sample data (Bivariate data) Determine whether there is an association between two variables This

### Lesson 4 Part 1. Relationships between. two numerical variables. Correlation Coefficient. Relationship between two

Lesson Part Relationships between two numerical variables Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear between two numerical variables Relationship

### Sheffield Hallam University. Faculty of Health and Wellbeing Professional Development 1 Quantitative Analysis. Glossary

Sheffield Hallam University Faculty of Health and Wellbeing Professional Development 1 Quantitative Analysis Glossary 2 Using the Glossary This does not set out to tell you everything about the topics

### AP Statistics 2008 Scoring Guidelines Form B

AP Statistics 2008 Scoring Guidelines Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students

### ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

### Pennsylvania System of School Assessment

Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read

### Eating and Sleeping Habits of Different Countries

9.2 Analyzing Scatter Plots Now that we know how to draw scatter plots, we need to know how to interpret them. A scatter plot graph can give us lots of important information about how data sets are related

### Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

### Descriptive statistics; Correlation and regression

Descriptive statistics; and regression Patrick Breheny September 16 Patrick Breheny STA 580: Biostatistics I 1/59 Tables and figures Descriptive statistics Histograms Numerical summaries Percentiles Human

### Relationships Between Two Variables: Scatterplots and Correlation

Relationships Between Two Variables: Scatterplots and Correlation Example: Consider the population of cars manufactured in the U.S. What is the relationship (1) between engine size and horsepower? (2)

### Students will understand 1. use numerical bases and the laws of exponents

Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

### Unit 9 Describing Relationships in Scatter Plots and Line Graphs

Unit 9 Describing Relationships in Scatter Plots and Line Graphs Objectives: To construct and interpret a scatter plot or line graph for two quantitative variables To recognize linear relationships, non-linear

### Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

### Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 2 (b) 1

Unit 2 Review Name Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Miles (per day) 1-2 9 3-4 22 5-6

### Name: Date: Use the following to answer questions 2-3:

Name: Date: 1. A study is conducted on students taking a statistics class. Several variables are recorded in the survey. Identify each variable as categorical or quantitative. A) Type of car the student

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Elementary Statistics. Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination

Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination What is a Scatter Plot? A Scatter Plot is a plot of ordered pairs (x, y) where the horizontal axis is used

### Chapter 9 Descriptive Statistics for Bivariate Data

9.1 Introduction 215 Chapter 9 Descriptive Statistics for Bivariate Data 9.1 Introduction We discussed univariate data description (methods used to eplore the distribution of the values of a single variable)

### 6.4 Normal Distribution

Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

### Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

### Introduction to Stata: Graphic Displays of Data and Correlation

Math 143 Lab #1 Introduction to Stata: Graphic Displays of Data and Correlation Overview Thus far in the course, you have produced most of our graphical displays by hand, calculating summaries and correlations

### Solving and Graphing Compound Inequalities of a Single Variable

Section 3.2 Chapter 3 Graphing Fundamentals Solving and Graphing Compound Inequalities of a Single Variable TERMINOLOGY 3.2 Prerequisite Terms: Absolute Value Inequality Your definition New Terms to Learn:

### MEASURES OF DISPERSION

MEASURES OF DISPERSION Measures of Dispersion While measures of central tendency indicate what value of a variable is (in one sense or other) average or central or typical in a set of data, measures of

### Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

### Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below.

Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School

### 7. Tests of association and Linear Regression

7. Tests of association and Linear Regression In this chapter we consider 1. Tests of Association for 2 qualitative variables. 2. Measures of the strength of linear association between 2 quantitative variables.

### Chapter 12 : Linear Correlation and Linear Regression

Number of Faculty Chapter 12 : Linear Correlation and Linear Regression Determining whether a linear relationship exists between two quantitative variables, and modeling the relationship with a line, if

### Lecture - 32 Regression Modelling Using SPSS

Applied Multivariate Statistical Modelling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 32 Regression Modelling Using SPSS (Refer

### Mind on Statistics. Chapter 3

Mind on Statistics Chapter 3 Section 3.1 1. Which one of the following is not appropriate for studying the relationship between two quantitative variables? A. Scatterplot B. Bar chart C. Correlation D.

### A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes

A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes together with the number of data values from the set that

### Module 3: Multiple Regression Concepts

Contents Module 3: Multiple Regression Concepts Fiona Steele 1 Centre for Multilevel Modelling...4 What is Multiple Regression?... 4 Motivation... 4 Conditioning... 4 Data for multiple regression analysis...

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### F. Farrokhyar, MPhil, PhD, PDoc

Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How

### with functions, expressions and equations which follow in units 3 and 4.

Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

### Interpreting Data in Graphs

Interpreting Data in Graphs Overview: This lesson is designed to help students in grades 5-7 create meaning from line graphs and scatter plots by developing a variety of strategies. Students will use line

### Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

### Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

### AP Statistics Final Examination Multiple-Choice Questions Answers in Bold

AP Statistics Final Examination Multiple-Choice Questions Answers in Bold Name Date Period Answer Sheet: Multiple-Choice Questions 1. A B C D E 14. A B C D E 2. A B C D E 15. A B C D E 3. A B C D E 16.

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction

1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K-7. Students must demonstrate

### AP STATISTICS REVIEW (YMS Chapters 1-8)

AP STATISTICS REVIEW (YMS Chapters 1-8) Exploring Data (Chapter 1) Categorical Data nominal scale, names e.g. male/female or eye color or breeds of dogs Quantitative Data rational scale (can +,,, with

### AP Statistics 2011 Scoring Guidelines

AP Statistics 2011 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in

### Introduction to Linear Regression

14. Regression A. Introduction to Simple Linear Regression B. Partitioning Sums of Squares C. Standard Error of the Estimate D. Inferential Statistics for b and r E. Influential Observations F. Regression

### Lesson Plan. Vocabulary

S.ID.6c: Use Residuals to Assess Fit of a Function S.ID.6c: Use Residuals to Assess Fit of a Function Summarize, represent, and interpret data on two categorical and quantitative variables 6. Represent

### Data Analysis: Describing Data - Descriptive Statistics

WHAT IT IS Return to Table of ontents Descriptive statistics include the numbers, tables, charts, and graphs used to describe, organize, summarize, and present raw data. Descriptive statistics are most