General Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test


 Baldric Taylor
 2 years ago
 Views:
Transcription
1 Five types of statistical analysis General Procedure for Hypothesis Test Descriptive Inferential Differences Associative Predictive What are the characteristics of the respondents? What are the characteristics of the population? Are two or more groups the same or different? Are two or more variables related in a systematic way? Can we predict one variable if we know one or more other variables? 1. Formulate H 0 (null hypothesis) and H 1 (alternative hypothesis) 2. Select appropriate test 3. Choose level of significance 4. Calculate the test statistic (SPSS) 5. Determine the probability associated with the statistic. Determine the critical value of the test statistic. General Procedure for Hypothesis Test 6 a) Compare with the level of significance, α b) Determine if the critical value falls in the rejection region. (check tables) 7 Reject or do not reject H 0 8 Draw a conclusion 1. Formulate H 1 and H 0 The hypothesis the researcher wants to test is called the alternative hypothesis H 1. The opposite of the alternative hypothesis is the null hypothesis H 0 (the status quo)(no difference between the sample and the population, or between samples). The objective is to DISPROVE the null hypothesis. The Significance Level is the Critical probability of choosing between the null hypothesis and the alternative hypothesis The selection of a proper Test depends on: Scale of the data nominal interval the statistic you seek to compare Proportions (percentages) means the sampling distribution of such statistic Normal Distribution T Distribution χ 2 Distribution Number of variables Univariate Bivariate Multivariate Type of question to be answered Testing for Differences Between Mean of the Sample and Mean of the Population The manager of Pepperoni Pizza Restaurant has recently begun experimenting with a new method of baking its pepperoni pizzas. He believes that the new method produces a bettertasting pizza, but he would like to base a decision on whether to switch from the old method to the new method on customer reactions. Therefore he performs an experiment. 1
2 The Experiment For 40 randomly selected customers who order a pepperoni pizza for home delivery, he includes both an old style and a free new style pizza in the order. All he asks is that these customers rate the difference between pizzas on a 10 to +10 scale, where 10 means they strongly favor the old style, +10 means they strongly favor the new style, and 0 means they are indifferent between the two styles. Old pizza New pizza Formulate H 1 and H 0 OneTailed Versus TwoTailed Tests The form of the alternative hypothesis can be either a onetailed or twotailed, depending on what you are trying to prove. A onetailed hypothesis is one where the only sample results which can lead to rejection of the null hypothesis are those in a particular direction, namely, those where the sample mean rating is positive. A twotailed test is one where results in either of two directions can lead to rejection of the null hypothesis. 1. Formulate H 1 and H 0 1. Formulate H 1 and H 0 OneTailed Versus TwoTailed Tests  continued Once the hypotheses are set up, it is easy to detect whether the test is onetailed or twotailed. One tailed alternatives are phrased in terms of > or < whereas two tailed alternatives are phrased in terms of The real question is whether to set up hypotheses for a particular problem as onetailed or twotailed. There is no statistical answer to this question. It depends entirely on what we are trying to prove. As the manager you would like to observe a difference between both pizzas If the new baking method is cheaper, you would like the preference to be for it. Null Hypothesis Alternative µ= mu=population mean H 0 µ=0 (there is no difference between the old style and the new style pizzas) (The difference between the mean of the sample and the mean of the population is zero) H 1 µ 0 or H 1 µ >0 Two tail test One tail test What we want to test is whether consumers prefer the new style pizza to the old style. We assume that there is no difference (i.e. the mean of the population is zero) and want to know whether our observed result is significantly (I.e. statistically) different. The onesample t test is used to test whether the mean of the sample is equal to a hypothesized value of the population from which the sample is drawn. Type I Error Rejecting the null hypothesis that the pizzas are equal, when they really are perceived equal by the customers of the entire population. Type II error Accepting the null hypothesis that the pizzas are equal, when they are really perceived to be different by the customers of the entire population. 2
3 3. Choose Level of Significance The ratings of 40 randomly selected customers produces the following table and statistics Significance Level selected is typically.05 or.01 I.e 5% or 1% From the summary statistics, we see that the sample mean is 2.10 and the sample standard deviation is The positive sample mean suggests a slight preference for the new pizza, (alternative hypothesis) but there is a fair degree of variation. What we don t know is whether this preference is significant 4. Calculate the Test Statistic t = X 0 s/ n T(n1) t value = = / Determine the Probabilityvalue (Critical Value) We use the right tail because the alternative is onetailed of the greater than variety The probability beyond this value in the right tail of the t distribution with n1 = 39 degrees of freedom is approximately The probability, 0.004, is the pvalue for the test. It indicates that these sample results would be very unlikely if the null hypothesis is true. 6. Compare with the level of significance, α (.05)and determine if the critical value falls in the rejection region Do not Reject H 0 1α Reject H 0 Reject H Reject or do not reject H Conclusion the sample evidence is fairly convincing that customers, on average, prefer the newstyle pizza. Should the manager switch to the newstyle pizza on the basis of these sample results? Depends. There is no indication that the newstyle pizza costs any more to make than the oldstyle pizza. Therefore, unless there are reasons for not switching (for example, costs) then we recommend the switch. Since the statistic falls in the rejection area we reject H o and conclude that the perceived difference between the pizzas is significantly different from zero. 3
4 Comparing Means Suppose you are the brand manager for Tylenol, and a recent TV ad tells the consumers that Advil is more effective (quicker) at treating headaches than Tylenol. An independent random sample of 400 people with a headache is given Advil, and 260 people report they feel better within an hour. Another independent sample of 400 people is taken and 252 people that took Tylenol reported feeling better. Is the TV ad correct? Or, in other words, is there a difference between the means of the two samples Hypothesis Test for Two Independent Samples Test for mean difference: Null Hypothesis Alternative H 0 µ 1 = µ 2 H 1 µ 1 µ 2 Under H 0 µ 1  µ 2 = 0. So, the test concludes whether there is a difference between the means or not. Comparison of means: Graphically Are the means equal? Or are the differences simply due to chance? In this example we have two independent samples Other examples populations of users and nonusers of a brand differ in perceptions of the brand high income consumers spend more on the product than low income consumers The proportion of brandloyal users in Segment 1 (eg males) is more than the proportion in segment II (e.g. females) The proportion of households with Internet in Canada exceeds that in USA Can be used for examining differences between means and proportions The two populations are sampled and the means and variances computed based on the samples of sizes n 1 and n 2 If both populations are found to have the same variance then a tstatistic is calculated. The comparison of means of independent samples assumes that the variances are equal. If the variances are not known an Ftest is conducted to test the equality of the variances of the two populations. F Unequal variances: The problem α 0 f 4
5 Tylenol vs Advil We would need to test if the difference is zero or not. H 0 : π A  π T = 0; H 1 : π A  π T 0 t = mean 1 mean 2 p A = 260/400= 0.65 p T = 252/400= 0.63 Variability of random means z = (.65)(.35)/400+ (.63)(.37)/400 = 0.66 Differences Between Groups when Comparing Means Ratio scaled dependent variables ttest When groups are small When population standard deviation is unknown ztest When groups are large For large samples the tdistribution approaches the normal distribution and so the ttest and the ztest are equivalent. Degrees of Freedom d.f. = n  k where: n = n 1 + n 2 k = number of groups The degrees of freedom is (n 1 + n 2 2) Tylenol vs Advil α = 0.10 Critical value = 1.64 α Since 0.66 is less than the critical value of 1.64 we accept the null hypothesis: there is no difference between Advil and Tylenol users Test for Means Difference on Paired Samples What is a paired sample? When two sets of observations relate to the same respondents When you want to measure brand recall before and after an ad campaign. Shoppers consider brand name to be more important than price Households spend more money on pizza than on hamburgers The proportion of a bank s customers who have a checking account exceeds the proportion who have a savings account Since it is the same population that is being sampled the observations are not independent. The appropriate test is a pairedttest Example Q1. When purchasing golf clubs rate the importance 15 of price Q2. When purchasing golf clubs rate the importance 15 of brand H 0 There is no difference in importance between brand and price H 1 One tailed H 1 Two Tailed Price is more important than brand There is a difference in importance between brand and price 5
6 What is an ANOVA? Oneway ANOVA stands for Analysis of Variance Purpose: Extends the test for mean difference between two independent samples to multiple samples. Employed to analyze the effects of manipulations (independent variables) on a random variable (dependent). What does ANOVA tests? The null hypothesis tests whether the mean of all the independent samples is equal H 0 µ 1 = µ 2 = µ 3..= µ n H 1 µ 1 µ 2 µ 3.. µ n The alternative hypothesis specifies that all the means are not equal Definitions Dependent variable: the variable we are trying to explain, also known as response variable (Y). Independent variable: also known as explanatory variables or Factors (X). Research normally involves determining whether the independent variable has an effect on the variability of the dependent variable Comparing Antacids The maker of Acidoff, an antacid stomach remedy wants to know which type of ad results in the most positive brand attitude among consumers. Non comparative ad: Acidoff provides fast relief Explicit Comparative ad: Acidoff provides faster relief than Tums Non explicit comparative ad Acidoff provides the fastest relief Three groups of people are exposed to one type of ad and asked to rate their attitude towards the ad. Brand Attitude Type of Ad Comparing Antacids Non Comparative Explicit Comparative Means Non Explicit Comparative The dependent variable (denoted by Y) is called the response variable and in this case it is brand attitude (I.e. we want to know what effect ad type has on attitude toward the brand) The independent variables are called factors, in this case type of ad: noncomparative, explicit comparative, nonexplicit comparative The different levels of the factor are called treatments. In this case the treatments are the different ratings for each of the three types of ads. There will be two sources of variation. Variation within the treatment (e.g. within the noncomparative ad etc.) Variation between the treatments (I.e. between the three types of ads) 6
7 The whole idea behind the analysis of variance is to compare the ratio of between group variance to within group variance. If the variance caused by the interaction between the samples is much larger when compared to the variance that appears within each group, then it is because the means are different. F Variance = Variance Degrees of Freedom between within groups groups The F statistics has DF for both numerator (between group) and denominator (within group) DF between group = (c1) where c=number of groups DF within group = (Nc) where N is sample size Within Category Variation SS within Decomposition of the Total Variation Category Mean Independent Variable X Categories Total Sample X 1 X 2 X 3. X c Y 1 Y 1 Y 1. Y 1 Y 1 Y 2 Y 2 Y 2. Y 2 Y 2 Total Variation SS y Y n Y n Y n. Y n Y n Y 1 Y 2 Y 3 Y c Y Between Category Variation SS between Grand Mean ANOVA Test The null hypothesis would be tested with the F distribution F distribution Reject H 0 df (c1)/(nc) α One way ANOVA investigates: Main effects factor has an acrosstheboard effect e.g., type of ad Or age or involvement A TWOWAY ANOVA investigates: INTERACTIONS effect of one factor depends on another factor e.g., larger advertising effects for those with no experience importance of price depends on income level and involvement with the product 7
Null Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationMCQ TESTING OF HYPOTHESIS
MCQ TESTING OF HYPOTHESIS MCQ 13.1 A statement about a population developed for the purpose of testing is called: (a) Hypothesis (b) Hypothesis testing (c) Level of significance (d) Teststatistic MCQ
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationHypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam
Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10 TWOSAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10 TWOSAMPLE TESTS Practice
More informationTHE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationInferential Statistics. Probability. From Samples to Populations. Katie RommelEsham Education 504
Inferential Statistics Katie RommelEsham Education 504 Probability Probability is the scientific way of stating the degree of confidence we have in predicting something Tossing coins and rolling dice
More informationChapter 9 Introduction to Hypothesis Testing
Chapter 9 Introduction to Hypothesis Testing 9.2  Hypothesis Testing Hypothesis testing is an eample of inferential statistics We use sample information to draw conclusions about the population from which
More informationStatistical Inference and ttests
1 Statistical Inference and ttests Objectives Evaluate the difference between a sample mean and a target value using a onesample ttest. Evaluate the difference between a sample mean and a target value
More informationStatistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
More informationAbout Hypothesis Testing
About Hypothesis Testing TABLE OF CONTENTS About Hypothesis Testing... 1 What is a HYPOTHESIS TEST?... 1 Hypothesis Testing... 1 Hypothesis Testing... 1 Steps in Hypothesis Testing... 2 Steps in Hypothesis
More informationIndependent t Test (Comparing Two Means)
Independent t Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent ttest when to use the independent ttest the use of SPSS to complete an independent
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationIntroduction to Hypothesis Testing. Copyright 2014 Pearson Education, Inc. 91
Introduction to Hypothesis Testing 91 Learning Outcomes Outcome 1. Formulate null and alternative hypotheses for applications involving a single population mean or proportion. Outcome 2. Know what Type
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More informationChapter 8 Introduction to Hypothesis Testing
Chapter 8 Student Lecture Notes 81 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate
More informationSPSS on two independent samples. Two sample test with proportions. Paired ttest (with more SPSS)
SPSS on two independent samples. Two sample test with proportions. Paired ttest (with more SPSS) State of the course address: The Final exam is Aug 9, 3:30pm 6:30pm in B9201 in the Burnaby Campus. (One
More informationChapter 9, Part A Hypothesis Tests. Learning objectives
Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population
More informationSection 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)
Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis
More informationDevelop hypothesis and then research to find out if it is true. Derived from theory or primary question/research questions
Chapter 12 Hypothesis Testing Learning Objectives Examine the process of hypothesis testing Evaluate research and null hypothesis Determine one or twotailed tests Understand obtained values, significance,
More informationt Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
ttests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com
More informationMATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample
MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of
More informationTwosample hypothesis testing, II 9.07 3/16/2004
Twosample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For twosample tests of the difference in mean, things get a little confusing, here,
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationHypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 9  FUNDAMENTALS OF HYPOTHESIS TESTING: ONESAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 302) Spring Semester 20 Chapter 9  FUNDAMENTALS OF HYPOTHESIS
More informationStatistiek I. ttests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35
Statistiek I ttests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistieki/ John Nerbonne 1/35 ttests To test an average or pair of averages when σ is known, we
More informationModule 9: Nonparametric Tests. The Applied Research Center
Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } OneSample ChiSquare Test
More informationSections 4.54.7: TwoSample Problems. Paired ttest (Section 4.6)
Sections 4.54.7: TwoSample Problems Paired ttest (Section 4.6) Examples of Paired Differences studies: Similar subjects are paired off and one of two treatments is given to each subject in the pair.
More informationHypothesis Testing hypothesis testing approach formulation of the test statistic
Hypothesis Testing For the next few lectures, we re going to look at various test statistics that are formulated to allow us to test hypotheses in a variety of contexts: In all cases, the hypothesis testing
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationBasic Statistics Self Assessment Test
Basic Statistics Self Assessment Test Professor Douglas H. Jones PAGE 1 A sodadispensing machine fills 12ounce cans of soda using a normal distribution with a mean of 12.1 ounces and a standard deviation
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationUNDERSTANDING THE TWOWAY ANOVA
UNDERSTANDING THE e have seen how the oneway ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
More informationSample Size Determination
Sample Size Determination Population A: 10,000 Population B: 5,000 Sample 10% Sample 15% Sample size 1000 Sample size 750 The process of obtaining information from a subset (sample) of a larger group (population)
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationChapter 8 Hypothesis Tests. Chapter Table of Contents
Chapter 8 Hypothesis Tests Chapter Table of Contents Introduction...157 OneSample ttest...158 Paired ttest...164 TwoSample Test for Proportions...169 TwoSample Test for Variances...172 Discussion
More informationHYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
More informationTesting Hypotheses using SPSS
Is the mean hourly rate of male workers $2.00? TTest OneSample Statistics Std. Error N Mean Std. Deviation Mean 2997 2.0522 6.6282.2 OneSample Test Test Value = 2 95% Confidence Interval Mean of the
More informationOpgaven Onderzoeksmethoden, Onderdeel Statistiek
Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week
More informationPsychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on
More informationUnit 29 ChiSquare GoodnessofFit Test
Unit 29 ChiSquare GoodnessofFit Test Objectives: To perform the chisquare hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni
More informationANOVA MULTIPLE CHOICE QUESTIONS. In the following multiplechoice questions, select the best answer.
ANOVA MULTIPLE CHOICE QUESTIONS In the following multiplechoice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard
More information13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations.
13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations. Data is organized in a two way table Explanatory variable (Treatments)
More information1 Hypotheses test about µ if σ is not known
1 Hypotheses test about µ if σ is not known In this section we will introduce how to make decisions about a population mean, µ, when the standard deviation is not known. In order to develop a confidence
More informationStatistics for Management IISTAT 362Final Review
Statistics for Management IISTAT 362Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to
More information1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationHypothesis testing  Steps
Hypothesis testing  Steps Steps to do a twotailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
More informationCHAPTER 9 HYPOTHESIS TESTING
CHAPTER 9 HYPOTHESIS TESTING The TI83 Plus and TI84 Plus fully support hypothesis testing. Use the key, then highlight TESTS. The options used in Chapter 9 are given on the two screens. TESTING A SINGLE
More information7 Hypothesis testing  one sample tests
7 Hypothesis testing  one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationIntroduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
More informationChapter 1 Hypothesis Testing
Chapter 1 Hypothesis Testing Principles of Hypothesis Testing tests for one sample case 1 Statistical Hypotheses They are defined as assertion or conjecture about the parameter or parameters of a population,
More informationDifference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
More informationHypothesis Testing or How to Decide to Decide Edpsy 580
Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Hypothesis Testing or How to Decide to Decide
More informationAP STATISTICS 2009 SCORING GUIDELINES (Form B)
AP STATISTICS 2009 SCORING GUIDELINES (Form B) Question 5 Intent of Question The primary goals of this question were to assess students ability to (1) state the appropriate hypotheses, (2) identify and
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationTesting: is my coin fair?
Testing: is my coin fair? Formally: we want to make some inference about P(head) Try it: toss coin several times (say 7 times) Assume that it is fair ( P(head)= ), and see if this assumption is compatible
More information3. Nonparametric methods
3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests
More informationSPSS Guide: Tests of Differences
SPSS Guide: Tests of Differences I put this together to give you a stepbystep guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
More informationChapter 9: Hypothesis Testing GBS221, Class April 15, 2013 Notes Compiled by Nicolas C. Rouse, Instructor, Phoenix College
Chapter Objectives 1. Learn how to formulate and test hypotheses about a population mean and a population proportion. 2. Be able to use an Excel worksheet to conduct hypothesis tests about population means
More informationStatistical Significance and Bivariate Tests
Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Refamiliarize ourselves with basic statistics ideas: sampling distributions,
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationHypothesis testing: Examples. AMS7, Spring 2012
Hypothesis testing: Examples AMS7, Spring 2012 Example 1: Testing a Claim about a Proportion Sect. 7.3, # 2: Survey of Drinking: In a Gallup survey, 1087 randomly selected adults were asked whether they
More informationAnalysis of Variance ANOVA
Analysis of Variance ANOVA Overview We ve used the t test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.
More informationChapter Five: Paired Samples Methods 1/38
Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More informationTwosample hypothesis testing, I 9.07 3/09/2004
Twosample hypothesis testing, I 9.07 3/09/2004 But first, from last time More on the tradeoff between Type I and Type II errors The null and the alternative: Sampling distribution of the mean, m, given
More informationHypothesis Testing. Concept of Hypothesis Testing
Quantitative Methods 2013 Hypothesis Testing with One Sample 1 Concept of Hypothesis Testing Testing Hypotheses is another way to deal with the problem of making a statement about an unknown population
More information4) The goodness of fit test is always a one tail test with the rejection region in the upper tail. Answer: TRUE
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 13 Goodness of Fit Tests and Contingency Analysis 1) A goodness of fit test can be used to determine whether a set of sample data comes from a specific
More informationHypothesis testing. c 2014, Jeffrey S. Simonoff 1
Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there
More informationTwo Related Samples t Test
Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person
More informationHomework 6 Solutions
Math 17, Section 2 Spring 2011 Assignment Chapter 20: 12, 14, 20, 24, 34 Chapter 21: 2, 8, 14, 16, 18 Chapter 20 20.12] Got Milk? The student made a number of mistakes here: Homework 6 Solutions 1. Null
More informationChapter 7. Section Introduction to Hypothesis Testing
Section 7.1  Introduction to Hypothesis Testing Chapter 7 Objectives: State a null hypothesis and an alternative hypothesis Identify type I and type II errors and interpret the level of significance Determine
More informationThe GoodnessofFit Test
on the Lecture 49 Section 14.3 HampdenSydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20
More informationI. Basics of Hypothesis Testing
Introduction to Hypothesis Testing This deals with an issue highly similar to what we did in the previous chapter. In that chapter we used sample information to make inferences about the range of possibilities
More informationChapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means Oneway ANOVA To test the null hypothesis that several population means are equal,
More informationResearch Variables. Measurement. Scales of Measurement. Chapter 4: Data & the Nature of Measurement
Chapter 4: Data & the Nature of Graziano, Raulin. Research Methods, a Process of Inquiry Presented by Dustin Adams Research Variables Variable Any characteristic that can take more than one form or value.
More informationSingle sample hypothesis testing, II 9.07 3/02/2004
Single sample hypothesis testing, II 9.07 3/02/2004 Outline Very brief review Onetailed vs. twotailed tests Small sample testing Significance & multiple tests II: Data snooping What do our results mean?
More informationresearch/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other
1 Hypothesis Testing Richard S. Balkin, Ph.D., LPCS, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric
More informationHypothesis Testing  II
3σ 2σ +σ +2σ +3σ Hypothesis Testing  II Lecture 9 0909.400.01 / 0909.400.02 Dr. P. s Clinic Consultant Module in Probability & Statistics in Engineering Today in P&S 3σ 2σ +σ +2σ +3σ Review: Hypothesis
More informationCHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING
CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized
More information13 TwoSample T Tests
www.ck12.org CHAPTER 13 TwoSample T Tests Chapter Outline 13.1 TESTING A HYPOTHESIS FOR DEPENDENT AND INDEPENDENT SAMPLES 270 www.ck12.org Chapter 13. TwoSample T Tests 13.1 Testing a Hypothesis for
More informationUnit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
More informationBasic Statistics. Hypothesis Testing
Basic Statistics Hypothesis Testing Hypothesis Testing Learning Intentions Today we will understand: Formulating the null and alternative hypothesis Distinguish between a onetail and twotail hypothesis
More informationThe alternative hypothesis,, is the statement that the parameter value somehow differs from that claimed by the null hypothesis. : 0.5 :>0.5 :<0.
Section 8.28.5 Null and Alternative Hypotheses... The null hypothesis,, is a statement that the value of a population parameter is equal to some claimed value. :=0.5 The alternative hypothesis,, is the
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationChapter 1112 1 Review
Chapter 1112 Review Name 1. In formulating hypotheses for a statistical test of significance, the null hypothesis is often a statement of no effect or no difference. the probability of observing the data
More informationPaired vs. 2 sample comparisons. Comparing means. Paired comparisons allow us to account for a lot of extraneous variation.
Comparing means! Tests with one categorical and one numerical variable Paired vs. sample comparisons! Goal: to compare the mean of a numerical variable for different groups. Paired comparisons allow us
More informationConfidence Intervals and Hypothesis Testing
Name: Class: Date: Confidence Intervals and Hypothesis Testing Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The librarian at the Library of Congress
More informationSimple Linear Regression
Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression Statistical model for linear regression Estimating
More informationIntroduction to Analysis of Variance (ANOVA) Limitations of the ttest
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One Way ANOVA Limitations of the ttest Although the ttest is commonly used, it has limitations Can only
More informationNull and Alternative Hypotheses. Lecture # 3. Steps in Conducting a Hypothesis Test (Cont d) Steps in Conducting a Hypothesis Test
Lecture # 3 Significance Testing Is there a significant difference between a measured and a standard amount (that can not be accounted for by random error alone)? aka Hypothesis testing H 0 (null hypothesis)
More information