# Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Save this PDF as:

Size: px
Start display at page:

Download "Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )" ## Transcription

1 Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before we proceed, first itroduce some terms that should be kow. 0 4 Equatio of a lie The equatio of a lie ca be writte as equatio A + B + C 0 Where A, B ad C are real costats. This is called the geeral form ( 一 般 式 ) of a lie. We ca fid the equatio of a lie b give a two of the followig values: The slope The -itercept The -itercept Coordiate of a poit Coordiate of aother poit Slope-itercept form ( 斜 截 式 ) Whe the slope m ad the -itercept (0,c) of a lie is kow, the the equatio of the lie is just: m + c Moreover, base o the above result, we ca kow the slope ad itercept of a lie if its geeral form A + B + C 0 is give: A C m, c B B Itercept form ( 截 距 式 ) The figure represets a lie. The lie crosses the -ais at. The poit (0,) is called the -itercept ( 截 距 ). Similarl, the poit (,0) is called the -itercept ( 截 距 ). Moreover, there is a quatit called slope ( 斜 率 ) tellig us the obliquit of the lie. It ca be calculated b the followig formula: m Here, m is the smbol for slope, ad (, ), (, ) are two poits lig o the lie. I this lie, the slope is /. If a lie is parallel to the -ais, its slope is 0. If a lie is parallel to the -ais, its slope is udefied. Whe the - ad -itercepts, (a, 0) ad (0,b) are give, the equatio of the lie is: + a b Poit-slope form ( 點 斜 式 ) Whe the slope m ad a poit ( 0, 0 ) is give, the equatio is: m 0 0 9

2 Chapter : Liear Equatios Two-poit form ( 兩 點 式 ) Whe coordiates of two poits (, ), (, ) are give, the equatio is: Now take the lie above as eample. As said, the slope of that lie is /, the -itercept is (0,), the -itercept is (,0). We ca see that it also passes through the poits (4, -) ad (-,). B slope-itercept form, we get the equatio: m+ c B itercept form, we get the equatio: + + a b + B poit-slope form, we get the equatio: m ( ) 0 0 B two-poit form, we get the equatio: ( ) 4 ( ) 4 Simplifig all equatios above, ad we will all get our geeral formula for the lie: + 0 Itersectig Poit of Lies ( 線 之 交 點 ) The followig figure shows two lies itersectig at a poit: - 0 Oe ma be iterested i fidig the coordiate of the itersectig poit. What should we do? Firstl, fid out the equatio of the two lies. Here, the two lies are + 0 ad + 0 respectivel. The, we set up a simultaeous equatios sstem ( 聯 立 方 程 系 統 ): Sice both equatios are liear, ad there are ukows, we call this a simultaeous liear equatios i ukows ( 聯 立 二 元 一 次 方 程 ), ad I ll abbreviate it as SLE. For SLE, we usuall write the equatios as: + Moreover, we would label the first equatio as (), the secod as (): + Now what? I order to solve SLE, we have methods: 0

3 Chapter : Liear Equatios Substitutio method ( 代 入 法 ) I (), we see that. Substitutig this ito (), we get: 5. That meas the itersectig poit is(, ). So, 5 Elimiatio method ( 消 元 法 ) Rather tha substitutio, we ma also solve the equatio b elimiatig a variable. How? I (), we see a -. I (), we see a +. Does t it be good that the ca be cacelled b addig () ad () together? Surel! You ca just add () ad () together to form a ew equatio: - Not just, ca also be elimiated b doig () (), so: - -5 Formula ( 公 式 ) The above two methods are eas to uderstad ad implemet, but would be iefficiet if the coefficiets are quite complicated, like, ? Actuall, there is a geeral formula solvig SLE. For a+ b c d+ e f Defie ae bd, bf ce, cd af ( is proouced as delta ). The,. To simplif memorizig, we ofte deote p q ps qr r s, so a b b c c a,,. d e e f f d Note that ot all SLE are solvable. Sometimes two lies are parallel, i.e., o itersectig poit. Usig substitutio or elimiatio method will ield a false statemet (e.g. 70), ad usig formula will give 0, but either or is ot zero. O the other had, a SLE ma also have ifiite solutios. Such a case is two lies overlap. At that time, usig substitutio or elimiatio method will give a idetit (e.g. ), ad usig formula will result i, ad all are zeroes. I additio, substitutio method ca also appl for other differet tpes of simultaeous equatios. For eample, cosider B substitutig ito (), we get, i.e.,. Ad ca easil be 4 derived from this. Etesio: If more tha lies itersect i oe poit ol, the are called cocurret ( 共 點 ) Absolute value ( 絕 對 值 ) Before we proceed, let s itroduce what is absolute value. The absolute value of is deoted b, where is defied as: if 0 if < 0 Or simpl: igore the egative sig. For eample, 5 5; - ; 5-6. The properties of absolute values are: 0 If a, ad a 0, the a or -a. If a < 0, the equatio has o solutios. If, the or -.

4 Chapter : Liear Equatios Distace Let us first review how to calculate the distace betwee two poits. B Pthagoras theorem ( 畢 氏 定 理 ), we kow the distace d betwee two poits (, ) ad (, ) is: d + How about the distace betwee a poit ad a lie? First we eed to defie the meaig the distace here, because there are so ma poits o a lie for ou to measure. We defie the distace betwee a poit ad a lie to be the shortest distace. (, /) -/ Amog all the lies passig though the poit ad the lie, we foud that the lie that both pass through the poit ad perpedicular to the lie make the distace shortest, as illustrated above. If the coordiates of a poit is (, ), ad the equatio of the lie is a + b + c 0, the the distace is: d a + b + c a + b For eample, the graph above tells us that the distace betwee poit (, /) ad lie + is: ( ) + ( ) + + d Properties of Slope Slope tells us how oblique a lie is. Actuall, b this, we ca give out some properties about slope. ) If the slopes of two lies are the same (i.e., m m ), the are parallel or the same. ) If the product of the slopes of two lies is (i.e. m m -), the are perpedicular to each other. Poit of Divisio of a Lie ( 線 之 分 點 ) A poit of divisio o a lie is the poit that divides a lie ito two parts. O lie AB, we defie a poit P such that it divides the lie ito ratio of r: s. If the coordiates of A is (, ), B is (, ), P is (, ), the s + r s + r (, ), s+ r s+ r This is called the sectio formula ( 分 點 公 式 ). Note that r ad s ma be egative, ad the poit is said to divide the lie eterall ( 外 分 ). B (,) A (0,) 0 4 For eample, if we wat to fid the poit that divides the lie segmet AB above i ratio :5, b sectio formula, the poit is,. 8

5 Chapter : Liear Equatios A special case of sectio formula is that r: s :. This ields the mid-poit formula ( 中 點 + +,, 公 式 ), Area of Polgos Last but ot least, we tell ou how to calculate the area of a polgo with the coordiates of each verte is give. If the vertices of a polgo are (, ), (, ), (, ), (, ), the its area is: Here, otatio A meas ( ) ( ). Or, we ca memorize it like this: Note that the poits (, ), (, ), (, ), (, ) should be arraged i ati-clockwise or clockwise order. Otherwise, the result ma be wrog. For eample, the area of the followig quadrilateral is: Revisio: A 0 - I this chapter, we ve leart:. Lie i coordiate geometr. Equatio of a lie. Itersectig poit of lies 4. Absolute value 5. Distace betwee lie ad poit 6. Properties of slope 7. Poit of divisio 8. Area of polgo

6 Chapter : Liear Equatios Eercise I the followigs, if ot specified, k is a costat, ad is a iteger.. Fid out the slope, - ad -itercept of the followigs: a) b) 9 c) + 4 d). Fid out the equatio of a lie which the product of its - ad -itercept is 0, the -itercept is o the right of the origi, ad it is parallel to the lie (HKCEE 990) I the figure, A (,0), B (0,5) ad C (0,) are three poits ad O (0,0) is the origi. D is a poit o AB such that the area of BCD equals half of the area of OAB. Fid the equatio of the lie CD. B C D 5. Prove the formula for solvig a SLE. 6. (HKMO 000 Heat) Fid the shortest distace betwee the lie 4 0 ad the poit (, ). 7. If + 5 4, fid all possible values of. [Hit: Cosider the coditios for <, < 5 ad 5] 8. (ISMC 000 Fial) Solve, ad z i: + z z z Cosider the lies L : ad L : + 0.Fid the equatio of the lie passig through the itersectio poit of L ad L, ad is perpedicular to L. 0. A lie L itersects the aes at A (a, 0) ad B (0, b). M (-, 4) is the mid-poit of AB. a) Fid a ad b. b) Fid the equatio of AB. c) C is a poit o the coordiate plat such that AC BC. The area of BCD is 5 square uits. Fid all possible coordiates of C.. Prove.. Let A (, ), B (, ) ad C (, ) be poits of vertices of a triagle. Let D, E, F be midpoits of BC, CA ad AB respectivel. a) Show that AD, BE ad CF are cocurret. b) Assume the three lies meet at G. Show that AG:GD BG:GE CG:GF : O A 4. I lie segmet AB, the coordiates of the two eds A ad B are (, 5) ad (7, ) respectivel. C (k, k) ad P ( 0, 0 ) is a poit o AB. D (, 4) is a poit. Fid: a) The equatio of AB. b) k. c) The ratio r:s that poit C divides AB. [Hit: r:s r/s] d) Legth of CD. e) The shortest legth of PD. f) The coordiates of P whe PD is the shortest. g) Legth of CP whe PD is the shortest. h) Area of PCD whe PC is the shortest. 4

7 Chapter : Liear Equatios Suggested Solutios for the Eercise a) Slope -5/6, -itercept -7/6, -itercept -7/5 b) Slope, -itercept -9, -itercept 9 c) Slope -/4, -itercept 6, -itercept 8 d) Slope, -itercept 0, -itercept 0 ) ) a) b) 9 7 c) :4 d) e) f), g) 7 9 h) ) 0 7), 6 8) 6,, z6 9) a) a -6, b 8 b) c) (-7,7), (,) 5

### Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

### Review for College Algebra Final Exam Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

More information

### Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

### Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

### ARITHMETIC AND GEOMETRIC PROGRESSIONS Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

More information

### S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + \$ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

### Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

### Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

### The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

### Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

### Alternatives To Pearson s and Spearman s Correlation Coefficients Alteratives To Pearso s ad Spearma s Correlatio Coefficiets Floreti Smaradache Chair of Math & Scieces Departmet Uiversity of New Mexico Gallup, NM 8730, USA Abstract. This article presets several alteratives

More information

### Chapter 9: Correlation and Regression: Solutions Chapter 9: Correlatio ad Regressio: Solutios 9.1 Correlatio I this sectio, we aim to aswer the questio: Is there a relatioship betwee A ad B? Is there a relatioship betwee the umber of emploee traiig hours

More information

### Algebra Work Sheets. Contents The work sheets are grouped accordig to math skill. Each skill is the arraged i a sequece of work sheets that build from simple to complex. Choose the work sheets that best fit the studet s eed ad will

More information

### 8.3 POLAR FORM AND DEMOIVRE S THEOREM SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,

More information

### 7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b Guided Notes for lesso P. Properties of Expoets If a, b, x, y ad a, b, 0, ad m, Z the the followig properties hold:. Negative Expoet Rule: b ad b b b Aswers must ever cotai egative expoets. Examples: 5

More information

### 2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

### 4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

### THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

### CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

### Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

### In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

### 1 The Binomial Theorem: Another Approach The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets

More information

### Section IV.5: Recurrence Relations from Algorithms Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by

More information

### Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016 CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito

More information

### Continued Fractions continued. 3. Best rational approximations Cotiued Fractios cotiued 3. Best ratioal approximatios We hear so much about π beig approximated by 22/7 because o other ratioal umber with deomiator < 7 is closer to π. Evetually 22/7 is defeated by 333/06

More information

### Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will: Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]

More information

### TILE PATTERNS & GRAPHING TILE PATTERNS & GRAPHING LESSON 1 THE BIG IDEA Tile patters provide a meaigful cotext i which to geerate equivalet algebraic expressios ad develop uderstadig of the cocept of a variable. Such patters are

More information

### Second Order Linear Partial Differential Equations. Part III Secod Order iear Partial Differetial Equatios Part III Oe-dimesioal Heat oductio Equatio revisited; temperature distributio of a bar with isulated eds; ohomogeeous boudary coditios; temperature distributio

More information

### NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P FEBRUARY/MARCH 009 MARKS: 50 TIME: 3 hours This questio paper cosists of 0 pages, a iformatio sheet ad 3 diagram sheets. Please tur over Mathematics/P DoE/Feb.

More information

### Literal Equations and Formulas . Literal Equatios ad Formulas. OBJECTIVE 1. Solve a literal equatio for a specified variable May problems i algebra require the use of formulas for their solutio. Formulas are simply equatios that express

More information

### Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

### REVISION SHEET FP2 (AQA) CALCULUS. x x π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + arcsin x = + ar sinh x the Further Mathematics etwork www.fmetwork.org.uk V 07 REVISION SHEET FP (AQA) CALCULUS The mai ideas are: Calculus usig iverse trig fuctios & hperbolic trig fuctios ad their iverses. Calculatig arc legths.

More information

### Math 152 Final Exam Review Math 5 Fial Eam Review Problems Math 5 Fial Eam Review Problems appearig o your i-class fial will be similar to those here but will have umbers ad fuctios chaged. Here is a eample of the way problems selected

More information

### 1.3 Binomial Coefficients 18 CHAPTER 1. COUNTING 1. Biomial Coefficiets I this sectio, we will explore various properties of biomial coefficiets. Pascal s Triagle Table 1 cotais the values of the biomial coefficiets ( ) for 0to

More information

### 7. Sample Covariance and Correlation 1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y

More information

### SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

### AP Calculus BC 2003 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

More information

### 1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

### Fourier Series and the Wave Equation Part 2 Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries

More information

### NATIONAL SENIOR CERTIFICATE GRADE 11 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 007 MARKS: 50 TIME: 3 hours This questio paper cosists of pages, 4 diagram sheets ad a -page formula sheet. Please tur over Mathematics/P DoE/Exemplar

More information

### FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

### Chapter Suppose you wish to use the Principle of Mathematical Induction to prove that 1 1! + 2 2! + 3 3! n n! = (n + 1)! 1 for all n 1. Chapter 4. Suppose you wish to prove that the followig is true for all positive itegers by usig the Priciple of Mathematical Iductio: + 3 + 5 +... + ( ) =. (a) Write P() (b) Write P(7) (c) Write P(73)

More information

### Section 9.2 Series and Convergence Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives

More information

### Solving Divide-and-Conquer Recurrences Solvig Divide-ad-Coquer Recurreces Victor Adamchik A divide-ad-coquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios

More information

### hp calculators HP 12C Platinum Statistics - correlation coefficient The correlation coefficient HP12C Platinum correlation coefficient HP 1C Platium Statistics - correlatio coefficiet The correlatio coefficiet HP1C Platium correlatio coefficiet Practice fidig correlatio coefficiets ad forecastig HP 1C Platium Statistics - correlatio coefficiet

More information

### Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

### NOTES AND FORMULAE SPM MATHEMATICS Cone FORM 3 NOTES. SOLID GEOMETRY (a) Area ad perimeter Triagle NOTES AND FORMULAE SPM MATHEMATICS Coe V = 3 r h A = base height = bh Trapezium A = (sum of two parallel sides) height = (a + b) h Circle Area

More information

### Math 475, Problem Set #6: Solutions Math 475, Problem Set #6: Solutios A (a) For each poit (a, b) with a, b o-egative itegers satisfyig ab 8, cout the paths from (0,0) to (a, b) where the legal steps from (i, j) are to (i 2, j), (i, j 2),

More information

### 1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

### NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

### 8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

### Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

### Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015 CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

More information

### AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

### Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

### Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites Gregory Carey, 1998 Liear Trasformatios & Composites - 1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio

More information

### BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

### Tangent circles in the ratio 2 : 1. Hiroshi Okumura and Masayuki Watanabe. In this article we consider the following old Japanese geometry problem 116 Taget circles i the ratio 2 : 1 Hiroshi Okumura ad Masayuki Wataabe I this article we cosider the followig old Japaese geometry problem (see Figure 1), whose statemet i [1, p. 39] is missig the coditio

More information

### when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

### Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

### 3. If x and y are real numbers, what is the simplified radical form lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y

More information

### MATH /2003. Assignment 4. Due January 8, 2003 Late penalty: 5% for each school day. MATH 260 2002/2003 Assigmet 4 Due Jauary 8, 2003 Late pealty: 5% for each school day. 1. 4.6 #10. A croissat shop has plai croissats, cherry croissats, chocolate croissats, almod croissats, apple croissats

More information

### Linear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant MTH6140 Liear Algebra II Notes 4 1st November 2010 4 Determiats The determiat is a fuctio defied o square matrices; its value is a scalar. It has some very importat properties: perhaps most importat is

More information

### Lesson 12. Sequences and Series Retur to List of Lessos Lesso. Sequeces ad Series A ifiite sequece { a, a, a,... a,...} ca be thought of as a list of umbers writte i defiite order ad certai patter. It is usually deoted by { a } =, or

More information

### Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

### THE LEAST SQUARES REGRESSION LINE and R 2 THE LEAST SQUARES REGRESSION LINE ad R M358K I. Recall from p. 36 that the least squares regressio lie of y o x is the lie that makes the sum of the squares of the vertical distaces of the data poits from

More information

### Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

### 1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

### I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

### GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

### ORDERS OF GROWTH KEITH CONRAD ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus

More information

### The shaded region above represents the region in which z lies. GCE A Level H Maths Solutio Paper SECTION A (PURE MATHEMATICS) (i) Im 3 Note: Uless required i the questio, it would be sufficiet to just idicate the cetre ad radius of the circle i such a locus drawig.

More information

### CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

### The Euler Totient, the Möbius and the Divisor Functions The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

### Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

### Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

### Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

### SOLUTION & ANSWER FOR KCET-2009 VERSION A-2 SOLUTION & ANSWER FOR KCET-9 VERSION A- [MATHEMATICS]. cos ec( a) cos ecd si a [ si( a) cos ec] + C Sol. : si[ ( a) sicos(-a) cos si( a) cos ec( a) cos ecd d si a si( a) [ cot( a) cot ] d si a si( a) +

More information

### Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

### The Field of Complex Numbers The Field of Complex Numbers S. F. Ellermeyer The costructio of the system of complex umbers begis by appedig to the system of real umbers a umber which we call i with the property that i = 1. (Note that

More information

### Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1 Maths Leavig Cert Higher Level Further Calculus Questio Paper By Cillia Fahy ad Darro Higgis Mocks.ie Maths LC HL Further Calculus mocks.ie Page Further Calculus ad Series, Paper II Q8 Table of Cotets:.

More information

### .04. This means \$1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

### THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

### NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

### Math Discrete Math Combinatorics MULTIPLICATION PRINCIPLE: Math 355 - Discrete Math 4.1-4.4 Combiatorics Notes MULTIPLICATION PRINCIPLE: If there m ways to do somethig ad ways to do aother thig the there are m ways to do both. I the laguage of set theory: Let

More information

### Section 6.1 Radicals and Rational Exponents Sectio 6.1 Radicals ad Ratioal Expoets Defiitio of Square Root The umber b is a square root of a if b The priciple square root of a positive umber is its positive square root ad we deote this root by usig

More information

### Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

### 5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

### Section 7-3 Estimating a Population. Requirements Sectio 7-3 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio

More information

### CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

### 7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

### Recursion and Recurrences Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,

More information

### GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

### 1. Solving simple equations 2. Evaluation and transposition of formulae Algebra Matheatics Worksheet This is oe of a series of worksheets desiged to hel you icrease your cofidece i hadlig Matheatics. This worksheet cotais both theory ad eercises which cover:-. Solvig sile

More information

### Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4 3330_0903qxd /5/05 :3 AM Page 663 Sectio 93 93 Geometric Sequeces ad Series 663 Geometric Sequeces ad Series What you should lear Recogize, write, ad fid the th terms of geometric sequeces Fid th partial

More information

### Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

### AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

### COMP 251 Assignment 2 Solutions COMP 251 Assigmet 2 Solutios Questio 1 Exercise 8.3-4 Treat the umbers as 2-digit umbers i radix. Each digit rages from 0 to 1. Sort these 2-digit umbers ith the RADIX-SORT algorithm preseted i Sectio

More information