GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?"

Transcription

1 GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2. What types of correlations may exist on a scatter plot? 3. How do you find missing coordinates of an ordered pair? 3. Find the missing coordinate of an ordered pair solution, given one coordinate of the pair Plot ordered pairs of numbers on the rectangular coordinate system Why is a pair of coordinates called an ordered pair? How do you use this order to graph a point? How do you determine which quadrant a point lies in without graphing? Graph paired data to create a scatter diagram Provide real world data (or have students collect) for a scatter plot. How do you determine which variable is dependent/independent? What determines the scale used when graphing data? What does the trend of the points tell you about the data? Find the missing coordinate of an ordered pair solution, given a table of values and one coordinate of the pair. Model using input/output diagrams to create tables of values. How can you find y given x? Will this work if you are given y instead of x? Why or why not? How can you find x if given y?

2 Graphing Linear Equations 1. Graph a linear equation by finding and plotting ordered pair solutions 1. How do you graph linear equations by plotting ordered pairs? 2. What do the points on the graph of a linear equation represent? 3. In a linear equation, which variable represents the input? Which variable represents the output? Graph a linear equation by finding and plotting ordered pair solutions Have students create tables of values (from previous lesson, using input/output if needed). From geometry, how many points determine a straight line? How many points should you graph to ensure your graph of the line is probably correct? Intercepts 1. Identify intercepts of a graph 2. Graph a linear equation by finding and plotting intercept points 1. What are x-and y-intercepts of a line and how do you find them? 2. How do you graph a line using intercepts? Activities and Questions to ask student: Identify intercepts of a graph Display graph of line intersecting the axes and give equation. Name the coordinates of the y-intercept. What is the x-coordinate of a point on the y-axis? Using this fact and what you learned about making tables of values, how can you find y when x = 0 without using graph? Name the coordinates of the x intercept. What is the y-coordinate of a point of the x-axis? Using this fact, how could you find x when given y = 0 without using the graph?

3 How is graphing a linear equation using the x- & y-intercepts similar/different from graphing a line using a table of values? Graph a linear equation by finding and plotting intercept points Is there an advantage of using x- & y-intercepts to graph a line as opposed to using a table of values? Explain. What steps do you need to take to graph a linear equation using the intercepts? Does is matter what form the equation is in? What is the easiest form to use when graphing using intercepts? Slope and Rate of Change 1. Find the slope of a line given two points of the line 2. Find the slope of a line given its equation. 1. What is the slope of a line and how do you find it? 2. Give real-world examples of slope as a rate of change. 3. Find the slopes of horizontal and vertical lines 4. Slope as a rate of change Find the slope of a line given two points of the line What is meant by the slope of a line? Where have you seen slope used in the real world? Sketch 2 different lines with positive slopes. How are lines similar? How are the different? How can you find rise/run from the graph? Show that rise = difference in y-coordinates and run= difference in x-coordinates. Using this fact, how can you find rise/run or slope without using a graph? Introduce slope formula. Find the slope of a line given its equation (slope-intercept form) Illustrate a line with two marked points & its equation and let students calculate slope. Do you see this slope represented in the equation? Where is it located? Find the slopes of horizontal and vertical lines How are horizontal and vertical lines different from the lines we have discussed so far?

4 Given a horizontal line with two marked points, let students calculate the slope. What is the rise of a horizontal line? What does having zero as rise in the fraction simplify to? What does this mean the slope of a horizontal line is? Repeat for vertical lines. Slope as a rate of change Using real world data (with a linear relationship), plot points or have students plot points and calculate the slope. What does the rise represent in this data if rise = change in y values? What does run represent in this data if run = change in x-values? Equations of Lines 1. Use the slope-intercept form to write an equation of a line 2. Use the slope-intercept form to graph a linear equation 3. Find distance between two points 4. Find the midpoint Use the slope-intercept form to write an equation of a line (given slope, m, and y-intercept, b) 1. How do you write equations of lines? 2. How do you graph linear equations? 3. How do you find distance and midpoint between 2 points? 4. What is the relationship between the Pythagorean Theorem and the Distance Formula In y=mx+b, what does m represent? What does b represent? Given slope and y-intercept, how can you write the equation of the line? Use the slope-intercept form to graph a linear equation Why is y=mx+b called slope-intercept form? What does m stand for? What does b stand for? Which variable is a point on the line that we can start our graphing with? How can we use the slope to create more points? Find distance between two points Students draw 2 given points on a grid and instruct them to make a right triangle with given points as vertices. How can you find the length between the two points using the

5 Pythagorean formula? Show that the legs of the triangle can be expressed as the difference in x-coordinates and y-coordinates and substituted into the Pythagorean formula, solve for the hypotenuse, d. Introduce distance formula. Find the midpoint What is meant by midpoint of a segment? Using a horizontal line segment on the x-axis, with endpoints (2,0) & (6,0), ask students to locate midpoint. How did you come up with (4,0)? Using a vertical line segments on y-axis with endpoints (0,2) & (0,8), ask students to locate midpoint. How did you come up with (0,5)? Discuss the connection between averaging x-coordinates and y-coordinates and finding the midpoint of a line segment. Ask students to graph two points that are not horizontally or vertically lined up. Using what you learned from finding midpoints of horizontal and vertical segments, find the midpoint of your two points. Graph the point to visually estimate if you are correct. Ask students to write a formula to find the x and y coordinates of the midpoint of two points on a coordinate plane.

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

More information

Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2

Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2 Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2

More information

Section 2.1 Rectangular Coordinate Systems

Section 2.1 Rectangular Coordinate Systems P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

Lines That Pass Through Regions

Lines That Pass Through Regions : Student Outcomes Given two points in the coordinate plane and a rectangular or triangular region, students determine whether the line through those points meets the region, and if it does, they describe

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

Students will understand 1. use numerical bases and the laws of exponents

Students will understand 1. use numerical bases and the laws of exponents Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

More information

MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines

MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline 1 Rectangular Coordinate System 2 Graphing Lines 3 The Equation of

More information

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System. Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

More information

ModuMath Algebra Lessons

ModuMath Algebra Lessons ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Section 3.2. Graphing linear equations

Section 3.2. Graphing linear equations Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

In this section, we ll review plotting points, slope of a line and different forms of an equation of a line.

In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

Lesson 19: Equations for Tangent Lines to Circles

Lesson 19: Equations for Tangent Lines to Circles Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line

More information

Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.

Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form. Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the

More information

WARM UP EXERCSE. 1-3 Linear Functions & Straight lines

WARM UP EXERCSE. 1-3 Linear Functions & Straight lines WARM UP EXERCSE A company makes and sells inline skates. The price-demand function is p (x) = 190 0.013(x 10) 2. Describe how the graph of function p can be obtained from one of the library functions.

More information

COMPARING LINEAR AND NONLINEAR FUNCTIONS

COMPARING LINEAR AND NONLINEAR FUNCTIONS 1 COMPARING LINEAR AND NONLINEAR FUNCTIONS LEARNING MAP INFORMATION STANDARDS 8.F.2 Compare two s, each in a way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example,

More information

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved. 1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

More information

Study Guide and Review - Chapter 4

Study Guide and Review - Chapter 4 State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis. The

More information

GRADE 8 SKILL VOCABULARY MATHEMATICAL PRACTICES Define rational number. 8.NS.1

GRADE 8 SKILL VOCABULARY MATHEMATICAL PRACTICES Define rational number. 8.NS.1 Common Core Math Curriculum Grade 8 ESSENTIAL DOMAINS AND QUESTIONS CLUSTERS How do you convert a rational number into a decimal? How do you use a number line to compare the size of two irrational numbers?

More information

Sect The Slope-Intercept Form

Sect The Slope-Intercept Form Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

More information

Linear Equations Review

Linear Equations Review Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The y-intercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the y-intercept

More information

2x - y 4 y -3x - 6 y < 2x 5x - 3y > 7

2x - y 4 y -3x - 6 y < 2x 5x - 3y > 7 DETAILED SOLUTIONS AND CONCEPTS GRAPHICAL REPRESENTATION OF LINEAR INEQUALITIES IN TWO VARIABLES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu.

More information

Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

More information

Elements of a graph. Click on the links below to jump directly to the relevant section

Elements of a graph. Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

More information

Linear Equations and Graphs

Linear Equations and Graphs 2.1-2.4 Linear Equations and Graphs Coordinate Plane Quadrants - The x-axis and y-axis form 4 "areas" known as quadrants. 1. I - The first quadrant has positive x and positive y points. 2. II - The second

More information

Section 2.2 Equations of Lines

Section 2.2 Equations of Lines Section 2.2 Equations of Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes

More information

Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS)

Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS) CCSS Key: The Number System (NS) Expressions & Equations (EE) Functions (F) Geometry (G) Statistics & Probability (SP) Common Core State Standard I Can Statements 8 th Grade Mathematics 8.NS.1. Understand

More information

Write the Equation of the Line Review

Write the Equation of the Line Review Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

More information

High School Mathematics Algebra

High School Mathematics Algebra High School Mathematics Algebra This course is designed to give students the foundation of understanding algebra at a moderate pace. Essential material will be covered to prepare the students for Geometry.

More information

Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope

Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope I. Linear Functions 1. A linear equation is an equation whose graph is a straight line. 2. A linear equation in standard form: Ax +By=C ex: 4x

More information

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433 Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

More information

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved. 1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

More information

Graphing - Slope-Intercept Form

Graphing - Slope-Intercept Form 2.3 Graphing - Slope-Intercept Form Objective: Give the equation of a line with a known slope and y-intercept. When graphing a line we found one method we could use is to make a table of values. However,

More information

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

More information

Mathematics Task Arcs

Mathematics Task Arcs Overview of Mathematics Task Arcs: Mathematics Task Arcs A task arc is a set of related lessons which consists of eight tasks and their associated lesson guides. The lessons are focused on a small number

More information

Section 1.10 Lines. The Slope of a Line

Section 1.10 Lines. The Slope of a Line Section 1.10 Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes through

More information

Patterns, Equations, and Graphs. Section 1-9

Patterns, Equations, and Graphs. Section 1-9 Patterns, Equations, and Graphs Section 1-9 Goals Goal To use tables, equations, and graphs to describe relationships. Vocabulary Solution of an equation Inductive reasoning Review: Graphing in the Coordinate

More information

A correlation exists between two variables when one of them is related to the other in some way.

A correlation exists between two variables when one of them is related to the other in some way. Lecture #10 Chapter 10 Correlation and Regression The main focus of this chapter is to form inferences based on sample data that come in pairs. Given such paired sample data, we want to determine whether

More information

Name: Class: Date: Does the equation represent a direct variation? If so, find the constant of variation. c. yes; k = 5 3. c.

Name: Class: Date: Does the equation represent a direct variation? If so, find the constant of variation. c. yes; k = 5 3. c. Name: Class: Date: Chapter 5 Test Multiple Choice Identify the choice that best completes the statement or answers the question. What is the slope of the line that passes through the pair of points? 1.

More information

Chapter 12. The Straight Line

Chapter 12. The Straight Line 302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

More information

Pre-Algebra Curriculum Crawford Central School District

Pre-Algebra Curriculum Crawford Central School District Concept Competency Resources Larson Pre- Algebra Resource Vocabulary Strategy PA Core Eligible Content PA Core Standards PA Core Standards Scope and Sequence Number System identify numbers as either rational

More information

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line. Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

More information

Chapter 1 Linear Equations and Graphs

Chapter 1 Linear Equations and Graphs Chapter 1 Linear Equations and Graphs Section 1.1 - Linear Equations and Inequalities Objectives: The student will be able to solve linear equations. The student will be able to solve linear inequalities.

More information

8 th Grade Math Curriculum/7 th Grade Advanced Course Information: Course 3 of Prentice Hall Common Core

8 th Grade Math Curriculum/7 th Grade Advanced Course Information: Course 3 of Prentice Hall Common Core 8 th Grade Math Curriculum/7 th Grade Advanced Course Information: Course: Length: Course 3 of Prentice Hall Common Core 46 minutes/day Description: Mathematics at the 8 th grade level will cover a variety

More information

Slope-Intercept Equation. Example

Slope-Intercept Equation. Example 1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

More information

Galena Park ISD. Friday, September 9, 2016 (Due Date) Summer Assignment. Pre-AP Geometry. (Name)

Galena Park ISD. Friday, September 9, 2016 (Due Date) Summer Assignment. Pre-AP Geometry. (Name) Summer Assignment (Name) Friday, September 9, 2016 (Due Date) Pre-AP Geometry Summer Assignment: Pre-AP Geometry This assignment should serve as a review of the skills necessary for success in Pre-AP Geometry.

More information

Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

More information

Distances in the Coordinate Plane

Distances in the Coordinate Plane About the Lesson In this activity, students will explore distances in the coordinate plane. Students will substitute the coordinates of a segment s endpoints into the distance formula and compare the results

More information

Warm Up. Use A ( 2, 3) and B (1, 0) 1. Find the slope of AB. 2. Find the midpoint of AB. 3. Find the distance of AB. 4. Simplify.

Warm Up. Use A ( 2, 3) and B (1, 0) 1. Find the slope of AB. 2. Find the midpoint of AB. 3. Find the distance of AB. 4. Simplify. Use A ( 2, 3) and B (1, 0) 1. Find the slope of AB. 2. Find the midpoint of AB. 3. Find the distance of AB. Warm Up 4. Simplify. 5. Draw an example of vertical angles. GOALS Develop and apply the

More information

MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem. Constant Rate of Change/Slope

MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem. Constant Rate of Change/Slope MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem Constant Rate of Change/Slope In a Table Relationships that have straight-lined graphs

More information

Exploring the Equation of a Circle

Exploring the Equation of a Circle Math Objectives Students will understand the definition of a circle as a set of all points that are equidistant from a given point. Students will understand that the coordinates of a point on a circle

More information

Graphing Quadratic Functions

Graphing Quadratic Functions Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

More information

Key Terms: Quadratic function. Parabola. Vertex (of a parabola) Minimum value. Maximum value. Axis of symmetry. Vertex form (of a quadratic function)

Key Terms: Quadratic function. Parabola. Vertex (of a parabola) Minimum value. Maximum value. Axis of symmetry. Vertex form (of a quadratic function) Outcome R3 Quadratic Functions McGraw-Hill 3.1, 3.2 Key Terms: Quadratic function Parabola Vertex (of a parabola) Minimum value Maximum value Axis of symmetry Vertex form (of a quadratic function) Standard

More information

CHAPTER 3: GRAPHS OF QUADRATIC RELATIONS

CHAPTER 3: GRAPHS OF QUADRATIC RELATIONS CHAPTER 3: GRAPHS OF QUADRATIC RELATIONS Specific Expectations Addressed in the Chapter Collect data that can be represented as a quadratic relation, from experiments using appropriate equipment and technology

More information

graphs, Equations, and inequalities

graphs, Equations, and inequalities graphs, Equations, and inequalities You might think that New York or Los Angeles or Chicago has the busiest airport in the U.S., but actually it s Hartsfield-Jackson Airport in Atlanta, Georgia. In 010,

More information

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , ) Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

More information

5 $75 6 $90 7 $105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line?

5 $75 6 $90 7 $105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line? Review Slope & Equations of Lines Name Hour STANDARD FORM: Ax + By = C 1. What is the slope of a vertical line? 2. What is the slope of a horizontal line? 3. Is y = 4 the equation of a horizontal or vertical

More information

Course Title: Honors Algebra Course Level: Honors Textbook: Algebra 1 Publisher: McDougall Littell

Course Title: Honors Algebra Course Level: Honors Textbook: Algebra 1 Publisher: McDougall Littell Course Title: Honors Algebra Course Level: Honors Textbook: Algebra Publisher: McDougall Littell The following is a list of key topics studied in Honors Algebra. Identify and use the properties of operations

More information

A synonym is a word that has the same or almost the same definition of

A synonym is a word that has the same or almost the same definition of Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given

More information

Graphing Linear Equations in Two Variables

Graphing Linear Equations in Two Variables Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

More information

2. THE x-y PLANE 7 C7

2. THE x-y PLANE 7 C7 2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

More information

Algebra. Indiana Standards 1 ST 6 WEEKS

Algebra. Indiana Standards 1 ST 6 WEEKS Chapter 1 Lessons Indiana Standards - 1-1 Variables and Expressions - 1-2 Order of Operations and Evaluating Expressions - 1-3 Real Numbers and the Number Line - 1-4 Properties of Real Numbers - 1-5 Adding

More information

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown. Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is

More information

Section 3.4 The Slope Intercept Form: y = mx + b

Section 3.4 The Slope Intercept Form: y = mx + b Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept Reminding! m = y x = y 2 y 1 x 2 x 1 Slope of a horizontal line is 0 Slope of a vertical line is Undefined Graph a linear

More information

Module: Graphing Linear Equations_(10.1 10.5)

Module: Graphing Linear Equations_(10.1 10.5) Module: Graphing Linear Equations_(10.1 10.5) Graph Linear Equations; Find the equation of a line. Plot ordered pairs on How is the Graph paper Definition of: The ability to the Rectangular Rectangular

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

SECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations.

SECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. (Section 0.11: Solving Equations) 0.11.1 SECTION 0.11: SOLVING EQUATIONS LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. PART A: DISCUSSION Much

More information

THE DISTANCE FORMULA

THE DISTANCE FORMULA THE DISTANCE FORMULA In this activity, you will develop a formula for calculating the distance between any two points in a coordinate plane. Part 1: Distance Along a Horizontal or Vertical Line To find

More information

Equations of Lines Derivations

Equations of Lines Derivations Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated

More information

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points. 6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

More information

2-4 Writing Linear Equations. Write an equation in slope-intercept form for the line described. 2. passes through ( 2, 3) and (0, 1) SOLUTION:

2-4 Writing Linear Equations. Write an equation in slope-intercept form for the line described. 2. passes through ( 2, 3) and (0, 1) SOLUTION: Write an equation in slope-intercept form for the line described 2 passes through ( 2, 3) and (0, 1) Substitute m = 1 and in the point slope form 4 passes through ( 8, 2); Substitute m = and (x, y) = (

More information

Grade 8 Mathematics Item Specification C1 TD Task Model 3

Grade 8 Mathematics Item Specification C1 TD Task Model 3 Task Model 3 Equation/Numeric DOK Level 1 algebraically, example, have no solution because 6. 3. The student estimates solutions by graphing systems of two linear equations in two variables. Prompt Features:

More information

2 Unit Bridging Course Day 2 Linear functions II: Finding equations

2 Unit Bridging Course Day 2 Linear functions II: Finding equations 1 / 38 2 Unit Bridging Course Day 2 Linear functions II: Finding equations Clinton Boys 2 / 38 Finding equations of lines If we have the information of (i) the gradient of a line (ii) the coordinates of

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

TEKS 2A.7.A Quadratic and square root functions: connect between the y = ax 2 + bx + c and the y = a (x - h) 2 + k symbolic representations.

TEKS 2A.7.A Quadratic and square root functions: connect between the y = ax 2 + bx + c and the y = a (x - h) 2 + k symbolic representations. Objectives Define, identify, and graph quadratic functions. Identify and use maximums and minimums of quadratic functions to solve problems. Vocabulary axis of symmetry standard form minimum value maximum

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

McMurry University Pre-test Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s).

McMurry University Pre-test Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s). 1. Simplify each expression, and eliminate any negative exponent(s). a. b. c. 2. Simplify the expression. Assume that a and b denote any real numbers. (Assume that a denotes a positive number.) 3. Find

More information

CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

More information

Techniques of Differentiation Selected Problems. Matthew Staley

Techniques of Differentiation Selected Problems. Matthew Staley Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4

More information

Part 1: Background - Graphing

Part 1: Background - Graphing Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

Student Lesson: Absolute Value Functions

Student Lesson: Absolute Value Functions TEKS: a(5) Tools for algebraic thinking. Techniques for working with functions and equations are essential in understanding underlying relationships. Students use a variety of representations (concrete,

More information

2.7. The straight line. Introduction. Prerequisites. Learning Outcomes. Learning Style

2.7. The straight line. Introduction. Prerequisites. Learning Outcomes. Learning Style The straight line 2.7 Introduction Probably the most important function and graph that you will use are those associated with the straight line. A large number of relationships between engineering variables

More information

FUNCTIONS. Introduction to Functions. Overview of Objectives, students should be able to:

FUNCTIONS. Introduction to Functions. Overview of Objectives, students should be able to: FUNCTIONS Introduction to Functions Overview of Objectives, students should be able to: 1. Find the domain and range of a relation 2. Determine whether a relation is a function 3. Evaluate a function 4.

More information

Year 12 Pure Mathematics. C1 Coordinate Geometry 1. Edexcel Examination Board (UK)

Year 12 Pure Mathematics. C1 Coordinate Geometry 1. Edexcel Examination Board (UK) Year 1 Pure Mathematics C1 Coordinate Geometry 1 Edexcel Examination Board (UK) Book used with this handout is Heinemann Modular Mathematics for Edexcel AS and A-Level, Core Mathematics 1 (004 edition).

More information

Open GeoGebra & Format Worksheet

Open GeoGebra & Format Worksheet Open GeoGebra & Format Worksheet 1. Close the Algebra view tab by clicking on the in the top right corner. 2. Show the grid by clicking on the show grid icon, located under the toolbar. 3. Select the Move

More information

Grade 8 Math. Content Skills Learning Targets Assessment Resources & Technology

Grade 8 Math. Content Skills Learning Targets Assessment Resources & Technology St. Michael-Albertville Middle School East Teacher: Dawn Tveitbakk Grade 8 Math September 2014 UEQ: (new) CEQ: WHAT IS THE LANGUAGE OF ALGEBRA? HOW ARE FUNCTIONS USED? HOW CAN ALGEBRA BE USED TO SOLVE

More information

EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

More information

Teaching Textbooks Pre-Algebra

Teaching Textbooks Pre-Algebra Teaching Textbooks Pre-Algebra Class Description: In this Pre-Algebra course, the student will utilize Teaching Textbooks Pre-Algebra to cover the standard topics, including: fractions, decimals, LCD,

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information