# Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) y 2. x1 + x 2

Save this PDF as:

Size: px
Start display at page:

Download "Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2"

## Transcription

1 Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y The distance formula comes from the Pythagorean theorem (review page 30); you may also need to use the Pythagorean theorem to verify that three points are the vertices of a right triangle. Review problems: p161 #19,29,35,45. Section 2.2 Graphs of Equations Review the procedure for finding x and y-intercepts on page 166. Review the tests for symmetry on page 168. A function is even precisely when its graph is symmetric with respect to the y-axis; it is odd precisely when its graph is symmetric with respect to the origin. (Compare the tests on page 168 to the tests on pages 231 and 232.) Review problems: p171 #41,43,63,65,67 37

2 38 CHAPTER 2. GRAPHS Section 2.3 Lines The slope of the line segment joining two points (x 1, y 1 ) and (x 2, y 2 ) is m = y 2 y 1 x 2 x 1, assuming that x 1 x 2. The equation of the line through (x 1, y 1 ) with slope m is y = m(x x 1 ) + y 1, the point-slope form. The equation of the line with slope m and y-intercept b is y = mx + b, the slope-intercept form. To find the slope of a line in general form Ax + By = C, put it into the slope-intercept form so you can just read off the slope. Remember that a positive slope means that the graph goes up (from left to right) and a negative slope means that the graph heads down. Two different lines y = m 1 x + b 1 and y = m 2 x + b 2 are parallel when m 2 = m 1, and perpendicular when m 2 = 1 m 1 (or, equivalently, when m 1 m 2 = 1). Review problems: p185 #21,29,57,85,87,113,115,119,131 Section 2.4 Circles The standard form of an equation of a circle with radius r and center (h, k) is (x h) 2 + (y k) 2 = r 2. If you are given an equation in the general form x 2 + y 2 + ax + by + c = 0, you can complete the square to put it into the standard form. Review problems: p193 #15,19,29,59

3 39 Sample Questions 2.1 A. Find the distance between the points (2, 5) and (4, 3). (a) 2 2 (d) 2 17 (b) 10 (e) B. Find the distance between the points ( 1, 3) and (2, 1). (a) 1 (d) 25 (b) 5 (e) None of these C. The midpoint of the line segment joining the points (1, 6) and ( 3, 4) is (a) ( 1 2, 7 2 ) (d) ( 2, 1) (b) ( 7 2, 1 2 ) (e) (16, 4) ( 1, 5) 2.1 #48. Find all points on the y-axis that are 5 units from the point (4, 4). (a) ( 1, 0) and ( 7, 0) (d) (0, 1) and (0, 7) (b) (0, 5) and (0, 5) (e) None of these (0, 1) and (0, 7) 2.2 #25. The graph of the line with equation 2x + 3y = 6 has (a) x-intercept (3, 0) and y-intercept (0, 2) (b) x-intercept (2, 0) and y-intercept (0, 3) x-intercept (2, 0) and y-intercept (0, 6) (d) x-intercept (6, 0) and y-intercept (0, 3) (e) x-intercept (6, 0) and y-intercept (0, 2) 2.2 #59. Find the x-intercepts of the graph of the equation x 2 + y 9 = 0. (a) The x-intercepts are 3 and 3 (d) The only x-intercept is 3 (b) The only x-intercept is 9 (e) None of these The x-intercepts are 3 and 3

4 40 CHAPTER 2. GRAPHS 2.2 #61. The graph of the equation 9x 2 + 4y 2 = 36 has (a) x-intercept (0, 0) and y-intercept (0, 0) (b) x-intercept (2, 0) and y-intercept (0, 3) x-intercept (3, 0) and y-intercept (0, 2) (d) x-intercepts (2, 0) and ( 2, 0) and y-intercepts (0, 3) and (0, 3) (e) x-intercepts (3, 0) and ( 3, 0) and y-intercepts (0, 2) and (0, 2) 2.2 #69. The graph of y = x3 x 2 9 (a) is symmetric with respect to the x-axis and y-axis, but NOT the origin. (b) (d) (e) the origin, but NOT the x-axis or y-axis. the x-axis and the origin, but NOT the y-axis. the y-axis and origin, but NOT the x-axis. the x-axis, the y-axis and the origin. 2.3 A. The equation of the vertical line passing through the point (4, 7) is (a) x = 4 (d) y = 7 (b) x = 7 (e) 4x = 7y y = B. Find the slope of the line through the points ( 3, 1) and (1, 7). (a) 3 (d) 2 (b) 3 (e) None of these C. Find an equation for the line through (0, 3) and ( 2, 0). (a) 2x 3y + 6 = 0 (d) 2x + 3y 6 = 0 (b) 3x + 2y 6 = 0 (e) 3x + 2y + 6 = 0 3x 2y + 6 = Example 8. Find the slope m and y-intercept b of the equation 2x + 4y = 8. (a) m = 1 2 and b = 2 (d) m = 2 and b = 4 (b) m = 1 2 and b = 2 (e) None of these m = 2 and b = 4

5 #49. The equation of the line containing the points (1, 3) and ( 1, 2) is (a) y = 2x + 1 (d) y = 2x + 5 (b) y = 1 2 x (e) This is a vertical line, so there is no equation. y = 1 2 x D. Which of the following is an equation of the line passing through the point (5, 4) and parallel to the line with equation 3x 5y + 2 = 0? (a) y = 3x 4 (d) y = 3 5 x 4 (b) y = 3x 19 (e) y = 5 3 x 9 y = 3 5 x #65. Find an equation for the line perpendicular to y = 1 x + 4 containing (1, 2). 2 (a) y = 2x + 4 (d) y = 2x (b) y = 2x 4 (e) None of these y = 2x 2.3 #67. Find an equation for the line perpendicular to 2x + y = 2 and containing ( 3, 0). (a) y = 2(x + 3) (d) y = 1 2 (x + 3) (b) y = 2(x + 3) (e) None of these y = 1 2 (x + 3) 2.3 E. The line which is perpendicular to the line given by y = 4x 3 and which passes through the point (0, 5) also passes through which of the following points? (a) (4, 0) (d) (4, 6) (b) (4, 13) (e) (4, 11) (4, 4) 2.3 #97. The graph of the line with equation 1 2 x y = 1 has (a) x-intercept (1/2, 0) and y-intercept (0, 1/3) (b) x-intercept (1/3, 0) and y-intercept (0, 1/2) x-intercept (3, 0) and y-intercept (0, 2) (d) x-intercept (2, 0) and y-intercept (0, 3) (e) None of these

6 42 CHAPTER 2. GRAPHS 2.4 A. The standard form of the equation of the circle with radius 6 and center ( 3, 6) is (a) (x + 3) 2 + (y + 6) 2 = 36 (b) (x 3) 2 + (y 6) 2 = 36 (x + 6) 2 + (y + 3) 2 = 36 (d) (x 6) 2 + (y 3) 2 = 36 (e) None of these 2.4 #25. The circle x 2 + y 2 2x + 4y 4 = 0 has (a) center (1, 2) and radius 9 (d) center ( 1, 2) and radius 3 (b) center (1, 2) and radius 3 (e) center ( 1, 2) and radius 9 center ( 2, 4) and radius #29. The graph of the equation x 2 + y 2 x + 2y + 1 = 0 is (a) a circle with center (1, 2) and radius 1. (b) a circle with center ( 1, 2) and radius 1. a circle with center ( 1 2, 1) and radius 1. (d) a circle with center ( 1 2, 1) and radius 1 4. (e) None of these 2.4 B. The graph of the equation x 2 + y 2 6x + 2y + 7 = 0 is (a) a circle with center (3, 1) and radius 3. (b) a circle with center (3, 1) and radius 3. a circle with center (3, 1) and radius 7. (d) a circle with center (1, 3) and radius 3. (e) None of these

7 43 Answer Key 2.1 A. (d) 2.1 B. (e) 2.1 C. 2.1 # #25. (a) 2.2 # #61. (d) 2.2 #69. (b) 2.3 A. (a) 2.3 B. (d) 2.3. C. 2.3 Example 8. (b) 2.3 # D. 2.3 #65. (d) 2.3 # E. 2.3 #97. (d) 2.4 A. (a) 2.4 #25. (b) 2.4 #29. (e) 2.4 B. (b) Solutions 2.1 A. Find the distance between the points (2, 5) and (4, 3). Solution: Use the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 with x 2 = 4, x 1 = 2, y 2 = 3, y 1 = 5. d = (4 2) 2 + ( 3 5) 2 = (2) 2 + ( 8) 2 = = 68 = 2 34 = Answer: d = B. Find the distance between the points ( 1, 3) and (2, 1). Solution: d = (2 ( 1)) 2 + (1 ( 3)) 2 = (3) 2 + (4) 2 = = 25 = 5

8 44 CHAPTER 2. GRAPHS 2.1 C. The midpoint of the line segment joining the points (1, 6) and ( 3, 4) is ( x1 + x 2 Solution: Use the midpoint formula, y ) 1 + y 2, which just averages the ( 2 2 x-coordinates and the y-coordinates , 6+4 ) ( 2 = 2 2, 10 ) 2 = ( 1, 5) 2.1 #48. Find all points on the y-axis that are 5 units from the point (4, 4). Solution: For a point to be on the y-axis its x-coordinate must be zero. Let (0, y) be the point we are looking for, and use the distance formula: (0 4) 2 + (y 4) 2 = 5 Solve for y: 16 + (y 4) 2 = 25 (y 4) 2 = 9 y 4 = ±3 y = 1 or y = 7 The two possible points are (0, 1) and (0, 7). 2.3 A. The equation of the vertical line passing through the point (4, 7) is Solution: The points on the line all have the same x-coordinate, so the equation is x = B. Find the slope of the line through the points ( 3, 1) and (1, 7). Solution: m = y 2 y 1 x 2 x 1 = 7 ( 1) 1 ( 3) = 8 4 = C. Find an equation for the line through (0, 3) and ( 2, 0). Solution: These are the choices: (a) 2x 3y + 6 = 0 (b) 3x + 2y 6 = 0 3x 2y + 6 = 0 (d) 2x + 3y 6 = 0 (e) 3x + 2y + 6 = 0 You can do this problem by just substituting into the equations. The point (0, 3) lies on lines (b) and, since these are the only equations that satisfy x = 0, y = 3. Of these two, only satisfies x = 2 and y = 0, so the answer must be equation. You can also solve the problem by using the point-slope form. The slope is m = = 3 2, and the y-intercept is 3 since the line goes through (0, 3). This gives the equation y = 3 2 x+3. Multiply through by 2 to get 2y = 3x + 6, or 0 = 3x 2y D. Which of the following is an equation of the line passing through the point (5, 4) and parallel to the line with equation 3x 5y + 2 = 0? Solution: To be parallel to the given line, the slope must be the same. Convert the given equation into point-slopt form: 3x + 2 = 5y or y = 3 5 x The slope is 3 5. The choices are (a) y = 3x 4 (b) y = 3x 19 y = 3 5 x 7 (d) y = 3 5 x 4 (e) y = 5 3 x 9 Only and (d) have the correct slope. The point (5, 4) lies on line. Knowing the slope, you could also use the point-slope form of the equation of a line: y = 3 5 (x 5) + ( 4) y = 3 5 x 3 4 y = 3 5 x E. The line which is perpendicular to the line given by y = 4x 3 and which passes through the point (0, 5) also passes through which of the following points? Solution: The slope of the perpendicular line must be 1 4, and its y-intercept is 5 since it passes through (0, 5), so its equation is y = 1 4x + 5. If x = 4, then y = 4, so the answer is.

9 A. The standard form of the equation of the circle with radius 6 and center ( 3, 6) is Solution: Use the standard form of an equation of a circle: (x h) 2 + (y k) 2 = r 2. You get (x + 3) 2 + (y + 6) 2 = B. The graph of the equation x 2 + y 2 6x + 2y + 7 = 0 is Solution: The answer is found by completing the square. x 2 6x +?? + y 2 + 2y +?? = 7 x 2 6x y 2 + 2y + 1 = (x 3) 2 + (y + 1) 2 = 3 (x 3) 2 + (y ( 1)) 2 = ( 3) 2 This is a circle with center (3, 1) and radius 3.

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### Graphing Linear Equations

Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

### Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is

### Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

### Section 2.1 Rectangular Coordinate Systems

P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is

### Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.

Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the

### GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### Linear Equations Review

Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The y-intercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the y-intercept

### GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines

MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline 1 Rectangular Coordinate System 2 Graphing Lines 3 The Equation of

### Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

### 1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

### Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

### Section 2.2 Equations of Lines

Section 2.2 Equations of Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes

### The Point-Slope Form

7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

### Practice Problems for Exam 1 Math 140A, Summer 2014, July 2

Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other

### 5 \$75 6 \$90 7 \$105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line?

Review Slope & Equations of Lines Name Hour STANDARD FORM: Ax + By = C 1. What is the slope of a vertical line? 2. What is the slope of a horizontal line? 3. Is y = 4 the equation of a horizontal or vertical

### Linear Equations and Graphs

2.1-2.4 Linear Equations and Graphs Coordinate Plane Quadrants - The x-axis and y-axis form 4 "areas" known as quadrants. 1. I - The first quadrant has positive x and positive y points. 2. II - The second

### Section 1.10 Lines. The Slope of a Line

Section 1.10 Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes through

1.5 ANALYZING GRAPHS OF FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals on which

### PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.

### Level: High School: Geometry. Domain: Expressing Geometric Properties with Equations G-GPE

1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. Translate between the geometric

### Algebra. Indiana Standards 1 ST 6 WEEKS

Chapter 1 Lessons Indiana Standards - 1-1 Variables and Expressions - 1-2 Order of Operations and Evaluating Expressions - 1-3 Real Numbers and the Number Line - 1-4 Properties of Real Numbers - 1-5 Adding

### Slope-Intercept Equation. Example

1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

### Section 2.1 Intercepts; Symmetry; Graphing Key Equations

Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the x-axis. 2. The x-coordinate of a point

### Study Guide and Review - Chapter 4

State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis. The

1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

### In this section, we ll review plotting points, slope of a line and different forms of an equation of a line.

Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:

### A synonym is a word that has the same or almost the same definition of

Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given

### SECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations.

(Section 0.11: Solving Equations) 0.11.1 SECTION 0.11: SOLVING EQUATIONS LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. PART A: DISCUSSION Much

### 2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

### Techniques of Differentiation Selected Problems. Matthew Staley

Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4

### The Parabola and the Circle

The Parabola and the Circle The following are several terms and definitions to aid in the understanding of parabolas. 1.) Parabola - A parabola is the set of all points (h, k) that are equidistant from

### Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### Slope-Intercept Form of a Linear Equation Examples

Slope-Intercept Form of a Linear Equation Examples. In the figure at the right, AB passes through points A(0, b) and B(x, y). Notice that b is the y-intercept of AB. Suppose you want to find an equation

### Pre-Calculus III Linear Functions and Quadratic Functions

Linear Functions.. 1 Finding Slope...1 Slope Intercept 1 Point Slope Form.1 Parallel Lines.. Line Parallel to a Given Line.. Perpendicular Lines. Line Perpendicular to a Given Line 3 Quadratic Equations.3

### Chapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2).

Chapter Section : Equations of Lines Answers to Problems For problems -, put our answers into slope intercept form..* Find the equation of the line with slope, and passing through the point (,0).. Find

### Chapter 12. The Straight Line

302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### Write the Equation of the Line Review

Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

### Sect The Slope-Intercept Form

Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

### 5.1: Rate of Change and Slope

5.1: Rate of Change and Slope Rate of Change shows relationship between changing quantities. On a graph, when we compare rise and run, we are talking about steepness of a line (slope). You can use and

### 2x - y 4 y -3x - 6 y < 2x 5x - 3y > 7

DETAILED SOLUTIONS AND CONCEPTS GRAPHICAL REPRESENTATION OF LINEAR INEQUALITIES IN TWO VARIABLES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu.

### CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS

CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided

### Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4)

Chapter 2: Functions and Linear Functions 1. Know the definition of a relation. Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4) 2. Know the definition of a function. 3. What

5.1 The Unit Circle Copyright Cengage Learning. All rights reserved. Objectives The Unit Circle Terminal Points on the Unit Circle The Reference Number 2 The Unit Circle In this section we explore some

### Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics

Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)

### Sample Problems. Practice Problems

Lecture Notes Circles - Part page Sample Problems. Find an equation for the circle centered at (; ) with radius r = units.. Graph the equation + + = ( ).. Consider the circle ( ) + ( + ) =. Find all points

### Lyman Memorial High School. Pre-Calculus Prerequisite Packet. Name:

Lyman Memorial High School Pre-Calculus Prerequisite Packet Name: Dear Pre-Calculus Students, Within this packet you will find mathematical concepts and skills covered in Algebra I, II and Geometry. These

### Centroid: The point of intersection of the three medians of a triangle. Centroid

Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

### Lesson 19: Equations for Tangent Lines to Circles

Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line

### Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

### 2-4 Writing Linear Equations. Write an equation in slope-intercept form for the line described. 2. passes through ( 2, 3) and (0, 1) SOLUTION:

Write an equation in slope-intercept form for the line described 2 passes through ( 2, 3) and (0, 1) Substitute m = 1 and in the point slope form 4 passes through ( 8, 2); Substitute m = and (x, y) = (

### Graphing - Slope-Intercept Form

2.3 Graphing - Slope-Intercept Form Objective: Give the equation of a line with a known slope and y-intercept. When graphing a line we found one method we could use is to make a table of values. However,

### Intro to Linear Equations Algebra 6.0

Intro to Linear Equations Algebra 6.0 Linear Equations: y x 7 y x 5 x y Linear Equations generally contain two variables: x and y. In a linear equation, y is called the dependent variable and x is the

### a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### MATH 111: EXAM 02 SOLUTIONS

MATH 111: EXAM 02 SOLUTIONS BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA Answer the questions in the spaces provided on the question sheets and turn them in at the end of the class period Unless otherwise

### Grade 8 Math. Content Skills Learning Targets Assessment Resources & Technology

St. Michael-Albertville Middle School East Teacher: Dawn Tveitbakk Grade 8 Math September 2014 UEQ: (new) CEQ: WHAT IS THE LANGUAGE OF ALGEBRA? HOW ARE FUNCTIONS USED? HOW CAN ALGEBRA BE USED TO SOLVE

### Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

### Equations of Lines Derivations

Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated

### WARM UP EXERCSE. 1-3 Linear Functions & Straight lines

WARM UP EXERCSE A company makes and sells inline skates. The price-demand function is p (x) = 190 0.013(x 10) 2. Describe how the graph of function p can be obtained from one of the library functions.

### Creating Equations. Set 3: Writing Linear Equations Instruction. Student Activities Overview and Answer Key

Creating Equations Instruction Goal: To provide opportunities for students to develop concepts and skills related to writing linear equations in slope-intercept and standard form given two points and a

### Tools of Algebra. Solving Equations. Solving Inequalities. Dimensional Analysis and Probability. Scope and Sequence. Algebra I

Scope and Sequence Algebra I Tools of Algebra CLE 3102.1.1, CFU 3102.1.10, CFU 3102.1.9, CFU 3102.2.1, CFU 3102.2.2, CFU 3102.2.7, CFU 3102.2.8, SPI 3102.1.3, SPI 3102.2.3, SPI 3102.4.1, 1-2 Using Variables,

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

### Name: Class: Date: Does the equation represent a direct variation? If so, find the constant of variation. c. yes; k = 5 3. c.

Name: Class: Date: Chapter 5 Test Multiple Choice Identify the choice that best completes the statement or answers the question. What is the slope of the line that passes through the pair of points? 1.

### Section 3.4 The Slope Intercept Form: y = mx + b

Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept Reminding! m = y x = y 2 y 1 x 2 x 1 Slope of a horizontal line is 0 Slope of a vertical line is Undefined Graph a linear

### STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2

STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of x-axis in anticlockwise direction, then the value of tan θ is called the slope

### I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key

www.mathworksheetsgo.com On Twitter: twitter.com/mathprintables I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key Web Resources Equations of Lines www.mathwarehouse.com/algebra/linear_equation/equation-of-a-line-formula.php

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### 2 Unit Bridging Course Day 2 Linear functions II: Finding equations

1 / 38 2 Unit Bridging Course Day 2 Linear functions II: Finding equations Clinton Boys 2 / 38 Finding equations of lines If we have the information of (i) the gradient of a line (ii) the coordinates of

### Answer Key Building Polynomial Functions

Answer Key Building Polynomial Functions 1. What is the equation of the linear function shown to the right? 2. How did you find it? y = ( 2/3)x + 2 or an equivalent form. Answers will vary. For example,

### COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what

### Pre-Algebra Curriculum Crawford Central School District

Concept Competency Resources Larson Pre- Algebra Resource Vocabulary Strategy PA Core Eligible Content PA Core Standards PA Core Standards Scope and Sequence Number System identify numbers as either rational

### Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

### Algebra 1-2. A. Identify and translate variables and expressions.

St. Mary's College High School Algebra 1-2 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used

Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

### Exploring the Equation of a Circle

Math Objectives Students will understand the definition of a circle as a set of all points that are equidistant from a given point. Students will understand that the coordinates of a point on a circle

### The equation of the axis of symmetry is. Therefore, the x-coordinate of the vertex is 2.

1. Find the y-intercept, the equation of the axis of symmetry, and the x-coordinate of the vertex for f (x) = 2x 2 + 8x 3. Then graph the function by making a table of values. Here, a = 2, b = 8, and c

### 2.3 Writing Equations of Lines

. Writing Equations of Lines In this section ou will learn to use point-slope form to write an equation of a line use slope-intercept form to write an equation of a line graph linear equations using the

# 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### v x d ACP Algebra II Summer Review Packet ID: A Short Answer ;-5

Class: Date: ACP Algebra II Summer Review Packet Short Answer Find the value of the given expression. I. t[32t(70(-21))] 2.1-90-;-5 3. Evaluate the given expression if w = 33, x = 1, y = 28, and z = 36.

### 4.1 & Linear Equations in Slope-Intercept Form

4.1 & 4.2 - Linear Equations in Slope-Intercept Form Slope-Intercept Form: y = mx + b Ex 1: Write the equation of a line with a slope of -2 and a y-intercept of 5. Ex 2:Write an equation of the line shown

### 2-4 Writing Linear Equations. Write an equation in slope-intercept form for the line described.

Write an equation in slope-intercept form for the line described 1 slope 15, passes through (0, 5) m = 15 (x, y) = (0, 5) in the equation y = mx + b 3 passes through (3, 5); m = 2 m = 2 (x, y) = (3, 5)

### Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

### Mathematics Chapter 8 and 10 Test Summary 10M2

Quadratic expressions and equations Expressions such as x 2 + 3x, a 2 7 and 4t 2 9t + 5 are called quadratic expressions because the highest power of the variable is 2. The word comes from the Latin quadratus

### York Suburban Middle School Course Overview. Algebra 1

York Suburban Middle School Course Overview I. Course Description Algebra 1 1.0 Credit Length: School Year; Format: Meets Daily Prerequisite: Pre-Algebra Algebra 1 The Larson Algebra 1brings math to life

### 2. THE x-y PLANE 7 C7

2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

### COMPARING LINEAR AND NONLINEAR FUNCTIONS

1 COMPARING LINEAR AND NONLINEAR FUNCTIONS LEARNING MAP INFORMATION STANDARDS 8.F.2 Compare two s, each in a way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example,