Lecture 15: Addressing and Routing Architecture

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture 15: Addressing and Routing Architecture"

Transcription

1 Lecture 15: Addressing and Routing Architecture Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG Addressing & Routing Addressing is assigning identifiers to devices. These identifiers can be local or global, private or public, temporary or persistent. Routing consists of learning about the reachability within and between networks and applying this reachability to forward packets in the network. Together, they form a complete picture of network connectivity. Prof. Shervin Shirmohammadi CEG

2 Addressing Fundamentals IP Addressing uses a combination of Address Identifier and Mask The mask is used to separate the address into a network and host function. This is very important in the distinction between local and remote parts of the network. E.g.: Address Identifier XOR Mask == Subnet Which means is on subnet Prof. Shervin Shirmohammadi CEG Local or Global Type of Addresses Local communication addresses like link-layer (MAC Address). Not advertised outside of the local network: there's no point since there is no link-layer connectivity between non-local devices. Global addresses are required for devices outside of the local broadcast region like IP addresses. Private or Public Both are global addresses, but private addresses are not advertised and forwarded (on purpose) while public addresses are. Temporary of Persistent Temporary are usually assigned using DHCP while persistent addresses are assigned either manually or are hardcoded (like Ethernet address carved into an Ethernet network card. Prof. Shervin Shirmohammadi CEG

3 Local vs. Remote Network /16 Network /16 Other Network Devices on the same subnet are directly connected and therefore, for IP, address resolution is done at different layer (MAC) than that done at the routing layer (IP) In communicating to devices on other networks there must be a router connecting the networks Prof. Shervin Shirmohammadi CEG Explicit Routing Company A Packets to are routed here. Company B ISP X Route to ISP Z Internet ISP Y Route to Routing Table / / Prof. Shervin Shirmohammadi CEG

4 Addressing Mechanisms Classful addressing older style of addressing Subnetting A better way to distribute addresses Variable-length subnetting Even more refined than subnetting Supernetting and Classless interdomain routing (CIDR). An efficient way to advertise addresses, and currently used on the Internet. Private addressing and Network Address Translation (NAT). A way to re-use certain IP addresses without collision with the rest of Internet Prof. Shervin Shirmohammadi CEG Classful Addressing Outdated form of addressing offers a simplistic solution for addressing schemes. Based on pre-determined mask lengths where: Class A = Mask (127 Networks & over 16M Addresses/Network), First Octet Range Class B = Mask (16K Networks & 64K Addresses/Network), First Octet Range Class C = Mask (2M Networks & 254 Addresses/Network), First Octet Range Class D = Multicast address Class E is reserved. Prof. Shervin Shirmohammadi CEG

5 Limits to Classful Addressing Very few Class A and B addresses, and all have already been allocated. That leaves class C to allocate new addresses Many networks require more addresses than class C but fewer addresses than B offers. On the other hand many organizations with A or B cannot use all of the networks offered by class A or B. That has led to variable-length subnets Prof. Shervin Shirmohammadi CEG Subnetting Allows a classful network address to be segmented into smaller sections by using part of the device address to create another level of hierarchy. Basically it takes address space away from the devices and gives it to the network. Useful for Internal addressing and routing Allows you to assign subnets to specific buildings, or specific groups, hence localizing traffic and simplifying routing. Has no effect on external routing The hierarchy is not revealed to the outside world. Address Identifier XOR Mask == Subnet Prof. Shervin Shirmohammadi CEG

6 Subnetting for Class B Network 2-Bit Mask Subnets Devices/Subnet 3-Bit Mask Subnets 8190 Devices/Subnet Class B Network 64K Devices 4-Bit Mask Bit Mask Bit Mask Bit Mask Subnets 4094 Devices/Subnet 31 Subnets 2046 Devices/Subnet 63 Subnets 1022 Devices/Subnet 127 Subnets 510 Devices/Subnet 8-Bit Mask Subnets 254 Devices/Subnet Notice that all zeros are not allowed as either subnet part or as host part. Also, all ones are not allowed for the host part. Prof. Shervin Shirmohammadi CEG Example A company has bought IP class address It has 14 departments and it wants to give each its own subnet. What will be each of the subnets, and their subnet mask? This is a class B address so we subnet into the 3 rd octet. To have 14 subnets, we require 2^4 = 16 subnet divisions, so we play with the first 4 bits in the third octet. The mask will be , and subnets are: Prof. Shervin Shirmohammadi CEG

7 Variable-length Subnetting Subnetting divides the network into a number of equal-sized subnets which is often inefficient. Variable-length subnetting is subnetting in which non-equal or variable length subnets are used. E.g., an organization with Class B address has a number of workgroups divided as shown below: Workgroup Engineering Marketing Administration Sales R&D Support Total Groups Size/Group (Devices) 400 (1200) (1350) Prof. Shervin Shirmohammadi CEG Classful and Subnetting Solution Classful solution gives us 65,534 devices. That s enough devices, but putting all departments (i.e., 5730 devices) in the same subnet is neither scalable nor manageable. Subnetting solution: let s have 1 subnet per group. We have 43 groups, so we need 2^6 1 = 63 subnets, which means we can use 6 bits for the subnet part, and the remaining 10 bits for hosts. But 10 bits for hosts part gives us 2^10 2 = 1022 devices, and marketing has 1950 devices. What to do? Use variable length subnetting. Prof. Shervin Shirmohammadi CEG

8 Variable-length Subnetting Solution We can resolve this by using a combination of 4-bit and 8-bit masks. 4-bit mask gives us 15 subnets each with 4096 devices. That s enough for Engineering and Marketing. We use the first five subnets as follows: Engineering (3 subnets) -> , , Marketing (1subnet) -> Administration (1 subnet) -> Why Admin? 8-bit mask gives us 255 subnets and 254 devices. That s fine for Sales, R&D, & Support. We use as many as the remaining 10 subnets as needed, breaking them into sub-subnets. For example, the next subnet, can be broken into another 15 subnets from to All these 15 will go to Sales. We still need another 23 subnets: 1 for R&D and 22 for Support. For these, we break the next two subnets, and Prof. Shervin Shirmohammadi CEG Supernetting Supernetting is the concept of aggregating network addresses by changing the network mask to decrease the number of bits recognized as the network part. Millions of Class C addresses can be allocated in lieu of Class A & B. The result is that too many Class C address groups need to be allocated to an organization and advertised among all the Internet routers. The number of routes would grow exponentially such that some experts had predicted that the Internet would collapse by Obviously this did not happen, since supernetting was invented. Say a company needs to support 10,000 devices. A class C address supports up to 254 devices, so 40 class C networks are needed. How are we to advertise these 40 class C addresses? Prof. Shervin Shirmohammadi CEG

9 Supernetting Technique If we take a set of 16 contiguous addresses from a Class C address like we can see that the first 4 digits of the subnet octet do not change. This range of values can be represented as with a subnet mask of where the last 4 bits in the third octet are ignored. This then can be used to advertise a group of addresses as /20 which means addresses from > Prof. Shervin Shirmohammadi CEG Classless InterDomain Routing (CIDR) The concept of supernetting suggested that indeed we do not need class boundaries, since each group can advertise its own subnet mask too. This in effect lead to classless Classless InterDomain Routing (CIDR). Addresses must be assigned in contiguous blocks following logical topology. The number of addresses in a CIDR block are powers of 2. Network Prefix can be anything, and need not be a power of 2. It is transmitted along with address Used in conjunction with classless routing protocols (e. g. EIGRP, OSPF) E.g.: /22 advertises 4 networks: 240, 241, 242, and /23 advertises 2 networks: 240 and /24 (this is the natural mask for class C) advertises 1 network: /21 advertises 8 networks: 240 to /17 is equivalent to a range of 2 7, or 128, networks from > Prof. Shervin Shirmohammadi CEG

10 Classful vs. CIDR Classful router must advertise all 4 nets Rtr 1 Classless router only advertises one I m router 1 and I know how to get to networks: Rtr 1 I m router 1 and I know how to get to networks: / Prof. Shervin Shirmohammadi CEG bits Private Addresses and NATs Private IP Addresses are reserved addresses that can t be forwarded to the Internet > (10/8 prefix) > (172.16/12 prefix) > ( /16 prefix) Pros: Makes changing ISP easier Increases security Cons: Outsourcing management may be difficult Mergers may require renumbering Network Address Translation: translates private addresses <-> public addresses A binding is created between the addresses that lasts a period of time. Can be implemented in Router, Firewall, or Specialized device. Prof. Shervin Shirmohammadi CEG

11 Routing Static routing The reachability is entered manually to the router. Method we commonly use for our small networking labs. Dynamic routing More typical of a real network. Typical routing protocols are: RIP/RIPv2, OSPF, and BGP4 Destination is determined by looking at the network portion of the packets destination address and choose the best destination (one with the more explicit route. i.e. the more specific). We now consider a routing mechanism that consists of: Establishing routing flows Identifying and classifying routing boundaries Manipulating routing flows. This will be based on the flow analysis process that leverages the flow specification and flow map discussed in lecture 9. Prof. Shervin Shirmohammadi CEG Establishing Routing Flows Segment the network into functional areas and workgroups. Identify boundaries between these areas. Form relationships between boundaries and routing flows. A functional area consists of groups within the system that share a similar function. These may consist of users (workgroups), applications, devices, or combinations of these and they may share similar jobs, locations, functions within the network (backbone routing). Workgroups are groups of users that have common locations, applications, and requirements, or that belong to the same organization. Prof. Shervin Shirmohammadi CEG

12 Example of Workgroups & FAs FA1 Bldg A Routers FA2 Scientists Accounting FAb1 FAb3 FA3 FA4 WG1 Management WG2 Bldg B Scientists Bldg C Prof. Shervin Shirmohammadi CEG Routing Boundaries These are physical or logical separations of a network based on requirements or administration of the network. Physical Boundaries can de identified by isolated LANs, DMZs, physical interfaces on network equipment, physical security. Logical Boundaries can be identified by the FAs, WGs, administrative domains (Autonomous Systems AS), and routing management domains. Prof. Shervin Shirmohammadi CEG

13 Hard Boundaries These boundaries are routing boundaries in which EGPs are predominantly used: Exterior Gateway Protocols (EGPs) communicate between AS s or AS and external network. DMZs and interfaces to ISP. Interior Gateway Protocols (IGPs) communicate within an AS. Your AS/Administrative Domain DMZ Internet Hard Boundary Prof. Shervin Shirmohammadi CEG Soft Boundaries Typically found within a single AS and are usually placed at the junction of FAs and WGs Your AS / Administrative Domain FA1 WG1 WG1 WG1 WG1 FA3 WG2 WG1 FA2 WG1 FA4 Prof. Shervin Shirmohammadi CEG

14 Internet Routing The Internet uses hierarchical routing The Internet is split into AS s AS corresponds to an administrative domain Assign each AS a 16-bit number Examples: University, company, backbone network Stanford (32), Sprint (1239), MCI Worldcom (17373) Within an AS, the administrator chooses an Interior Gateway Protocol (IGP) Examples of IGPs: RIP (RFC 1058), OSPF (RFC 1247) Between AS s, the Internet uses an Exterior Gateway Protocol AS s today use the Border Gateway Protocol, BGP-4 (RFC 1771) Prof. Shervin Shirmohammadi CEG Why different Intra- and Inter-AS routing? Policy: Inter-AS: admin wants control over how its traffic is routed who routes through its net. Intra-AS: single admin, so no policy decisions needed Scale: hierarchical routing saves table size, update traffic Performance: Intra-AS: can focus on performance Inter-AS: policy may dominate over performance Prof. Shervin Shirmohammadi CEG

15 Boundaries & Routing Flows Routing Flows are flows of routing information passed between FAs and ASs. Hard Boundary FA4 FA5 External Networks FA 1 FAb1 FAb2 These are important for the architecture and design because routing flows can be manipulated at routing boundaries. Prof. Shervin Shirmohammadi CEG FA2 FA3 Routing Flows AS Manipulating Routing Flows Controlling routing flow in a network is vital to the proper operation and performance of the network. This involves determining the proper combination of addressing and routing. Techniques: Default Routing Route Filtering Route Aggregation Policies & Policy Enforcement Points Default Route is the route used when there is no other route. Generally the route with the highest capacity to the network. Route Filtering is a technique to hide networks from the rest of the AS. Implemented as a rule (if IPPacketDest = then DropPacket) Route Aggregation is a technique to exchange routing between AS s Policies allow AS to accept or deny traffic, Prof. Shervin Shirmohammadi CEG

16 Addressing Strategies When addressing, we need to keep in mind the future scaling requirements. Area of Network Addressing Scheme Enterprise Wide Functional Areas Work Groups Networks Hosts Supernetting (CIDR) Natural Class Subnetting Variable-Length Subnetting Prof. Shervin Shirmohammadi CEG Example of Variable-length Subnetting Hub router can interconnect up to 10 networks. WG routers can support 4 networks each with 10 to 20 devices CIDR block /20 AS WG1 ISP Router Hub Router WG2 WG3 ISP WG4 WG5 Prof. Shervin Shirmohammadi CEG

17 Solution ISP Router ISP AS Hub Router /30 63 subnets 2 devices/subnet /27 6 subnets 30 devices/subnet Prof. Shervin Shirmohammadi CEG

Guide to TCP/IP, Third Edition. Chapter 2: IP Addressing and Related Topics

Guide to TCP/IP, Third Edition. Chapter 2: IP Addressing and Related Topics Guide to TCP/IP, Third Edition Chapter 2: IP Addressing and Related Topics Objectives Understand IP addressing, anatomy and structures, and addresses from a computer s point of view Recognize and describe

More information

ITRI CCL. IP Routing Primer. Paul C. Huang, Ph.D. ITRI / CCL / N300. CCL/N300; Paul Huang 1999/6/2 1

ITRI CCL. IP Routing Primer. Paul C. Huang, Ph.D. ITRI / CCL / N300. CCL/N300; Paul Huang 1999/6/2 1 IP Routing Primer Paul C. Huang, Ph.D. ITRI / / N300 /N300; Paul Huang 1999/6/2 1 Basic Addressing / Subnetting Class A 0 Network Host Host Host 127 networks / 16,777,216 hosts Class A natural mask 255.0.0.0

More information

Objectives. Explain the different classes of IP addresses Configure IP addresses Subdivide an IP network

Objectives. Explain the different classes of IP addresses Configure IP addresses Subdivide an IP network IP Addressing Objectives Explain the different classes of IP addresses Configure IP addresses Subdivide an IP network CCNA Guide to Cisco Networking Fundamentals, Fourth Edition 2 Objectives (continued)

More information

Objectives. Introduction. Classful IP Addressing. IPv4 Classful Addressing Structure (RFC 790)

Objectives. Introduction. Classful IP Addressing. IPv4 Classful Addressing Structure (RFC 790) 1 Objectives VLSM and CIDR Routing Protocols and Concepts Chapters 6 and 7 Compare and contrast classful and classless IP addressing. Review VLSM and explain the benefits of classless IP addressing. Describe

More information

IP Addressing. TomBrett.ie

IP Addressing. TomBrett.ie IP Addressing An IP (Internet Protocol) address is a unique identifier for a node or host connection on an IP network. An IP address is a 32 bit binary number usually represented as 4 decimal values, each

More information

Internetworking and Internet-1. Global Addresses

Internetworking and Internet-1. Global Addresses Internetworking and Internet Global Addresses IP servcie model has two parts Datagram (connectionless) packet delivery model Global addressing scheme awaytoidentifyall H in the internetwork Properties

More information

VLSM CERTIFICATION OBJECTIVES Q&A. Two-Minute Drill Self Test VLSM 8.02 Route Summarization

VLSM CERTIFICATION OBJECTIVES Q&A. Two-Minute Drill Self Test VLSM 8.02 Route Summarization 8 VLSM CERTIFICATION OBJECTIVES 8.01 VLSM 8.02 Route Summarization Q&A Two-Minute Drill Self Test 228 Chapter 8: VLSM In Chapter 7, you were introduced to IP addressing and subnetting, including such topics

More information

Advanced IP Addressing

Advanced IP Addressing Advanced IP Addressing CS-765 A Aspects Of Systems Administration Spring-2005 Instructure: Jan Schauman Stevens Institute Of Technology, NJ. Prepared By: Modh, Jay A. M.S. NIS SID: 999-14-0352 Date: 05/02/2005

More information

IP Addressing IP Addressing Tópicos Avançados de Redes

IP Addressing IP Addressing Tópicos Avançados de Redes IP Addressing 1 IP Addresses Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses Subnetting CIDR IP Version 6 addresses 2 IP Addresses 32 bits version (4

More information

We Are HERE! Dividing Up the Space. Addressing Background. Addressing Strategies. Requirements analysis Flow Analysis Logical Design

We Are HERE! Dividing Up the Space. Addressing Background. Addressing Strategies. Requirements analysis Flow Analysis Logical Design We Are HERE! TELE 302 Network Design Lecture 21 Addressing Strategies Source: McCabe 12.1 ~ 12.4 Jeremiah Deng TELE Programme / Info Sci University of Otago, 21/9/2015 Requirements analysis Flow Analysis

More information

COMP 631: COMPUTER NETWORKS. IP Addressing. Jasleen Kaur. Fall 2014. How to Deal With Heterogeneity & Scale?

COMP 631: COMPUTER NETWORKS. IP Addressing. Jasleen Kaur. Fall 2014. How to Deal With Heterogeneity & Scale? COMP 631: COMPUTER NETWORKS IP Addressing Jasleen Kaur Fall 2014 1 How to Deal With Heterogeneity & Scale? Requirements from IP addressing: Should be globally unique Should facilitate easy mapping to link-layer

More information

Routing in Small Networks. Internet Routing Overview. Agenda. Routing in Large Networks

Routing in Small Networks. Internet Routing Overview. Agenda. Routing in Large Networks Routing in Small Networks Internet Routing Overview AS, IGP,, BGP in small networks distance vector or link state protocols like RIP or OSPF can be used for dynamic routing it is possible that every router

More information

A is represented by (or 41h) etc. The networking address is no different to any other information stored on the computer.

A is represented by (or 41h) etc. The networking address is no different to any other information stored on the computer. extracted from www.kccommunications.com IPv4 -- Tech Note GeneralDataComm Training Notes Sept 1998 BASIC SUMMARY IP Addressing Reminder Notes Remember. The computer thinks in BINARY for example When you

More information

CS 348: Computer Networks. - IP addressing; 21 st Aug 2012. Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - IP addressing; 21 st Aug 2012. Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - IP addressing; 21 st Aug 2012 Instructor: Sridhar Iyer IIT Bombay Think-Pair-Share: IP addressing What is the need for IP addresses? Why not have only MAC addresses? Given that

More information

IP ADDRESSING ARCHITECTURE

IP ADDRESSING ARCHITECTURE IP ADDRESSING ARCHITECTURE Table Of Contents General IP Addressing Architecture Forms of IP Addresses Special forms of IP Addresses IP Addresses assignment example IP Subnetting IP Subnetting example IP

More information

Introduction to Local and Wide Area Networks

Introduction to Local and Wide Area Networks Introduction to Local and Wide Area Networks Lecturers Amnach Khawne Jirasak Sittigorn Chapter 1 1 Routing Protocols and Concepts Chapter 6 : VLSM and CIDR Chapter 7 : RIPv2 Chapter 1 2 VLSM and CIDR Routing

More information

Internet Routing Overview

Internet Routing Overview Internet Routing Overview AS, IGP,, BGP Agenda Routing at Large Types of Autonomous Systems -2 Introduction BGP Internet Routing Overview, v4.5 2 Page 45-1 Routing in Small Networks in small networks distance

More information

IP addressing. Interface: Connection between host, router and physical link. IP address: 32-bit identifier for host, router interface

IP addressing. Interface: Connection between host, router and physical link. IP address: 32-bit identifier for host, router interface IP addressing IP address: 32-bit identifier for host, router interface Interface: Connection between host, router and physical link routers typically have multiple interfaces host may have multiple interfaces

More information

Inter-domain Routing. Outline. Border Gateway Protocol

Inter-domain Routing. Outline. Border Gateway Protocol Inter-domain Routing Outline Border Gateway Protocol Internet Structure Original idea Backbone service provider Consumer ISP Large corporation Consumer ISP Small corporation Consumer ISP Consumer ISP Small

More information

We Are HERE! Subne\ng

We Are HERE! Subne\ng TELE 302 Network Design Lecture 21 Addressing Strategies Source: McCabe 12.1 ~ 12.4 Jeremiah Deng TELE Programme, University of Otago, 2013 We Are HERE! Requirements analysis Flow Analysis Logical Design

More information

WHITE PAPER. Understanding IP Addressing: Everything You Ever Wanted To Know

WHITE PAPER. Understanding IP Addressing: Everything You Ever Wanted To Know WHITE PAPER Understanding IP Addressing: Everything You Ever Wanted To Know Understanding IP Addressing: Everything You Ever Wanted To Know CONTENTS Internet Scaling Problems 1 Classful IP Addressing 3

More information

Migrating to an IPv6 Internet while preserving IPv4 addresses

Migrating to an IPv6 Internet while preserving IPv4 addresses A Silicon Valley Insider Migrating to an IPv6 Internet while preserving IPv4 addresses Technology White Paper Serge-Paul Carrasco Abstract The Internet is running out of addresses! Depending on how long

More information

SOLUTIONS PRODUCTS TECH SUPPORT ABOUT JBM Online Ordering

SOLUTIONS PRODUCTS TECH SUPPORT ABOUT JBM Online Ordering SOLUTIONS PRODUCTS TECH SUPPORT ABOUT JBM Online Ordering SEARCH TCP/IP Tutorial This tutorial is intended to supply a brief overview of TCP/IP protocol. Explanations of IP addresses, classes, netmasks,

More information

VLSM and CIDR Malin Bornhager Halmstad University

VLSM and CIDR Malin Bornhager Halmstad University VLSM and CIDR Malin Bornhager Halmstad University Session Number 2002, Svenska-CNAP Halmstad University 1 Objectives Classless routing VLSM Example of a VLSM calculation 2 Classless routing CIDR (Classless

More information

ICS 351: Today's plan

ICS 351: Today's plan ICS 351: Today's plan Quiz, on overall Internet function, linux and IOS commands, network monitoring, protocols IPv4 addresses: network part and host part address masks IP interface configuration IPv6

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ 1 Lecture 7: Network Layer in the Internet Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall,

More information

Computer Network Foundation. Chun-Jen (James) Chung. Arizona State University

Computer Network Foundation. Chun-Jen (James) Chung. Arizona State University Computer Network Foundation Chun-Jen (James) Chung 1 Outline Network Addressing Subnetting Classless Inter-Domain Routing (CIDR) Route Aggregation Network Addressing How does the network decide where to

More information

IP : Internet Protocol. Introduction

IP : Internet Protocol. Introduction IP : Internet Protocol Chapters 18,19 Introduction One key aspect of virtual network is single, uniform address format Can't use hardware addresses because different technologies have different address

More information

IP Addressing and Routing

IP Addressing and Routing IP Addressing and Routing 1 Basic IP Addressing Each host connected to the Internet is identified by a unique IP address. An IP address is a 32-bit quantity. Expressed as a dotted-decimal notation W.X.Y.Z.

More information

Internet Protocol version 4

Internet Protocol version 4 Internet Protocol version 4 Claudio Cicconetti International Master on Communication Networks Engineering 2006/2007 Table of Contents IP Addressing Class-based IP addresses

More information

LESSON Networking Fundamentals. Understand IPv4

LESSON Networking Fundamentals. Understand IPv4 Understand IPv4 Lesson Overview In this lesson, you will learn about: APIPA addressing classful IP addressing and classless IP addressing gateway IPv4 local loopback IP NAT network classes reserved address

More information

Routing with OSPF. Introduction

Routing with OSPF. Introduction Routing with OSPF Introduction The capabilities of an internet are largely determined by its routing protocol. An internet's scalability, its ability to quickly route around failures, and the consumption

More information

CS 457 Lecture 17 Global Internet. Fall 2011

CS 457 Lecture 17 Global Internet. Fall 2011 CS 457 Lecture 17 Global Internet Fall 2011 Distance Vector: Poison Reverse If Z routes through Y to get to X : Z tells Y its (Z s) distance to X is infinite (so Y won t route to X via Z) Still, can have

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

CLASSLESS INTER DOMAIN ROUTING - CIDR

CLASSLESS INTER DOMAIN ROUTING - CIDR CLASSLESS INTER DOMAIN ROUTING - CIDR Marko Luoma Helsinki University of Technology Laboratory of Telecommunications Technology Marko.Luoma@hut.fi ABSTRACT As the Internet evolved and become more familiar

More information

IP Addressing A Simplified Tutorial

IP Addressing A Simplified Tutorial Application Note IP Addressing A Simplified Tutorial July 2002 COMPAS ID 92962 Avaya Labs 1 All information in this document is subject to change without notice. Although the information is believed to

More information

Classful IP Addressing (cont.)

Classful IP Addressing (cont.) Classful IP Addressing (cont.) 1 Address Prefix aka Net ID defines the network Address Suffix aka Host ID defines the node In Classful addressing, prefix is of fixed length (1, 2, or 3 bytes)! Classful

More information

Ch.9 Classless And Subnet Address Extensions (CIDR)

Ch.9 Classless And Subnet Address Extensions (CIDR) CSC521 Communication Protocols 網 路 通 訊 協 定 Ch.9 Classless And Subnet Address Extensions (CIDR) 吳 俊 興 國 立 高 雄 大 學 資 訊 工 程 學 系 Outline 1. Introduction 2. Review Of Relevant Facts 3. Minimizing Network Numbers

More information

Planning the Addressing Structure

Planning the Addressing Structure Planning the Addressing Structure Working at a Small-to-Medium Business or ISP Chapter 4 Copyleft 2012 Vincenzo Bruno (www.vincenzobruno.it) Released under Crative Commons License 3.0 By-Sa Cisco name,

More information

Figure 5.1: Issues addressed by network layer protocols. (Figure by Forouzan)

Figure 5.1: Issues addressed by network layer protocols. (Figure by Forouzan) Chapter 5 Network Layer The main responsibility of a network layer protocol is host-to-host data delivery. In doing this, the network layer has to deal with network layer addressing, packetization and

More information

IP Subnetting and Addressing

IP Subnetting and Addressing Indian Institute of Technology Kharagpur IP Subnetting and Addressing Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 6: IP Subnetting and Addressing

More information

Architecting Large Networks

Architecting Large Networks MIT 6.02 DRAFT Lecture Notes Spring 2010 (Last update: May 4, 2010) Comments, questions or bug reports? Please contact 6.02-staff@mit.edu LECTURE 24 Architecting Large Networks The network layer mechanisms

More information

CS5008: Internet Computing

CS5008: Internet Computing CS5008: Internet Computing Lecture 10: IP Part II IP Addressing A. O Riordan, 2009, latest revision 2016 Some slides based on Fitzgerald and Dennis, and Tanenbaum IP Address Notation IPv4 addresses are

More information

Exterior Gateway Protocols (BGP)

Exterior Gateway Protocols (BGP) Exterior Gateway Protocols (BGP) Internet Structure Large ISP Large ISP Stub Dial-Up ISP Small ISP Stub Stub Stub Autonomous Systems (AS) Internet is not a single network! The Internet is a collection

More information

Networking Basics. Version: 447. Copyright 2007-2010 ImageStream Internet Solutions, Inc., All rights Reserved.

Networking Basics. Version: 447. Copyright 2007-2010 ImageStream Internet Solutions, Inc., All rights Reserved. Version: 447 Copyright 2007-2010 ImageStream Internet Solutions, Inc., All rights Reserved. Table of Contents Networking Basics...1 Networking Basics...1 Introduction...1 Network Addressing...1 IP Addressing...1

More information

The notation w.x.y.z is used when referring to a generalized IP address and shown in Figure 3.

The notation w.x.y.z is used when referring to a generalized IP address and shown in Figure 3. IP Addressing Each TCP/IP host is identified by a logical IP address. The IP address is a network layer address and has no dependence on the data link layer address (such as a MAC address of a network

More information

CCNA Tutorial Series SUBNETTING

CCNA Tutorial Series SUBNETTING CCNA Tutorial Series This document contains the Course Map For The Interactive flash tutorial at: http://www.semsim.com/ccna/tutorial/subnetting/subnetting.html HOME PAGE Course Objectives Pre-test By

More information

Router and Routing Basics

Router and Routing Basics Router and Routing Basics Malin Bornhager Halmstad University Session Number 2002, Svenska-CNAP Halmstad University 1 Routing Protocols and Concepts CCNA2 Routing and packet forwarding Static routing Dynamic

More information

First the Basics Binary Arithmetic

First the Basics Binary Arithmetic www.preplogic.com -00-4-679 First the Basics Binary Arithmetic If you understand how binary numbers work, you can skip this section and go to the next. But, if you don t, you need to spend a bit of time

More information

Internet Addressing. Mr Nenad Krajnović

Internet Addressing. Mr Nenad Krajnović Internet Addressing Mr Nenad Krajnović E-mail: krajko@etf.bg.ac.rs? 1 What is an IP Address? 32-bit number, defined by the Internet Protocol (IP) (RFC 791). IP addresses must be unique within the network.

More information

3 IP Addressing. Version 2.1 T.O.P. BusinessInteractive GmbH Page 1 of 25

3 IP Addressing. Version 2.1 T.O.P. BusinessInteractive GmbH Page 1 of 25 3 IP Addressing Version 2.1 T.O.P. BusinessInteractive GmbH Page 1 of 25 3 IP Addressing...1 3.1 The IP Address (1/4)...3 3.1 The IP Address (2/4)...3 3.1 The IP Address (3/4)...5 3.1 The IP Address (4/4)...6

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

CIDR: Classless Interdomain Routing

CIDR: Classless Interdomain Routing 1/10 CIDR: Classless Interdomain Routing Surasak Sanguanpong nguan@ku.ac.th http://www.cpe.ku.ac.th/~nguan Last updated: July 9, 2002 Address allocation problem 2/10 Exhaustion of the class B network address

More information

Introduction. Internet Address Depletion and CIDR. Introduction. Introduction

Introduction. Internet Address Depletion and CIDR. Introduction. Introduction Introduction Internet Address Depletion and A subnet is a subset of class A, B, or C networks IP addresses are formed of a network and host portions network mask used to separate the information Introduction

More information

IP Addressing. IP Addresses. Introductory material.

IP Addressing. IP Addresses. Introductory material. IP Addressing Introductory material. An entire module devoted to IP addresses. IP Addresses Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses Subnetting

More information

COMP9332 Network Routing & Switching

COMP9332 Network Routing & Switching COMP9332 Network Routing & Switching IPv4 Addressing http://www.cse.unsw.edu.au/~cs9332/ 1 Lecture overview Key concepts Classful addressing Network mask Subnetting Supernetting Classless addressing Reference:

More information

IP Addressing Introductory material.

IP Addressing Introductory material. IP Addressing Introductory material. A module devoted to IP addresses. Addresses & Names Hardware (Layer 2) Lowest level Ethernet (MAC), Serial point-to-point,.. Network (Layer 3) IP IPX, SNA, others Transport

More information

Border Gateway Protocol (BGP-4)

Border Gateway Protocol (BGP-4) Vanguard Applications Ware IP and LAN Feature Protocols Border Gateway Protocol (BGP-4) Notice 2008 Vanguard Networks 25 Forbes Blvd Foxboro, MA 02035 Phone: (508) 964 6200 Fax: (508) 543 0237 All rights

More information

BGP. 1. Internet Routing

BGP. 1. Internet Routing BGP 1. Internet Routing (C) Herbert Haas 2005/03/11 1 Internet Routing Interior Gateway Protocols (IGPs) not suitable for Inter-ISP routing Technical metrics only No policy features Inter-ISP routing is

More information

Active measurements: networks. Prof. Anja Feldmann, Ph.D. Dr. Nikolaos Chatzis Georgios Smaragdakis, Ph.D.

Active measurements: networks. Prof. Anja Feldmann, Ph.D. Dr. Nikolaos Chatzis Georgios Smaragdakis, Ph.D. Active measurements: networks Prof. Anja Feldmann, Ph.D. Dr. Nikolaos Chatzis Georgios Smaragdakis, Ph.D. Outline Organization of Internet routing Types of domains Intra- and inter-domain routing Intra-domain

More information

Introduction to Routing and Packet Forwarding

Introduction to Routing and Packet Forwarding Introduction to Routing and Packet Forwarding Routing Protocols and Concepts 1 Router as a Computer Describe the basic purpose of a router -Computers that specialize in sending packets over the data network.

More information

PART IV. Network Layer

PART IV. Network Layer PART IV Network Layer Position of network layer Network layer duties Internetworking : heterogeneous Physical Networks To look Like a single network to he upper layers The address at Network layer must

More information

Border Gateway Protocol (BGP)

Border Gateway Protocol (BGP) Border Gateway Protocol (BGP) Petr Grygárek rek 1 Role of Autonomous Systems on the Internet 2 Autonomous systems Not possible to maintain complete Internet topology information on all routers big database,

More information

COMP3331/COMP9331 Computer Networks and Applications IPv4. Lecture overview. IP addressing basics. Key concepts

COMP3331/COMP9331 Computer Networks and Applications IPv4. Lecture overview. IP addressing basics.  Key concepts COMP3331/COMP9331 Computer Networks and Applications IPv4 http://www.cse.unsw.edu.au/~cs3331/ 1 Lecture overview Key concepts Classful addressing Network mask Subnetting Supernetting Classless addressing

More information

2.1.2.2.2 Variable length subnetting

2.1.2.2.2 Variable length subnetting 2.1.2.2.2 Variable length subnetting Variable length subnetting or variable length subnet masks (VLSM) allocated subnets within the same network can use different subnet masks. Advantage: conserves the

More information

Objectives. Upon completing this chapter, you will be able to

Objectives. Upon completing this chapter, you will be able to 1358_fmi.book Page 30 Thursday, May 27, 2004 2:21 PM Objectives Upon completing this chapter, you will be able to Create and configure IPv4 addresses Understand and resolve IP addressing crises Assign a

More information

Internet Protocol Address

Internet Protocol Address SFWR 4C03: Computer Networks & Computer Security Jan 17-21, 2005 Lecturer: Kartik Krishnan Lecture 7-9 Internet Protocol Address Addressing is a critical component of the internet abstraction. To give

More information

Table of Contents. Cisco IP Addressing and Subnetting for New Users

Table of Contents. Cisco IP Addressing and Subnetting for New Users Table of Contents IP Addressing and Subnetting for New Users...1 Introduction...1 Before You Begin...1 Conventions...1 Prerequisites...1 Components Used...1 Additional Information...1 Understanding IP

More information

Lecture 12: Addressing and Aggregation. CSE 123: Computer Networks Stefan Savage

Lecture 12: Addressing and Aggregation. CSE 123: Computer Networks Stefan Savage Lecture 12: Addressing and Aggregation CSE 123: Computer Networks Stefan Savage Lecture 12 Overview Finish up addressing Class-based addressing Subnetting Classless addressing Address allocation CSE 123

More information

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci. Chapter 3: Review of Important Networking Concepts Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.edu/~magda 1 Networking Concepts Protocol Architecture Protocol Layers Encapsulation

More information

Autumn Oct 21, Oct 21, 2004 CS573: Network Protocols and Standards 1 Oct 21, 2004 CS573: Network Protocols and Standards 2

Autumn Oct 21, Oct 21, 2004 CS573: Network Protocols and Standards 1 Oct 21, 2004 CS573: Network Protocols and Standards 2 IPv4 IP: Addressing, ARP, Routing Protocols and Standards Autumn 2004-2005 IP Datagram Format IPv4 Addressing ARP and RARP IP Routing Basics Subnetting and Supernetting ICMP Address Translation (NAT) Dynamic

More information

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1 Efficient Addressing Outline Addressing Subnetting Supernetting CS 640 1 IPV4 Global Addresses Properties IPv4 uses 32 bit address space globally unique hierarchical: network + host 7 24 Dot Notation 10.3.2.4

More information

CSC458 Lecture 6. Homework #1 Grades. Inter-domain Routing IP Addressing. Administrivia. Midterm will Cover Following Topics

CSC458 Lecture 6. Homework #1 Grades. Inter-domain Routing IP Addressing. Administrivia. Midterm will Cover Following Topics CSC458 Lecture 6 Inter-domain Routing IP Addressing Stefan Saroiu http://www.cs.toronto.edu/syslab/courses/csc458 University of Toronto at Mississauga Homework #1 Grades Fraction of Students 100 80 60

More information

TCP/IP NETWORK DESIGN

TCP/IP NETWORK DESIGN CHAPTER 8 TCP/IP NETWORK DESIGN Concepts Reinforced Classful addressing Subnet masks Concepts Introduced Classless addressing Reserved subnets Extended Network Prefixes Route summarization Internet structure

More information

Based on Computer Networking, 4 th Edition by Kurose and Ross

Based on Computer Networking, 4 th Edition by Kurose and Ross Computer Networks Internet Routing Based on Computer Networking, 4 th Edition by Kurose and Ross Intra-AS Routing Also known as Interior Gateway Protocols (IGP) Most common Intra-AS routing protocols:

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks

More information

256 4 = 4,294,967,296 ten billion. 256 16 = 18,446,744,073,709,551,616 ten quintillion. IP Addressing. IPv4 Address Classes

256 4 = 4,294,967,296 ten billion. 256 16 = 18,446,744,073,709,551,616 ten quintillion. IP Addressing. IPv4 Address Classes IP Addressing With the exception of multicast addresses, Internet addresses consist of a network portion and a host portion. The network portion identifies a logical network to which the address refers,

More information

VLSM & Route Summarization

VLSM & Route Summarization VLSM & Route Summarization University of Jordan Faculty of Engineering & Technology Computer Engineering Department Computer Networks Laboratory 907528 2 VLSM & Route Summarization IP Variable Length Subnet

More information

Chapter 1 Personal Computer Hardware------------------------------------------------ 7 hours

Chapter 1 Personal Computer Hardware------------------------------------------------ 7 hours Essential Curriculum Networking Essentials Total Hours: 244 Cisco Discovery 1: Networking for Home and Small Businesses 81.5 hours teaching time Chapter 1 Personal Computer Hardware------------------------------------------------

More information

Networking IP and Convergence: Advanced TCP

Networking IP and Convergence: Advanced TCP coursemonster.com/me Networking IP and Convergence: Advanced TCP View training dates» Overview This is an in depth technical course that covers the TCPIP protocols in more detail than the Introduction

More information

IP Addressing. -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing

IP Addressing. -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing IP Addressing -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing Internetworking The concept of internetworking: we need to make different networks communicate

More information

- IPv4 Addressing and Subnetting -

- IPv4 Addressing and Subnetting - 1 Hardware Addressing - IPv4 Addressing and Subnetting - A hardware address is used to uniquely identify a host within a local network. Hardware addressing is a function of the Data-Link layer of the OSI

More information

In this course we consider IP protocol (RFC791) which is a datagram service. It is the most commonly used network layer protocol on the Internet.

In this course we consider IP protocol (RFC791) which is a datagram service. It is the most commonly used network layer protocol on the Internet. The Network Layer The network layer is responsible for moving bits around the network. Fundamentally there are two types of network layer architectures datagram based and virtual circuitbased(vc). The

More information

TCP/IP Overview. Contents. Document ID: 13769

TCP/IP Overview. Contents. Document ID: 13769 TCP/IP Overview Document ID: 13769 Contents Introduction TCP/IP Technology TCP IP Routing in IP Environments Interior Routing Protocols RIP IGRP EIGRP OSPF Integrated IS IS Exterior Routing Protocols EGP

More information

Future Internet Technologies

Future Internet Technologies Future Internet Technologies Traditional Internet Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Internet Protocol v4 (IPv4) IPv4 Model

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

Data & Computer Communications. Lecture 8. Network Layer: Logical addressing. In this lecture we will cover the following topics:

Data & Computer Communications. Lecture 8. Network Layer: Logical addressing. In this lecture we will cover the following topics: Data & Computer Communications MSCEG 425 Lecture 8 Network Layer: Logical addressing Fall 2007 1 0. Overview In this lecture we will cover the following topics: 14.Network Layer: Logical addressing 14.1

More information

OSPF Configuring Multi-Area OSPF

OSPF Configuring Multi-Area OSPF OSPF Configuring Multi-Area OSPF Objective In this lab configure a multiarea OSPF operation, interarea summarization, external route summarization, and default routing. Scenario International Travel Agency

More information

From the previous lecture

From the previous lecture CS 640: Introduction to Computer Networks Aditya Akella Lecture 7 - IP: Addressing and Forwarding From the previous lecture We will cover spanning tree from the last lecture 2 Spanning Tree Bridges More

More information

Subnetting/Supernetting and Classless Addressing

Subnetting/Supernetting and Classless Addressing Chapter 5 Subnetting/Supernetting and Classless Addressing SUBNETTING SUPERNETTING CLASSLESS ADDRSSING The McGraw-Hill Companies, Inc., 2000 1 5.1 SUBNETTING The McGraw-Hill Companies, Inc., 2000 2 A network

More information

Chapter 3 LAN Configuration

Chapter 3 LAN Configuration Chapter 3 LAN Configuration This chapter describes how to configure the advanced LAN features of your ProSafe Dual WAN Gigabit Firewall with SSL & IPsec VPN. This chapter contains the following sections

More information

Introduction to Dynamic Routing Protocols

Introduction to Dynamic Routing Protocols CHAPTER 3 Introduction to Dynamic Routing Protocols Objectives Upon completion of this chapter, you should be able to answer the following questions: Can you describe the role of dynamic routing protocols

More information

Internetworking and IP Address

Internetworking and IP Address Lecture 8 Internetworking and IP Address Motivation of Internetworking Internet Architecture and Router Internet TCP/IP Reference Model and Protocols IP Addresses - Binary and Dotted Decimal IP Address

More information

IP Routing Configuring RIP, OSPF, BGP, and PBR

IP Routing Configuring RIP, OSPF, BGP, and PBR 13 IP Routing Configuring RIP, OSPF, BGP, and PBR Contents Overview..................................................... 13-6 Routing Protocols.......................................... 13-6 Dynamic Routing

More information

OSPF Version 2 (RFC 2328) Describes Autonomous Systems (AS) topology. Propagated by flooding: Link State Advertisements (LSAs).

OSPF Version 2 (RFC 2328) Describes Autonomous Systems (AS) topology. Propagated by flooding: Link State Advertisements (LSAs). OSPF Version 2 (RFC 2328) Interior gateway protocol (IGP). Routers maintain link-state database. Describes Autonomous Systems (AS) topology. Propagated by flooding: Link State Advertisements (LSAs). Router

More information

TCP/IP Addressing and Subnetting. an excerpt from: A Technical Introduction to TCP/IP Internals. Presentation Copyright 1995 TGV Software, Inc.

TCP/IP Addressing and Subnetting. an excerpt from: A Technical Introduction to TCP/IP Internals. Presentation Copyright 1995 TGV Software, Inc. TCP/IP Addressing and Subnetting an excerpt from: A Technical Introduction to TCP/IP Internals Presentation Copyright 1995 TGV Software, Inc. IP Addressing Roadmap Format of IP Addresses Traditional Class

More information

IP Addressing and Subnetting for New Users

IP Addressing and Subnetting for New Users IP Addressing and Subnetting for New Users Document ID: 13788 Contents Introduction Prerequisites Requirements Components Used Additional Information Conventions Understanding IP Addresses Network Masks

More information

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering Internet Firewall CSIS 4222 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 27: Internet Routing Ch 30: Packet filtering & firewalls

More information

Savera Tanwir. Internet Protocol

Savera Tanwir. Internet Protocol Savera Tanwir Internet Protocol The IP Protocol The IPv4 (Internet Protocol) header. IP Packet Details Header and payload Header itself has a fixed part and variable part Version IPv4, IPv5 or IPv6 IHL,

More information

Cisco BGP Case Studies

Cisco BGP Case Studies Table of Contents BGP Case Studies...1 BGP4 Case Studies Section 1...3 Contents...3 Introduction...3 How Does BGP Work?...3 ebgp and ibgp...3 Enabling BGP Routing...4 Forming BGP Neighbors...4 BGP and

More information