# Introduction. The Aims & Objectives of the Mathematical Portion of the IBA Entry Test

Save this PDF as:

Size: px
Start display at page:

Download "Introduction. The Aims & Objectives of the Mathematical Portion of the IBA Entry Test"

## Transcription

1 Introduction The career world is competitive. The competition and the opportunities in the career world become a serious problem for students if they do not do well in Mathematics, because then they are excluding themselves from the many career paths that need Mathematics. We therefore expect that all our selected students must have achieved a high level of excellence in a fundamental discipline like Mathematics. This is highly desirable if they think they may go into any of the Physical, Social, Health Sciences, Business, Medicine, or related areas. Experience has shown that students who come to IBA with a poor grade in Math (or who choose to skip Math in schools / colleges) have a difficult time progressing at IBA. So we strongly recommend that the standard of our Mathematical portion of the IBA ENTRY test should be raised significantly. This is in the student's best interest. The Aims & Objectives of the Mathematical Portion of the IBA Entry Test The objectives of testing Mathematics in the IBA Entry Test for Undergrad students are as follows: I. To check if the students have acquired the understanding of concepts of Mathematics and are able to apply them to the problems of the world they live in. II. To check if a student has a sound basis in Mathematics, which is required to apply it in business fields. III. To check if a student is enable to reason consistently, to draw correct conclusions for a given hypotheses; and to inculcate in them a habit of examining any situation critically and analytically. IV. To check if a student is enabling to communicate their thoughts through symbolic expressions and graphs. V. To check whether or not he/she has developed sense of distinction between relevant and irrelevant data. VI. To check the students basic understanding and awareness of the power of Mathematics in generalization and abstraction. VII. To check if a student has fostered the spirit of exploration and discovery. To achieve these aims and objectives we should be examining our students in the following areas of Mathematics: 1. Number candidates should be able to: use natural numbers, integers (positive, negative and zero), prime numbers, common factors and common multiples, rational and irrational numbers, real numbers; continue given number sequences, recognise patterns within and across different sequences and generalise to simple algebraic statements (including expressions for the nth term) relating to such sequences. Page 1

2 2. Set language and notation use set language and set notation, and Venn diagrams, to describe sets and represent relationships between sets. 3. Function notation use function notation, e.g. f(x) = 7x 9, to describe simple functions, and the notation f 1 (x) = (x + 9) / 7 to describe their inverses. 4. Squares square roots, cubes and cube roots calculate squares, square roots, cubes and cube roots of numbers. 5. Decimal fractions and percentages use the language and notation of decimal fractions and percentages in appropriate contexts; recognise equivalence and convert between these forms. 6. Ordering order quantities by magnitude and demonstrate familiarity with the symbols =,, >, <,,. 7. The four operations use the four operations for calculations with whole numbers, decimal fractions including correct ordering of operations and use of brackets. 8. Estimation make estimates of numbers, quantities and lengths, give approximations to specified numbers of significant figures and decimal places and round off answers to reasonable accuracy in the context of a given problem. 9. Limits of accuracy obtain appropriate upper and lower bounds to solutions of simple problems (e.g. the calculation of the perimeter or the area of a rectangle), provided the appropriate upper and lower bounds for data has been given to a specified accuracy (e.g. measured lengths). 10. Ratio, proportion, rate an understanding of the elementary ideas and notation of ratio, direct and inverse proportion and common measures of rate; divide a quantity in a given ratio; use scales in practical situations, calculate average speed; express direct and inverse variation in algebraic terms and use this form of expression to find unknown quantities. 11. Percentages calculate a given percentage of a quantity; express one quantity as a percentage of another, calculate percentage increase or decrease; carry out calculations involving reverse percentages, e.g. finding the cost price given the selling price and the percentage profit. Page 2

3 12. Exponential and Logarithmic Functions definition of Exponential and Logarithmic Functions, and their elementary characteristics. 13. Measures use current units of mass, length, area, volume and capacity in practical situations and express quantities in terms of larger or smaller units Money solve problems involving money and convert from one currency to another. 15. Personal and household finance use given data to solve problems on personal and household finance involving earnings, simple interest, discount, profit and loss; extract data from tables and harts. 16. Graphs in practical situations demonstrate familiarity with cartesian coordinates in two dimensions; interpret and use graphs in practical situations, draw graphs from given data. 17. Graphs of functions construct tables of values and draw graphs for functions of the form y = ax n where n = 1, 0, 1, 2, and simple sums of not more than three of these and for functions of the form y = ka x where a is a positive integer; interpret graphs of linear, quadratic, reciprocal and exponential functions; solve equations approximately by graphical methods. 18. Straight line graphs calculate the gradient of a straight line from the coordinates of two points on it; interpret and obtain the equation of a straight line graph in the form y = mx + c; calculate the length and the coordinates of the midpoint of a line segment from the coordinates of its end points. 19. Algebraic representation and formulae use letters to express generalised numbers and express basic arithmetic processes algebraically, substitute numbers for words and letters in formulae; transform simple and more complicated formulae; construct equations from given situations. 20. Algebraic manipulation manipulate directed numbers; use brackets and extract common factors; expand products of algebraic expressions; factorise expressions of the form ax + ay; ax + bx + kay + kby; a 2 x 2 b 2 y 2 ; a 2 b 2 ; a 3 ± b 3 ; ax 2 + bx + c, by splitting the middle term. 21. Indices/ Exponents handling positive, fractional, negative and zero indices. Page 3

4 22. Solutions of equations and inequalities solve simple linear equations in one unknown; solve fractional equations with numerical and linear algebraic denominators; solve simultaneous linear equations in two unknowns; solve quadratic equations by factorisation and either by use of the formula or by completing the square; solve simple linear inequalities. 23. Graphical representation of inequalities represent linear inequalities in one or two variables graphically. 24. Geometrical terms and relationships use and interpret the geometrical terms: point, line, plane, parallel, perpendicular, right angle, acute, obtuse and reflex angles, interior and exterior angles, regular and irregular polygons, pentagons, hexagons, octagons, decagons. use and interpret vocabulary of triangles, circles, special quadrilaterals. solve problems and give simple explanations involving similarity and congruence. use and interpret vocabulary of simple solid figures: cube, cuboid, prism, cylinder, pyramid, cone, sphere. use the relationships between areas of similar triangles, with corresponding results for similar figures, and extension to volumes of similar solids. 25. Geometrical constructions measure lines and angles; construct simple geometrical figures from given data, angle bisectors and perpendicular bisectors. 26. Symmetry recognise line and rotational symmetry (including order of rotational symmetry) in two dimensions, and properties of triangles, quadrilaterals and circles directly related to their symmetries; use the following symmetry properties of circles: (a) equal chords are equidistant from the centre; (b) the perpendicular bisector of a chord passes through the centre; (c) tangents from an external point are equal in length. 27. Angle calculate unknown angles and give simple explanations using the following geometrical properties: (a) angles on a straight line; (b) angles at a point; (c) vertically opposite angles; (d) angles formed by parallel lines; (e) angle properties of triangles and quadrilaterals; (f) angle properties of polygons including angle sum; (g) angle in a semi-circle; Page 4

5 (h) angle between tangent and radius of a circle; (i) angle at the centre of a circle is twice the angle at the ircumference; (j) angles in the same segment are equal; (k) angles in opposite segments are supplementary. 28. Locus use the following loci and the method of intersecting loci: (a) sets of points in two dimensions (i) which are at a given distance from a given point, (ii) which are at a given distance from a given straight line, (iii) which are equidistant from two given points; (b) sets of points in two dimensions which are equidistant from two given intersecting straight lines. 29. Mensuration solve problems involving (a) the perimeter and area of a rectangle and triangle, (b) the circumference and area of a circle, (c) the area of a parallelogram and a trapezium, (d) the surface area and volume of a cuboid, cylinder, prism, sphere, pyramid and cone, (e) arc length and sector area as fractions of the circumference and area of a circle. 30. Trigonometry apply Pythagoras Theorem and the sine, cosine and tangent ratios for acute angles to the calculation of a side or of an angle of a right-angled triangle (angles will be quoted in, and answers required in, degrees and decimals of a degree to one decimal place); solve trigonometrical problems in two dimensions including those involving angles of elevation and depression and bearings; extend sine and cosine functions to angles between 90 and 180 ; solve problems using the sine and cosine rules for any triangle and the formula 1/2 ab sin C for the area of a triangle; 31. Statistics collect, classify and tabulate statistical data; read, interpret and draw simple inferences from tables and statistical diagrams; construct and use bar charts, pie charts, pictograms, simple frequency distributions and frequency polygons; use frequency density to construct and read histograms with equal and unequal intervals; calculate the mean, median and mode for individual data and distinguish between the purposes for which they are used; construct and use cumulative frequency diagrams; estimate the median, Page 5

6 percentiles, quartiles and interquartile range; calculate the mean for grouped data; identify the modal class from a grouped frequency distribution. 32. Probability calculate the probability of a single event as either a fraction or a decimal (not a ratio); calculate the probability of simple combined events using possibility diagrams and tree diagrams where appropriate. (In possibility diagrams outcomes will be represented by points on a grid and in tree diagrams outcomes will be written at the end of branches and probabilities by the side of the branches.) 33. Matrices display information in the form of a matrix of any order; solve problems involving the calculation of the sum and product (where appropriate) of two matrices, and interpret the results; calculate the product of a scalar quantity and a matrix; use the algebra of 2 x 2 matrices including the zero and identity 2 x 2 matrices; calculate the determinant and inverse of a non-singular matrix. 34. Vectors in two dimensions x describe a translation by using a vector represented by, a or a; add y vectors and multiply a vector by a scalar; calculate the magnitude of a vector (Vectors will be printed as a or a and their magnitudes denoted by modulus signs, e.g. a or a.) represent vectors by directed line segments; use the sum and difference of two vectors to express given vectors in terms of two coplanar vectors; use position vectors. Page 6

### Section 1: How will you be tested? This section will give you information about the different types of examination papers that are available.

REVISION CHECKLIST for IGCSE Mathematics 0580 A guide for students How to use this guide This guide describes what topics and skills you need to know for your IGCSE Mathematics examination. It will help

### 1.6 Powers of 10 and standard form Write a number in standard form. Calculate with numbers in standard form.

Unit/section title 1 Number Unit objectives (Edexcel Scheme of Work Unit 1: Powers, decimals, HCF and LCM, positive and negative, roots, rounding, reciprocals, standard form, indices and surds) 1.1 Number

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### GCSE Maths Linear Higher Tier Grade Descriptors

GSE Maths Linear Higher Tier escriptors Fractions /* Find one quantity as a fraction of another Solve problems involving fractions dd and subtract fractions dd and subtract mixed numbers Multiply and divide

### KS4 Curriculum Plan Maths FOUNDATION TIER Year 9 Autumn Term 1 Unit 1: Number

KS4 Curriculum Plan Maths FOUNDATION TIER Year 9 Autumn Term 1 Unit 1: Number 1.1 Calculations 1.2 Decimal Numbers 1.3 Place Value Use priority of operations with positive and negative numbers. Simplify

### MATHS LEVEL DESCRIPTORS

MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and

### Maths curriculum information

Maths curriculum information Year 7 Learning outcomes Place value, add and subtract Multiply and divide Geometry Fractions Algebra Percentages & pie charts Topics taught Place value (inc decimals) Add

### In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

### MINISTRY OF EDUCATION

Republic of Namibia MINISTRY OF EDUCATION NAMIBIA SENIOR SECONDARY CERTIFICATE (NSSC) MATHEMATICS SYLLABUS ORDINARY LEVEL SYLLABUS CODE: 4324 GRADES 11-12 FOR IMPLEMENTATION IN 2006 FOR FIRST EXAMINATION

### Edexcel Maths Linear Topic list HIGHER Edexcel GCSE Maths Linear Exam Topic List - HIGHER

Edexcel GCSE Maths Linear Exam Topic List - HIGHER NUMBER Add, subtract, multiply, divide Order numbers Factors, multiples and primes Write numbers in words Write numbers from words Add, subtract, multiply,

Fortismere: Maths GCSE Grade Descriptors Grade Description Clip 1 Interpreting Real-Life Tables 6 1 Names of Angles 13 1 Ordering Decimals 3 1 Ordering Integers 2 1 Pictograms 16 1 Place Value 1 1 Polygons

### Foundation. Scheme of Work. Year 10 September 2016-July 2017

Foundation Scheme of Work Year 10 September 016-July 017 Foundation Tier Students will be assessed by completing two tests (topic) each Half Term. PERCENTAGES Use percentages in real-life situations VAT

### Syllabus. Cambridge IGCSE Mathematics

Syllabus Cambridge IGCSE Mathematics 0580 For examination in June and November 2017 and 2018. Also available for examination in March 2017 and 2018 for India only. Cambridge Secondary 2 Version 1 Changes

### FOREWORD. Executive Secretary

FOREWORD The Botswana Examinations Council is pleased to authorise the publication of the revised assessment procedures for the Junior Certificate Examination programme. According to the Revised National

### For examination in June and November 2016. Also available for examination in March 2016 for India only.

SYLLABUS Cambridge IGCSE Mathematics 0580 For examination in June and November 2016. Also available for examination in March 2016 for India only. This syllabus is approved for use in England, Wales and

### CAMI Education linked to CAPS: Mathematics

- 1 - TOPIC 1.1 Whole numbers _CAPS Curriculum TERM 1 CONTENT Properties of numbers Describe the real number system by recognizing, defining and distinguishing properties of: Natural numbers Whole numbers

### Curriculum Mapping - Key Stage 3 Subject : Mathematics Topics addressed Skills acquired Cross-curricular links Progression links to future years

Year 7 (CORE) Sequences and rules Order, add and subtract decimals Order, add and subtract negative s Rounding and estimates Paper and pencil methods to add, subtract, divide and multiply Perimeter and

### MATH Activities ver3

MATH Activities ver3 This content summary list is for the 2011-12 school year. Detailed Content Alignment Documents to State & Common Core Standards are posted on www.pendalearning.com NOTE: Penda continues

### (Mathematics Syllabus Form 3 Track 3 for Secondary Schools June 2013) Page 1 of 9

(Mathematics Syllabus Form 3 Track 3 for Secondary Schools June 2013) Page 1 of 9 Contents Pages Number and Applications 3-4 Algebra 5-6 Shape Space and Measurement 7-8 Data Handling 9 (Mathematics Syllabus

### Mathematics. GCSE subject content and assessment objectives

Mathematics GCSE subject content and assessment objectives June 2013 Contents Introduction 3 Subject content 4 Assessment objectives 11 Appendix: Mathematical formulae 12 2 Introduction GCSE subject criteria

### Year 8 - Maths Autumn Term

Year 8 - Maths Autumn Term Whole Numbers and Decimals Order, add and subtract negative numbers. Recognise and use multiples and factors. Use divisibility tests. Recognise prime numbers. Find square numbers

### Time Topic What students should know Mathswatch links for revision

Time Topic What students should know Mathswatch links for revision 1.1 Pythagoras' theorem 1 Understand Pythagoras theorem. Calculate the length of the hypotenuse in a right-angled triangle. Solve problems

### Key Topics What will ALL students learn? What will the most able students learn?

2013 2014 Scheme of Work Subject MATHS Year 9 Course/ Year Term 1 Key Topics What will ALL students learn? What will the most able students learn? Number Written methods of calculations Decimals Rounding

### Mathematics Scope and Sequence: Foundation to Year 6

Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Establish understing of the language processes of counting by naming numbers

### Mathematics programmes of study: key stage 3. National curriculum in England

Mathematics programmes of study: key stage 3 National curriculum in England September 2013 Purpose of study Mathematics is a creative and highly inter-connected discipline that has been developed over

### Secondary Mathematics Syllabuses

Secondary Mathematics Syllabuses Copyright 006 Curriculum Planning and Development Division. This publication is not for sale. All rights reserved. No part of this publication may be reproduced without

### Decide how many topics you wish to revise at a time (let s say 10).

1 Minute Maths for the Higher Exam (grades B, C and D topics*) Too fast for a first-time use but... brilliant for topics you have already understood and want to quickly revise. for the Foundation Exam

### MATHEMATICS. Teaching Objectives and Learning Outcomes (Form 2)

MATHEMATICS Teaching Objectives and (Form 2) Directorate for Quality and Standards in Education Curriculum Management and elearning Department Malta 2012 Directorate for Quality and Standards in Education

### KS3 Maths Learning Objectives (excludes Year 9 extension objectives)

KS3 Maths Learning Objectives (excludes Year 9 extension objectives) blue Year 7 black Year 8 green Year 9 NUMBER N1 Place value and standard form N1.1 Place value N1.2 Powers of ten Framework Objectives

### Ingleby Manor Scheme of Work : Year 7. Objectives Support L3/4 Core L4/5/6 Extension L6/7

Autumn 1 Mathematics Objectives Support L3/4 Core L4/5/6 Extension L6/7 Week 1: Algebra 1 (6 hours) Sequences and functions - Recognize and extend number sequences - Identify the term to term rule - Know

### YEAR 8 SCHEME OF WORK - SECURE

YEAR 8 SCHEME OF WORK - SECURE Autumn Term 1 Number Spring Term 1 Real-life graphs Summer Term 1 Calculating with fractions Area and volume Decimals and ratio Straight-line graphs Half Term: Assessment

### SYLLABUS. Cambridge IGCSE Mathematics Cambridge International Certificate* For examination in June and November 2014

SYLLABUS Cambridge IGCSE Mathematics Cambridge International Certificate* 0580 For examination in June and November 2014 Cambridge IGCSE Mathematics (with Coursework) 0581 For examination in June and November

### CAMI Education linked to CAPS: Mathematics

- 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to

### The Australian Curriculum Mathematics

The Australian Curriculum Mathematics Mathematics ACARA The Australian Curriculum Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year

### Middle Grades Mathematics 5 9

Middle Grades Mathematics 5 9 Section 25 1 Knowledge of mathematics through problem solving 1. Identify appropriate mathematical problems from real-world situations. 2. Apply problem-solving strategies

### Year 7 1 Spring Term Homework Schedule

Year 7 1 Spring Term Schedule Topics Number 3 Place value Calculations Calculator Measures Number 4 FDPRP methods Multiplications, additions, subtractions & division; round to nearest 10, 100, 1000; round

### Dyffryn School Ysgol Y Dyffryn Mathematics Faculty. GCSE Course Content

Dyffryn School Ysgol Y Dyffryn Mathematics Faculty GCSE Course Content 1. Number. Place value Read, write & order numbers in figures or words 4 rules, to include long multiplication & harder division Multiply/divide

### Mathematics Scheme of Work: Form

Textbook: Formula One Maths B2 Hodder and Stoughton Chapter No. First Term Revising Time Topic and Subtopic October - December Handout Notes 2 Numbers 2.1 Basic conversions: Changing from large units to

### Year 1 Maths Expectations

Times Tables I can count in 2 s, 5 s and 10 s from zero. Year 1 Maths Expectations Addition I know my number facts to 20. I can add in tens and ones using a structured number line. Subtraction I know all

### Whole Numbers and Integers (44 topics, no due date)

Course Name: PreAlgebra into Algebra Summer Hwk Course Code: GHMKU-KPMR9 ALEKS Course: Pre-Algebra Instructor: Ms. Rhame Course Dates: Begin: 05/30/2015 End: 12/31/2015 Course Content: 302 topics Whole

### Framework for developing schemes of work for the geometry curriculum for ages 14-16

Framework for developing schemes of work for the geometry curriculum for ages 14-16 CURRICULUM GRADES G - F GRADES E - D GRADES C - B GRADES A A* INVESTIGATION CONTEXT Distinguish Know and use angle, Construct

### REVISED GCSE Scheme of Work Mathematics Higher Unit T3. For First Teaching September 2010 For First Examination Summer 2011

REVISED GCSE Scheme of Work Mathematics Higher Unit T3 For First Teaching September 2010 For First Examination Summer 2011 Version 1: 28 April 10 Version 1: 28 April 10 Unit T3 Unit T3 This is a working

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### AQA Level 2 Certificate FURTHER MATHEMATICS

AQA Qualifications AQA Level 2 Certificate FURTHER MATHEMATICS Level 2 (8360) Our specification is published on our website (www.aqa.org.uk). We will let centres know in writing about any changes to the

### Centroid: The point of intersection of the three medians of a triangle. Centroid

Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

### MATHEMATICS AND MATHEMATICS - NUMERACY

GCSE WJEC GCSE in MATHEMATICS AND MATHEMATICS - NUMERACY ACCREDITED BY WELSH GOVERNMENT TEACHERS' GUIDE Teaching from 2015 This Welsh Government regulated qualification is not available to centres in England.

### Math Foundations IIB Grade Levels 9-12

Math Foundations IIB Grade Levels 9-12 Math Foundations IIB introduces students to the following concepts: integers coordinate graphing ratio and proportion multi-step equations and inequalities points,

### Curriculum Overview YR 9 MATHS. SUPPORT CORE HIGHER Topics Topics Topics Powers of 10 Powers of 10 Significant figures

Curriculum Overview YR 9 MATHS AUTUMN Thursday 28th August- Friday 19th December SUPPORT CORE HIGHER Topics Topics Topics Powers of 10 Powers of 10 Significant figures Rounding Rounding Upper and lower

### Year 6 Maths Objectives

Year 6 Maths Objectives Place Value COUNTING COMPARING NUMBERS IDENTIFYING, REPRESENTING & ESTIMATING NUMBERS READING & WRITING NUMBERS UNDERSTANDING PLACE VALUE ROUNDING PROBLEM SOLVING use negative numbers

### of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Express a whole number as a product of its prime factors. e.g

Subject OCR 1 Number Operations and Integers 1.01 Calculations with integers 1.01a Four rules Use non-calculator methods to calculate the sum, difference, product and quotient of positive and negative

### Course: Math 7. engage in problem solving, communicating, reasoning, connecting, and representing

Course: Math 7 Decimals and Integers 1-1 Estimation Strategies. Estimate by rounding, front-end estimation, and compatible numbers. Prentice Hall Textbook - Course 2 7.M.0 ~ Measurement Strand ~ Students

Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

### Charlesworth School Year Group Maths Targets

Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve

### Specification and Sample Assessment Material. Edexcel International GCSE in Mathematics (Specification A) (4MA0)

Specification and Sample Assessment Material Edexcel International GCSE in Mathematics (Specification A) (4MA0) First examination 2011 Pearson Education Ltd is one of the UK s largest awarding organisations,

### Add and subtract 1-digit and 2-digit numbers to 20, including zero. Measure and begin to record length, mass, volume and time

Year 1 Maths - Key Objectives Count to and across 100 from any number Count, read and write numbers to 100 in numerals Read and write mathematical symbols: +, - and = Identify "one more" and "one less"

### Greater Nanticoke Area School District Math Standards: Grade 6

Greater Nanticoke Area School District Math Standards: Grade 6 Standard 2.1 Numbers, Number Systems and Number Relationships CS2.1.8A. Represent and use numbers in equivalent forms 43. Recognize place

### Primary Curriculum 2014

Primary Curriculum 2014 Suggested Key Objectives for Mathematics at Key Stages 1 and 2 Year 1 Maths Key Objectives Taken from the National Curriculum 1 Count to and across 100, forwards and backwards,

### Illinois State Standards Alignments Grades Three through Eleven

Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other

### Math Content

2012-2013 Math Content PATHWAY TO ALGEBRA I Unit Lesson Section Number and Operations in Base Ten Place Value with Whole Numbers Place Value and Rounding Addition and Subtraction Concepts Regrouping Concepts

### REVISED GCSE Scheme of Work Mathematics Higher Unit 6. For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012

REVISED GCSE Scheme of Work Mathematics Higher Unit 6 For First Teaching September 2010 For First Examination Summer 2011 This Unit Summer 2012 Version 1: 28 April 10 Version 1: 28 April 10 Unit T6 Unit

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### Circle Theorems. Angles at the circumference are equal. The angle in a semi-circle is x The angle at the centre. Cyclic Quadrilateral

The angle in a semi-circle is 90 0 Angles at the circumference are equal. A B They must come from the same arc. Look out for a diameter. 2x Cyclic Quadrilateral Opposite angles add up to 180 0 A They must

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### LESSON 4 Missing Numbers in Multiplication Missing Numbers in Division LESSON 5 Order of Operations, Part 1 LESSON 6 Fractional Parts LESSON 7 Lines,

Saxon Math 7/6 Class Description: Saxon mathematics is based on the principle of developing math skills incrementally and reviewing past skills daily. It also incorporates regular and cumulative assessments.

### Standards and progression point examples

Mathematics Progressing towards Foundation Progression Point 0.5 At 0.5, a student progressing towards the standard at Foundation may, for example: connect number names and numerals with sets of up to

### Year 3 End of year expectations

Number and Place Value Count in 4s, 8s, 50s and 100s from any number Read and write numbers up to 1000 in numbers and words Compare and order numbers up to 1000 Recognise the place value of each digit

### Within each area, these outcomes are broken down into more detailed step-by-step learning stages for each of the three terms.

MATHEMATICS PROGRAMME OF STUDY COVERAGE all topics are revisited several times during each academic year. Existing learning is consolidated and then built upon and extended. Listed below are the end of

### Lesson List

2016-2017 Lesson List Table of Contents Operations and Algebraic Thinking... 3 Number and Operations in Base Ten... 6 Measurement and Data... 9 Number and Operations - Fractions...10 Financial Literacy...14

### Mathematics programmes of study: key stage 4. National curriculum in England

Mathematics programmes of study: key stage 4 National curriculum in England July 2014 Contents Purpose of study 3 Aims 3 Information and communication technology (ICT) 4 Spoken language 4 Working mathematically

### Mathematics. Programme of study for key stage 3 and attainment targets (This is an extract from The National Curriculum 2007)

Mathematics Programme of study for key stage 3 and attainment targets (This is an extract from The National Curriculum 2007) Crown copyright 2007 Qualifications and Curriculum Authority 2007 Curriculum

### Scope & Sequence MIDDLE SCHOOL

Math in Focus is a registered trademark of Times Publishing Limited. Houghton Mifflin Harcourt Publishing Company. All rights reserved. Printed in the U.S.A. 06/13 MS77941n Scope & Sequence MIDDLE SCHOOL

### Bridging Documents for Mathematics

Bridging Documents for Mathematics 5 th /6 th Class, Primary Junior Cycle, Post-Primary Primary Post-Primary Card # Strand(s): Number, Measure Number (Strand 3) 2-5 Strand: Shape and Space Geometry and

### Maths Targets Year 1 Addition and Subtraction Measures. N / A in year 1.

Number and place value Maths Targets Year 1 Addition and Subtraction Count to and across 100, forwards and backwards beginning with 0 or 1 or from any given number. Count, read and write numbers to 100

### 20 Maths Wordsearch Puzzles

20 Maths Wordsearch Puzzles Licence Duncan Keith 2005 (maths@subtangent.com) This document is released under the Creative Commons Attribution-NonCommercial- ShareAlike 1.0 (UK) licence. You can find the

### EVERY DAY: Practise and develop oral and mental skills (e.g. counting, mental strategies, rapid recall of +, and x facts)

Year 6/Band 6 Autumn Term Maths Curriculum Progression and Assessment Criteria EVERY DAY: Practise and develop oral and mental skills (e.g. counting, mental strategies, rapid recall of +, and x facts)

### Unit 1, Review Transitioning from Previous Mathematics Instructional Resources: McDougal Littell: Course 1

Unit 1, Review Transitioning from Previous Mathematics Transitioning from previous mathematics to Sixth Grade Mathematics Understand the relationship between decimals, fractions and percents and demonstrate

### National 5 Mathematics Course Assessment Specification (C747 75)

National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for

### Grade 7 Math Course Lesson Plan: 34 weeks

Grade 7 Math Course Lesson Plan: 34 weeks Welcome to Thinkwell s 7th Grade Math! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan is meant to be a guide

### Grade Level Expectations for the Sunshine State Standards

for the Sunshine State Standards Mathematics Grades 6-8 FLORIDA DEPARTMENT OF EDUCATION http://www.myfloridaeducation.com/ Strand A: Number Sense, Concepts, and Operations Standard 1: The student understands

### Remember that the information below is always provided on the formula sheet at the start of your exam paper

Maths GCSE Linear HIGHER Things to Remember Remember that the information below is always provided on the formula sheet at the start of your exam paper In addition to these formulae, you also need to learn

### EVERY DAY COUNTS CALENDAR MATH 2005 correlated to

EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### Level 1 - Maths Targets TARGETS. With support, I can show my work using objects or pictures 12. I can order numbers to 10 3

Ma Data Hling: Interpreting Processing representing Ma Shape, space measures: position shape Written Mental method s Operations relationship s between them Fractio ns Number s the Ma1 Using Str Levels

### MAT 0950 Course Objectives

MAT 0950 Course Objectives 5/15/20134/27/2009 A student should be able to R1. Do long division. R2. Divide by multiples of 10. R3. Use multiplication to check quotients. 1. Identify whole numbers. 2. Identify

### Fractions Associate a fraction with division to calculate decimal fraction equivalents (e.g ) for a simple fraction (e.g. 3/8).

: Autumn 1 Numeracy Curriculum Objectives Number, Place Value and Rounding Read, write, order and compare numbers up to 10,000,000 and determine the value of each digit. Round any whole number to a required

### THE LAWRENCE SCHOOL SANAWAR

THE LAWRENCE SCHOOL SANAWAR Syllabus for Class VII Entrance Examination: MATHEMATICS Number System (i) Knowing our Numbers: Consolidating the sense of numberness up to 5 digits, Size, estimation of numbers,

### Number & Place Value. Addition & Subtraction. Digit Value: determine the value of each digit. determine the value of each digit

Number & Place Value Addition & Subtraction UKS2 The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

### MyMathLab ecourse for Developmental Mathematics

MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and

### Curriculum overview for Year 1 Mathematics

Curriculum overview for Year 1 Counting forward and back from any number to 100 in ones, twos, fives and tens identifying one more and less using objects and pictures (inc number lines) using the language

### C A R I B B E A N E X A M I N A T I O N S C O U N C I L REPORT ON CANDIDATES WORK IN THE SECONDARY EDUCATION CERTIFICATE EXAMINATION MAY/JUNE 2011

C A R I B B E A N E X A M I N A T I O N S C O U N C I L REPORT ON CANDIDATES WORK IN THE SECONDARY EDUCATION CERTIFICATE EXAMINATION MAY/JUNE 2011 MATHEMATICS GENERAL PROFICIENCY EXAMINATION Copyright

### Common Entrance revision Year 8

To multiply/divide any number including decimals by 10, 100, 1000 A) 5800 B) 390 C) 0.5176 D) 0.0536 A) 7.35 B) 10000 Harder questions: A) 230 B) 230 To multiply/divide/add/subtract using decimal numbers

### Appendix A. Comparison. Number Concepts and Operations. Math knowledge learned not matched by chess

Appendix A Comparison Number Concepts and Operations s s K to 1 s 2 to 3 Recognize, describe, and use numbers from 0 to 100 in a variety of familiar settings. Demonstrate and use a variety of methods to

### SYLLABUS. Cambridge O Level. Mathematics (Syllabus D) For examination in June and November Mathematics (Syllabus D) For Centres in Mauritius

SYLLABUS Cambridge O Level Mathematics (Syllabus D) 4024 For examination in June and November 2015 Mathematics (Syllabus D) For Centres in Mauritius 4029 For examination in November 2015 Cambridge Secondary