Square Roots Teacher Notes

Size: px
Start display at page:

Download "Square Roots Teacher Notes"

Transcription

1 Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this topic. The Common Core Stte Stndrds do not mention simplifying rdicls, perhps ecuse tht topic hs lost its importnce in the ge of electronic lger. Geoord Are Becuse of the visul / geometric emphsis of the unit, it is criticl tht students hve strong sense of the mening of re. This lesson helps students grpple with it in concrete context, y doing simple computtions in order to find the res of figures on the geoord. Do not precede this lesson with review of re formuls. For mny of the weker students, these formuls get in the wy of understnding wht re even mens. However, s students work on the ctivity, it will proly e useful to discuss the re of rectngles, nd the fct tht right tringle cn e pictured s hlf of rectngle. These ides will come cross most effectively if they rise out of clss discussion. A common misunderstnding in this context is counting pegs to find the side of rectngle. Mke sure to confront this when it rises. This is converstion tht will need to hppen one-on-one with mny students, ut it cn lso e reinforced y clss discussion. The ctivity is tken from Geometry Ls. The whole ook, including solutions nd techer notes, is ville for free downlod t If time is short, you my limit the ctivity to #1-4 nd Discussion questions A nd B. Squres nd Squre Roots This lesson introduces the centrl ide of the unit: the squre root of numer is the side of squre whose re is tht numer. In #1, most students will not find the first seven squres too difficult, ut the tilted squres will e considerly more chllenging. If students re stumped, or give out-nd-out wrong nswers, do not revel the correct nswers right wy. Insted, suggest tht they strt y finding the re of the squres. If they need hints on how to do tht, you my suggest tht they sutrct the res of tringles from the lrger enclosing squres. Expressing the length of the sides s 2 nd 5 is sufficient for #1. Deciml pproximtions re requested in #2. In #4, the first tle cn e filled out with whole numers, ut the other two require decimls. You my chllenge students to fill out s much s possile without clcultor. Mny if not most students will e surprised tht in this tle, the squre roots of numers re greter thn the numers (except in the cse of the totl re.) You my hve clss discussion of this. #5 is n extr chllenge prolem. It is not necessry tht every student complete it. Squre Roots pge i

2 Henri Picciotto Geoord Squres This ctivity (once gin from Geometry Ls) follows up on #1 from the previous lesson. Side lengths cn e expressed s squre roots. (No need for deciml pproximtions.) It is not essentil tht students find ll 33 possiilities, ut try to mke sure tht ech student hs found the re nd side length for t lest few tilted squres. If time is short, skip Discussion questions B-D. On the other hnd, if you wnt to do this lesson in depth, give it second or even third period, nd show the students how it leds to the Pythgoren theorem. The Exponent ½ This lesson (sed on Alger: Themes, Tools, Concepts 9.8) is review of the lws of exponents, leding to the ide tht the positive squre root of numer cn lso e thought of s tht numer rised to the power ½. #3-5 will certinly require clss discussion! Additionl Activities Mentl Arithmetic After the Squres nd Squre Roots lesson, s you work through the unit, you my sk students to pproximte squre roots without clcultor, nd then see how close they got with the help of clcultor. For exmple, you might sk: The squre root of 90 is etween which two whole numers? Do this often, s it is very importnt! Equl Squres A solid understnding of squre roots helps ly the groundwork for solving qudrtic equtions y the equl squres method, which is spelled out in the L Ger mterils, nd in Alger: Themes, Tools, Concepts 7.7 nd (ATTC is ville free t Extensions Geometric Puzzles Tngrms nd supertngrms re sed on right isosceles tringles, nd thus re intimtely involved with the squre root of 2. You cn find tngrm ctivities in Geometry Ls, nd supertngrm ctivities here: < And More For more squre root mterils, see: Geometry Ls 9.3, 9.4 Alger: Themes, Tools, Concepts 9.3, 9.4, 9.5, 9.8, 9.9 Squre Roots pge ii

3 LAB 8.4 Geoord Are Nme(s) Equipment: Geoord, dot pper The re of the geoord figure t right is Find other geoord figures with re 15.The oundries of the figures need not e horizontl or verticl. Find figures tht re different from the ones your neighors find. Record your solutions on dot pper. It is esiest to find res of geoord rectngles with horizontl nd verticl sides.the next esiest figures re the esy right tringles, such s the two shown t right. 2. Find the res of these tringles. If you cn find the re of esy right tringles, you cn find the re of ny geoord figure! 3. Find the res of the figures elow. 4. Find the re of the figure elow. (It my e more difficult thn Prolem 3. Hint: Use sutrction.) Geometry Ls Section 8 Perimeter nd Are Henri Picciotto,

4 LAB 8.4 Geoord Are (continued) Nme(s) 5. Find the res of the figures elow. 6. How mny noncongruent geoord tringles re there with re 8? Limit yourself to tringles tht cn e shown on n geoord nd hve horizontl se. Record your findings on dot pper. 7. Puzzle: Find the geoord figure with the smllest re in ech of these ctegories.. Acute tringle. Otuse tringle c. Right tringle d. Squre e. Rhomus (not squre) f. Rectngle (not squre) g. Kite h. Trpezoid i. Prllelogrm Discussion A. A common mistke in finding geoord res is to overestimte the sides of rectngles y 1 (for exmple, thinking tht the rectngle t right is 4 5).Wht might cuse this mistke? B. Explin, with illustrted exmples, how the following opertions my e used in finding the re of geoord figure: division y 2; ddition; sutrction. C. Wht hppens to the re of tringle if you keep its se constnt nd move the third vertex in direction prllel to the se? Explin, using geoord or dot pper figures. D. Use geoord figures to demonstrte the re formuls for vrious qudrilterls. 114 Section 8 Perimeter nd Are Geometry Ls 1999 Henri Picciotto,

5 Henri Picciotto Squres nd Squre Roots To find the re of squre, if you know its side, you multiply the side y itself: you squre the side. To find the side of squre, if you know its re, you tke the squre root of the re. 1. For ech squre, write three equtions. Your equtions should hve the following forms: side side = re, side 2 = re, nd re = side.. c. d. e. f. g. h. i. Squre Roots pge 3

6 Henri Picciotto 2. Estimte x nd y s deciml numers (they re the sides of those squres).. Without clcultor. With clcultor When the side of squre is whole numer, the re is clled perfect squre. For exmple, 49 is perfect squre, ecuse 49 = 7, nd 7 is whole numer. 2 is not perfect squre, ecuse 2 = 1.414, nd is not whole numer. 3.. Nme five perfect squres tht re greter thn 49.. Is 0 perfect squre? c. Is -49 perfect squre? Squre Roots pge 4

7 Henri Picciotto 4. Fill out the tles with the res nd sides of squres,, c, d. If the nswer is not whole numer, enter deciml rounded to the nerest 1/100. Are Totl 100 Side 5 c d Are Totl 1 Side 0.30 c d 5. Chllenge: Totl c d Are Side Squre Roots pge 5

8 LAB 8.5 Geoord Squres Nme(s) Equipment: Geoord, dot pper 1. There re 33 different-size squres on n geoord.with the help of your neighors, do the following.. Find ll the squres.. Sketch ech squre on dot pper, indicting its re nd the length of its side. Discussion A. How cn you mke sure tht two sides of geoord squre relly form right ngle? B. How cn you orgnize your serch so s to mke sure you find ll the squres? C. Is it possile to find squres tht hve the sme re, ut different orienttions? D. In the figure t right, find the following in terms of nd.. The side of the outside squre. The re of the outside squre c. The re of ech tringle d. The re of the inside squre e. The side of the inside squre Geometry Ls Section 8 Perimeter nd Are Henri Picciotto,

9 Adpted from Alger: Themes, Tools, Concepts Anit Wh nd Henri Picciotto The Exponent ½ 1. Write s single power: (4 3 ) 2 c Find x = 2 x = x 6 c. (2 4 ) 2 = 2 x Squre Roots pge 7

10 Adpted from Alger: Themes, Tools, Concepts Anit Wh nd Henri Picciotto 3. Find x.. 9 x 9 3 = x 9 x = 9 2 c. 9 x 9 x = 9 1 d. B x B x = B 1 4. Find x.. (9 x ) 2 = 9 6. (9 x ) 2 = 9 1 c. (B x ) 2 = B 6 d. (B x ) 2 = B 1 Squre Roots pge 8

11 Adpted from Alger: Themes, Tools, Concepts Anit Wh nd Henri Picciotto 5. Prolems 2-4 suggest mening for the exponent ½. Develop n explntion for wht n exponent of ½ mens. 6. Using this mening of the exponent ½, find the following. If the nswer is not whole numer, use squre root symol c d. 2 Squre Roots pge 9

Quadratic Equations - 1

Quadratic Equations - 1 Alger Module A60 Qudrtic Equtions - 1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions - 1 Sttement of Prerequisite

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929  Math Learning Center Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Sect 8.3 Triangles and Hexagons

Sect 8.3 Triangles and Hexagons 13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed two-dimensionl geometric figure consisting of t lest three line segments for its

More information

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C; B-26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndom-numer genertor supplied s stndrd with ll computer systems Stn Kelly-Bootle,

More information

Content Objectives: After completing the activity, students will gain experience of informally proving Pythagoras Theorem

Content Objectives: After completing the activity, students will gain experience of informally proving Pythagoras Theorem Pythgors Theorem S Topic 1 Level: Key Stge 3 Dimension: Mesures, Shpe nd Spce Module: Lerning Geometry through Deductive Approch Unit: Pythgors Theorem Student ility: Averge Content Ojectives: After completing

More information

Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }

Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, } ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Chapter 9: Quadratic Equations

Chapter 9: Quadratic Equations Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.

More information

Mathematics Higher Level

Mathematics Higher Level Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:

More information

4 Geometry: Shapes. 4.1 Circumference and area of a circle. FM Functional Maths AU (AO2) Assessing Understanding PS (AO3) Problem Solving HOMEWORK 4A

4 Geometry: Shapes. 4.1 Circumference and area of a circle. FM Functional Maths AU (AO2) Assessing Understanding PS (AO3) Problem Solving HOMEWORK 4A Geometry: Shpes. Circumference nd re of circle HOMEWORK D C 3 5 6 7 8 9 0 3 U Find the circumference of ech of the following circles, round off your nswers to dp. Dimeter 3 cm Rdius c Rdius 8 m d Dimeter

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting

More information

Know the sum of angles at a point, on a straight line and in a triangle

Know the sum of angles at a point, on a straight line and in a triangle 2.1 ngle sums Know the sum of ngles t point, on stright line n in tringle Key wors ngle egree ngle sum n ngle is mesure of turn. ngles re usully mesure in egrees, or for short. ngles tht meet t point mke

More information

Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.

Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep. Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.

In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists. Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix

More information

The area of the larger square is: IF it s a right triangle, THEN + =

The area of the larger square is: IF it s a right triangle, THEN + = 8.1 Pythgoren Theorem nd 2D Applitions The Pythgoren Theorem sttes tht IF tringle is right tringle, THEN the sum of the squres of the lengths of the legs equls the squre of the hypotenuse lengths. Tht

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Geometry and Measure. 12am 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12pm

Geometry and Measure. 12am 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12pm Reding Scles There re two things to do when reding scle. 1. Mke sure you know wht ech division on the scle represents. 2. Mke sure you red in the right direction. Mesure Length metres (m), kilometres (km),

More information

Curve Sketching. 96 Chapter 5 Curve Sketching

Curve Sketching. 96 Chapter 5 Curve Sketching 96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Variable Dry Run (for Python)

Variable Dry Run (for Python) Vrile Dr Run (for Pthon) Age group: Ailities ssumed: Time: Size of group: Focus Vriles Assignment Sequencing Progrmming 7 dult Ver simple progrmming, sic understnding of ssignment nd vriles 20-50 minutes

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

The Quadratic Formula and the Discriminant

The Quadratic Formula and the Discriminant 9-9 The Qudrtic Formul nd the Discriminnt Objectives Solve qudrtic equtions by using the Qudrtic Formul. Determine the number of solutions of qudrtic eqution by using the discriminnt. Vocbulry discriminnt

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

Chapter 6 Solving equations

Chapter 6 Solving equations Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign

More information

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Mean and the Pythagorean Theorem Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

More information

Solving Linear Equations - Formulas

Solving Linear Equations - Formulas 1. Solving Liner Equtions - Formuls Ojective: Solve liner formuls for given vrile. Solving formuls is much like solving generl liner equtions. The only difference is we will hve severl vriles in the prolem

More information

Lines and Angles. 2. Straight line is a continuous set of points going on forever in both directions:

Lines and Angles. 2. Straight line is a continuous set of points going on forever in both directions: Lines nd Angles 1. Point shows position. A 2. Stright line is continuous set of points going on forever in oth directions: 3. Ry is line with one endpoint. The other goes on forever. G 4. Line segment

More information

1.2 The Integers and Rational Numbers

1.2 The Integers and Rational Numbers .2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Lesson 4.1 Triangle Sum Conjecture

Lesson 4.1 Triangle Sum Conjecture Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.

More information

Final Exam covers: Homework 0 9, Activities 1 20 and GSP 1 6 with an emphasis on the material covered after the midterm exam.

Final Exam covers: Homework 0 9, Activities 1 20 and GSP 1 6 with an emphasis on the material covered after the midterm exam. MTH 494.594 / FINL EXM REVIEW Finl Exm overs: Homework 0 9, tivities 1 0 nd GSP 1 6 with n emphsis on the mteril overed fter the midterm exm. You my use oth sides of one 3 5 rd of notes on the exm onepts

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

4.5 The Converse of the

4.5 The Converse of the Pge 1 of. The onverse of the Pythgoren Theorem Gol Use the onverse of Pythgoren Theorem. Use side lengths to lssify tringles. Key Words onverse p. 13 grdener n use the onverse of the Pythgoren Theorem

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

Solutions to Section 1

Solutions to Section 1 Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this

More information

Quadrilaterals Here are some examples using quadrilaterals

Quadrilaterals Here are some examples using quadrilaterals Qudrilterls Here re some exmples using qudrilterls Exmple 30: igonls of rhomus rhomus hs sides length nd one digonl length, wht is the length of the other digonl? 4 - Exmple 31: igonls of prllelogrm Given

More information

Two special Right-triangles 1. The

Two special Right-triangles 1. The Mth Right Tringle Trigonometry Hndout B (length of ) - c - (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Right-tringles. The

More information

Three squares with sides 3, 4, and 5 units are used to form the right triangle shown. In a right triangle, the sides have special names.

Three squares with sides 3, 4, and 5 units are used to form the right triangle shown. In a right triangle, the sides have special names. 1- The Pythgoren Theorem MAIN IDEA Find length using the Pythgoren Theorem. New Voulry leg hypotenuse Pythgoren Theorem Mth Online glenoe.om Extr Exmples Personl Tutor Self-Chek Quiz Three squres with

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

Quadratic Equations. Math 99 N1 Chapter 8

Quadratic Equations. Math 99 N1 Chapter 8 Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree

More information

11. PYTHAGORAS THEOREM

11. PYTHAGORAS THEOREM 11. PYTHAGORAS THEOREM 11-1 Along the Nile 2 11-2 Proofs of Pythgors theorem 3 11-3 Finding sides nd ngles 5 11-4 Semiirles 7 11-5 Surds 8 11-6 Chlking hndll ourt 9 11-7 Pythgors prolems 10 11-8 Designing

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Pythagoras theorem and trigonometry (2)

Pythagoras theorem and trigonometry (2) HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

More information

Lines and angles. Name. Use a ruler and pencil to draw: a 2 parallel lines. c 2 perpendicular lines. b 2 intersecting lines. Complete the following:

Lines and angles. Name. Use a ruler and pencil to draw: a 2 parallel lines. c 2 perpendicular lines. b 2 intersecting lines. Complete the following: Lines nd s 1 Use ruler nd pencil to drw: 2 prllel lines 2 intersecting lines c 2 perpendiculr lines 2 Complete the following: drw in the digonls on this shpe mrk the interior s on this shpe c mrk equl

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

Net Change and Displacement

Net Change and Displacement mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Let us recall some facts you have learnt in previous grades under the topic Area.

Let us recall some facts you have learnt in previous grades under the topic Area. 6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us

More information

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001 CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic

More information

Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

More information

Proving the Pythagorean Theorem

Proving the Pythagorean Theorem Proving the Pythgoren Theorem Proposition 47 of Book I of Eulid s Elements is the most fmous of ll Eulid s propositions. Disovered long efore Eulid, the Pythgoren Theorem is known y every high shool geometry

More information

Section A-4 Rational Expressions: Basic Operations

Section A-4 Rational Expressions: Basic Operations A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

More information

NQF Level: 2 US No: 7480

NQF Level: 2 US No: 7480 NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................

More information

Triangles, Altitudes, and Area Instructor: Natalya St. Clair

Triangles, Altitudes, and Area Instructor: Natalya St. Clair Tringle, nd ltitudes erkeley Mth ircles 015 Lecture Notes Tringles, ltitudes, nd re Instructor: Ntly St. lir *Note: This M session is inspired from vriety of sources, including wesomemth, reteem Mth Zoom,

More information

The remaining two sides of the right triangle are called the legs of the right triangle.

The remaining two sides of the right triangle are called the legs of the right triangle. 10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

End of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below.

End of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below. End of term: TEST A You will need penil nd ruler. Yer Nme Clss Dte Complete the missing numers in the sequenes elow. 8 30 3 28 2 9 25 00 75 25 2 Put irle round ll of the following shpes whih hve 3 shded.

More information

Angles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example

Angles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example 2.1 Angles Reognise lternte n orresponing ngles Key wors prllel lternte orresponing vertilly opposite Rememer, prllel lines re stright lines whih never meet or ross. The rrows show tht the lines re prllel

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

On the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding

On the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Sequences and Series

Sequences and Series Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic

More information

One Minute To Learn Programming: Finite Automata

One Minute To Learn Programming: Finite Automata Gret Theoreticl Ides In Computer Science Steven Rudich CS 15-251 Spring 2005 Lecture 9 Fe 8 2005 Crnegie Mellon University One Minute To Lern Progrmming: Finite Automt Let me tech you progrmming lnguge

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

excenters and excircles

excenters and excircles 21 onurrene IIi 2 lesson 21 exenters nd exirles In the first lesson on onurrene, we sw tht the isetors of the interior ngles of tringle onur t the inenter. If you did the exerise in the lst lesson deling

More information

Exponents base exponent power exponentiation

Exponents base exponent power exponentiation Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily

More information

Chapter. Contents: A Constructing decimal numbers

Chapter. Contents: A Constructing decimal numbers Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and

Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and Rtionl Functions Rtionl unctions re the rtio o two polynomil unctions. They cn be written in expnded orm s ( ( P x x + x + + x+ Qx bx b x bx b n n 1 n n 1 1 0 m m 1 m + m 1 + + m + 0 Exmples o rtionl unctions

More information

0.1 Basic Set Theory and Interval Notation

0.1 Basic Set Theory and Interval Notation 0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is well-defined

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Basics of Logic Design: Boolean Algebra, Logic Gates. Administrative

Basics of Logic Design: Boolean Algebra, Logic Gates. Administrative Bsics of Logic Design: Boolen Alger, Logic Gtes Computer Science 104 Administrtive Homework #3 Due Sundy Midterm I Mondy in clss, closed ook, closed notes Ø Will provide IA32 instruction set hndout Ø Lst

More information

Introduction to Mathematical Reasoning, Saylor 111

Introduction to Mathematical Reasoning, Saylor 111 Frction versus rtionl number. Wht s the difference? It s not n esy question. In fct, the difference is somewht like the difference between set of words on one hnd nd sentence on the other. A symbol is

More information

Mechanics Cycle 1 Chapter 5. Chapter 5

Mechanics Cycle 1 Chapter 5. Chapter 5 Chpter 5 Contct orces: ree Body Digrms nd Idel Ropes Pushes nd Pulls in 1D, nd Newton s Second Lw Neglecting riction ree Body Digrms Tension Along Idel Ropes (i.e., Mssless Ropes) Newton s Third Lw Bodies

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Chapter 2 Decimals. (A reminder) In the whole number chapter, we looked at ones, tens, hundreds, thousands and larger numbers. = 1

Chapter 2 Decimals. (A reminder) In the whole number chapter, we looked at ones, tens, hundreds, thousands and larger numbers. = 1 Chpter 2 Decimls Wht is Deciml? (A reminder) In the whole numer chpter, we looked t ones, tens, hundreds, thousnds nd lrger numers. When single unit is divided into 10 (or 100) its, we hve deciml frctions

More information

THE RATIONAL NUMBERS CHAPTER

THE RATIONAL NUMBERS CHAPTER CHAPTER THE RATIONAL NUMBERS When divided by b is not n integer, the quotient is frction.the Bbylonins, who used number system bsed on 60, epressed the quotients: 0 8 s 0 60 insted of 8 s 7 60,600 0 insted

More information

9.1 PYTHAGOREAN THEOREM (right triangles)

9.1 PYTHAGOREAN THEOREM (right triangles) Simplifying Rdicls: ) 1 b) 60 c) 11 d) 3 e) 7 Solve: ) x 4 9 b) 16 80 c) 9 16 9.1 PYTHAGOREAN THEOREM (right tringles) c If tringle is right tringle then b, b re the legs * c is clled the hypotenuse (side

More information

CONIC SECTIONS. Chapter 11

CONIC SECTIONS. Chapter 11 CONIC SECTIONS Chpter 11 11.1 Overview 11.1.1 Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig. 11.1). Fig. 11.1 Suppose we

More information

Right Triangle Trigonometry 8.7

Right Triangle Trigonometry 8.7 304470_Bello_h08_se7_we 11/8/06 7:08 PM Pge R1 8.7 Right Tringle Trigonometry R1 8.7 Right Tringle Trigonometry T E G T I N G S T R T E D The origins of trigonometry, from the Greek trigonon (ngle) nd

More information

State the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127

State the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127 ngles 2 CHTER 2.1 Tringles Drw tringle on pper nd lel its ngles, nd. Ter off its orners. Fit ngles, nd together. They mke stright line. This shows tht the ngles in this tringle dd up to 180 ut it is not

More information