Bloom s Taxonomy. Study Habits and Study Resources: Pause. Expectations: Develop a working knowledge of the topics.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Bloom s Taxonomy. Study Habits and Study Resources: Pause. Expectations: Develop a working knowledge of the topics."

Transcription

1 Dr. C. Weldon Mathews Chem 1 Office: 004 Evans Lab Telephone: web: Office hours: TR 1:30 - :00 pm TR 4:00-5:00 pm or by appointment Chapters we ll cover in Chem 1: 10, 11, 13, 14, 15, 16, 17 ( ) First Week: Second Week: and First Quiz: Week of Jan 17 (third week) Review Chem 11, especially Chaps 8 and 9 Expectations: Develop a working knowledge of the topics. Knowledge Simple recall of facts Bloom s Taxonomy Comprehension Translate into your own words or equations. Application Apply concepts to specific situations; recognizing and solving a problem when the equations are not given. Analysis Application plus recognition of important parts of problem. Synthesis Assemble components into a form new to them, i.e. design a research plan or devise a synthetic scheme. Evaluation Judge the value of materials in terms of internal and external criteria. Grossly abbreviated adaptation from Bloom, B. S. (Ed.) (1956) Taxonomy of educational objectives;: The classification of educational goals: Handbook I, cognitive domain. New York; Toronto: Longmans, Green see also Study Habits and Study Resources: a) Lectures and Reading - minimal impact by themselves b) Chemistry is not a Spectator Sport! rof. Janet Tarino, OSU Mansfield c) Recitation and Laboratory TAs d) Ask questions and seek help whenever you need it! e) Web resources: /~mathews/chem1/ /~rbartosz/ /~rzellmer/ chemistry ->Undergraduate rogram->interactive Tutorials First Lab Experiment: Stoichiometry and Gas Volume KClO 3 (s) KCl (s) + 3 O (g) Apparatus is simple, shown in the next slide Depends on the Ideal Gas Equation, V = nrt Recall some of the results of applying this simple equation V = constant /T = constant These results work extremely well... OR DO THEY??? ause 1

2 Begin nd week? Chapter 10 Gases 9.1 Characteristics of Gases 9. ressure Atmosopheric ressure and the Barometer 9.3 The ressure-volume Relationships: Boyle s Law The Temperature-volume Relationship: Charles s Law 9.4 The Ideal-Gas Equation Relating the Ideal-Gas Equation and the Gas Laws 9.5 Further Applications of the Ideal-Gas Equation Gas Densities and Molar Mass Volumes of Gases in Chemical Reactions 9.6 Gas Mixtures and artial ressures artial ressures and Mole Fractions Collecting Gases over Water 9.7 Kinetic-Molecular Theory Application to the Gas Laws 9.8 Molecular Effusion and Diffusion Graham s Law of Effusion Diffusion and Mean Free ath 9.9 Real Gases: Deviations from Ideal Behavior The van der Waals Equation 10.1 Characteristics of Gases Gases are highly compressible and occupy the full volume of their containers. Contrast with liquids and solids. When a gas is subjected to pressure, its volume changes. Gases always form homogeneous mixtures with other gases. Gases only use about 0.01 % of the volume of their containers. Characteristics of Gases 10. ressure ressure is the force acting on an object per unit area: F = A Gravity exerts a force on the earth s atmosphere A column of air 1 m in cross section exerts a force of 10 5 N. The pressure of a 1 m column of air is about 100 ka. F = A F = ma = (10 4 kg)(9.8m/s ) = 1 x 10 5 kg-m/s = 1 x 10 5 N 5 F 1 x 10 N = = A 1 m = 1 x 10 5 N/m = 1 x 10 5 a = 1 x 10 ka = Newton ressure ressure Atmosphere ressure and the Barometer SI Units: 1 N = 1 kg.m/s ; 1 a = 1 N/m. Atmospheric pressure is measured with a barometer. If a tube is inserted into a container of mercury open to the atmosphere, the mercury will rise 760 mm up the tube. Standard atmospheric pressure is the pressure required to support 760 mm of Hg in a column. Units: 1 atm = 760 mmhg = 760 torr = a = ka.

3 In our discussions about gases, we ll often use the gas cylinder with a movable piston as a helpful analogy. You also may think of a bicycle pump as an example. ressure Atmosphere ressure and the Barometer Notice that the top end of the BAROMETER is closed and that a Torricelli VACUUM exists above the mercury. ressure Atmosphere ressure and the Barometer The pressures of gases not open to the atmosphere are measured in manometers. A MANOMETER consists of a bulb of gas attached to a U-tube containing Hg: If gas < atm then gas + h = atm. If gas > atm then gas = atm + h. Note that h may be positive or negative! ressure Notice again the various units that may be used to measure ressure: Easiest to refer to the Standard Atmospheric ressure which is defined as 1 atm 1 atm = ka = x 10 5 a = = 760 mmhg = 760 torr And, this relationship will help you recall the conversion factors between the various units. End of Lecture, 1/4/ The ressure-volume Relationship: Boyle s Law Weather balloons are used as a practical consequence to the relationship between pressure and volume of a gas. As the weather balloon gets further from the earth s surface, the atmospheric pressure decreases. As a consequence, the volume of the balloon increases. Boyle s Law: the volume of a fixed quantity of gas is inversely proportional to its pressure. Boyle used a manometer to carry out the experiment. 3

4 The ressure-volume Relationship: Boyle s Law Mathematically: 1 V = constant = A plot of V versus is a hyperbola. Similarly, a plot of V versus 1/ must be a straight line passing through the origin. k V = constant V = k The ressure-volume Relationship: Boyle s Law V = k V = k/ The Temperature-Volume Relationship: Charles s Law We know that hot air balloons expand when they are heated. Charles s Law: the volume of a fixed quantity of gas at constant pressure increases as the temperature increases. Mathematically: V = constant = kt T V T = constant = k These are typical of observations you might make in the lab. Notice that on this plot the equation is of the form y = a + b x and the volume does NOT go to 0 at x = 0!!! The Temperature-Volume Relationship: Charles s Law A plot of V versus T is a straight line. When T is measured in C, the intercept on the temperature axis is C. We define absolute zero, 0 K = C. Note the value of the constant reflects the assumptions: of a constant amount of gas and pressure. And now the equation is of the form y = bx, i.e. a = 0. 4

5 Gay-Lussac s Law of combining volumes: at a given temperature and pressure, the volumes of gases which react are ratios of small whole numbers. Avogadro s Hypothesis: equal volumes of gas at the same temperature and pressure will contain the same number of molecules. : the volume of gas at a given temperature and pressure is directly proportional to the number of moles of gas. Mathematically: V = constant n = k n We will show that.4 L of any gas at 0 C and 1 atm contain gas molecules = 1 mole of molecules The Ideal Gas Equation The Ideal Gas Equation Consider the three gas laws. 1 Boyle s Law: V (constant n, T ) Charles s Law: V T (constant n, ) : V n (constant, T ) We can combine these into a general gas law: nt nt V = k If the k is now defined as R, the proportionality constant of (called the gas constant), then nt V = R The ideal gas equation is: V = nrt R = L atm/mol K = J/mol K But how can you derive the value of R? 5

6 Recall this slide and how to convert grams to moles. The Ideal Gas Equation We define ST (standard temperature and pressure) = 0 C, K, 1 atm. And now we see the volume of 1 mol of gas at ST is: V = nrt nrt ( 1mol)( L atm/mol K )( K) V = = =.41L atm ( notice the > should be a / ) Fig shows the actual results for a number of gases. Notice that the ideal gas model does a pretty good job. The Ideal Gas Equation Relating the Ideal-Gas Equation and the Gas Laws If V = nrt and n and T are constant, then V = constant and we have Boyle s law. Other laws can be generated similarly. In general, if we have a gas under two sets of conditions, then V 1 1 V = n1t 1 nt 10.5 Further Applications of the Ideal-Gas Equation Gas Densities and Molar Mass Density has units of mass over volume. Rearranging the ideal-gas equation with M as molar mass we get V = nrt n = V RT nm M = d = V RT has units of mol L -1 And now the units are g L -1 6

7 Further Applications of the Ideal-Gas Equation Gas Densities and Molar Mass The molar mass of a gas can be determined as follows: drt M = Volumes of Gases in Chemical Reactions The ideal-gas equation relates, V, and T to number of moles of gas. The n can then be used in stoichiometric calculations. Further Applications of the Ideal-Gas Equation Volumes of Gases in Chemical Reactions Consider now the application of these ideas to chemical reactions. eg, NaN 3 (s) Na + 3 N (g) Given the mass of sodium azide that reacts, the number of moles of nitrogen gas generated may be calculated. From this, the volume may be calculated at a given temperature and pressure. What volume of gas at 760 torr and 0 o C would be generated from 3.51 g of sodium azide which decomposes according to the equation NaN 3 (s) Na + 3 N (g)? In order to answer this question, we need to know how many moles of nitrogen will be generated (see Chem 11). Then we apply the ideal gas law. 1mol NaN 3 3mol N 3.51g NaN3 = 0. 75mol N 65.0 g NaN 3 mol NaN 3 V = nrt or V = yields theequation V nrt = ( 0.75mol N )( 0.081L atm / mol K )( 73K ) = L of N gas 1 atm 10.6 Gas Mixtures and artial ressures Since gas molecules are so far apart, we can assume they behave independently. Dalton s Law: in a gas mixture the total pressure is given by the sum of partial pressures of each component: total = L Each gas obeys the ideal gas equation: RT i = ni V (Sorry about the mistake given in lecture!) Gas Mixtures and artial ressures Combing the equations ( ) RT total = n1 + n + n3 + L V artial ressures and Mole Fractions Let n i be the number of moles of gas i exerting a partial pressure i, then = Χ total where Χ i is the mole fraction (n i /n t ). i i A mixture of gases containing mol He(gas 1), mol Ne (gas), and mol Ar (gas 3) is confined in a 7.00-L vessel at 5 0 C. (a) Calculate the partial pressure of each gas. (b) Calculate the total (b)pressure in the vessel. (c) Calculate the mole fraction of each gas. 1 = n 1 RT / V = (0.538 mol)(0.081 L-atm/mol-K)(98 K) / (7.00 L) = 1.88 atm of He similarly, = 1.10 atm of Ne, and 3 = atm Ar The total pressure is just T = = i = = 3.34 atm The mole fraction of He is X 1 = 1 / T = 1.88/3.34 = (This also could be obtained from X 1 = n 1 / n T = 0.538/0.956 Likewise, X = 0.39 and X 3 = note that X i = 1.00 always (within error limits): =

8 Gas Mixtures and artial ressures Collecting Gases over Water It is common to synthesize gases and collect them by displacing a volume of water. To calculate the amount of gas produced, we need to correct for the partial pressure of the water: total = gas + water Gas Mixtures and artial ressures Collecting Gases over Water 10.7 Kinetic Molecular Theory Theory developed to explain gas behavior. Theory based on properties at the molecular level. Assumptions: Gases consist of a large number of molecules in constant random motion. Volume of individual molecules negligible compared to volume of container. Intermolecular forces (forces between gas molecules) negligible. 8

Figure 10.3 A mercury manometer. This device is sometimes employed in the laboratory to measure gas pressures near atmospheric pressure.

Figure 10.3 A mercury manometer. This device is sometimes employed in the laboratory to measure gas pressures near atmospheric pressure. Characteristics of Gases Practice Problems A. Section 10.2 Pressure Pressure Conversions: 1 ATM = 101.3 kpa = 760 mm Hg (torr) SAMPLE EXERCISE 10.1 Converting Units of Pressure (a) Convert 0.357 atm to

More information

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors. Properties of Gases

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors. Properties of Gases Common Student Misconceptions Students need to be told to always use Kelvin temperatures in gas problems. Students should always use units (and unit factor analysis) in gas-law problems to keep track of

More information

Sample Exercise 10.1 Converting Pressure Units

Sample Exercise 10.1 Converting Pressure Units Sample Exercise 10.1 Converting Pressure Units (a) Convert 0.357 atm to torr. (b) Convert 6.6 10 2 torr to atmospheres. (c) Convert 147.2 kpa to torr. Solution Analyze In each case we are given the pressure

More information

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3

More information

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 The things we will cover in this chapter: How differ from solids and liquids Pressure,

More information

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Gases A Gas Has neither a definite volume nor shape. Uniformly fills any container.

More information

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10 Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force

More information

Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).

Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse

More information

Overview of Physical Properties of Gases. Gas Pressure

Overview of Physical Properties of Gases. Gas Pressure Overview of Physical Properties of Gases! volume changes with pressure! volume changes with temperature! completely miscible! low density gases: < 2 g/l liquids and solids: 1000 g/l Gas Pressure force

More information

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

More information

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random) Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large

More information

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6 Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass,

More information

CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12. Gases and the Kinetic-Molecular Theory CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

More information

Gas particles move in straight line paths. As they collide, they create a force, pressure.

Gas particles move in straight line paths. As they collide, they create a force, pressure. #28 notes Unit 4: Gases Ch. Gases I. Pressure and Manometers Gas particles move in straight line paths. As they collide, they create a force, pressure. Pressure = Force / Area Standard Atmospheric Pressure

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Kinetic Molecular Theory Particle volume - The volume of an individual gas particle is small compaired to that of its container. Therefore, gas particles are considered to have mass, but no volume. There

More information

Gas - a substance that is characterized by widely separated molecules in rapid motion.

Gas - a substance that is characterized by widely separated molecules in rapid motion. Chapter 10 - Gases Gas - a substance that is characterized by widely separated molecules in rapid motion. Mixtures of gases are uniform. Gases will expand to fill containers (compare with solids and liquids

More information

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion. Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

More information

Force. Pressure = ; Area. Force = Mass times Acceleration;

Force. Pressure = ; Area. Force = Mass times Acceleration; Force Pressure = ; Area Force = Mass times Acceleration; If mass = kg, and acceleration = m/s 2, Force = kg.m/s 2 = Newton (N) If Area = m 2, Pressure = (kg.m/s 2 )/m 2 = N/m 2 = Pascal; (1 Pa = 1 N/m

More information

Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others?

Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others? CHAPTER 5: Gases Chemistry of Gases Pressure and Boyle s Law Temperature and Charles Law The Ideal Gas Law Chemical Calculations of Gases Mixtures of Gases Kinetic Theory of Gases Real Gases Gases The

More information

The Gas Laws. The effect of adding gas. 4 things. Pressure and the number of molecules are directly related. Page 1

The Gas Laws. The effect of adding gas. 4 things. Pressure and the number of molecules are directly related. Page 1 The Gas Laws Describe HOW gases behave. Can be predicted by the theory. The Kinetic Theory Amount of change can be calculated with mathematical equations. The effect of adding gas. When we blow up a balloon

More information

AP Chemistry ( MCSEMENICK2015 ) My Courses Course Settings Chemistry: The Central Science, 12e Brown/LeMay/Bursten/Murphy/Woodward

AP Chemistry ( MCSEMENICK2015 ) My Courses Course Settings Chemistry: The Central Science, 12e Brown/LeMay/Bursten/Murphy/Woodward Signed in as Daniel Semenick, Instructor Help Sign Out AP Chemistry ( MCSEMENICK2015 ) My Courses Course Settings Chemistry: The Central Science, 12e Brown/LeMay/Bursten/Murphy/Woodward Instructor Resources

More information

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure

More information

CHE141 Chapter 10. Chapter 10 Gases

CHE141 Chapter 10. Chapter 10 Gases Chapter 0 Gases. A sample of gas (4.g) initially at 4.00 atm was compressed from 8.00 L to.00 L at constant temperature. After the compression, the gas pressure was atm. (a). 4.00 (b)..00 (c)..00 (d).

More information

Chapter 4 The Properties of Gases

Chapter 4 The Properties of Gases Chapter 4 The Properties of Gases Significant Figure Convention At least one extra significant figure is displayed in all intermediate calculations. The final answer is expressed with the correct number

More information

Exam 4 Practice Problems false false

Exam 4 Practice Problems false false Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

2. If pressure is constant, the relationship between temperature and volume is a. direct b. Inverse

2. If pressure is constant, the relationship between temperature and volume is a. direct b. Inverse Name Unit 11 Review: Gas Laws and Intermolecular Forces Date Block 1. If temperature is constant, the relationship between pressure and volume is a. direct b. inverse 2. If pressure is constant, the relationship

More information

Tutorial 6 GASES. PRESSURE: atmospheres or mm Hg; 1 atm = 760 mm Hg. STP: Standard Temperature and Pressure: 273 K and 1 atm (or 760 mm Hg)

Tutorial 6 GASES. PRESSURE: atmospheres or mm Hg; 1 atm = 760 mm Hg. STP: Standard Temperature and Pressure: 273 K and 1 atm (or 760 mm Hg) T-41 Tutorial 6 GASES Before working with gases some definitions are needed: PRESSURE: atmospheres or mm Hg; 1 atm = 760 mm Hg TEMPERATURE: Kelvin, K, which is o C + 273 STP: Standard Temperature and Pressure:

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55

More information

How many moles are in a breath of air whose volume is 2.32L at body temperature (37 C) and a pressure of 745 torr?

How many moles are in a breath of air whose volume is 2.32L at body temperature (37 C) and a pressure of 745 torr? Lecture 9 State of gas described by (n,p,v,t) n # moles P pressure V volume T (absolute) temperature (K) Sample Problem A balloon filled with helium has a volume of 1.60 L at 1.00 atm and 25oC. What will

More information

10. Gases. P= g h Pressure. Pressure is defined as the force across a unit area. Force N

10. Gases. P= g h Pressure. Pressure is defined as the force across a unit area. Force N 0. Gases 0. ressure ressure is defined as the force across a unit area. Force N ascal, a Area m In chemistry, the SI unit for pressure, the ascal (a), is typically too small to be of practical use. Typically

More information

Kinetic Theory of Gases. 6.1 Properties of Gases 6.2 Gas Pressure. Properties That Describe a Gas. Gas Pressure. Learning Check.

Kinetic Theory of Gases. 6.1 Properties of Gases 6.2 Gas Pressure. Properties That Describe a Gas. Gas Pressure. Learning Check. Chapter 6 Gases Kinetic Theory of Gases 6.1 Properties of Gases 6.2 Gas Pressure A gas consists of small particles that move rapidly in straight lines. have essentially no attractive (or repulsive) forces.

More information

Use each of the terms below to complete the passage. Each term may be used more than once.

Use each of the terms below to complete the passage. Each term may be used more than once. Gases Section 13.1 The Gas Laws In your textbook, read about the basic concepts of the three gas laws. Use each of the terms below to complete the passage. Each term may be used more than once. pressure

More information

General Properties of Gases. Properties of Gases. K is for Kelvin. C is for degrees Celsius. F is for degrees Fahrenheit PROPERTIES OF GASES GAS LAWS

General Properties of Gases. Properties of Gases. K is for Kelvin. C is for degrees Celsius. F is for degrees Fahrenheit PROPERTIES OF GASES GAS LAWS PROPERTIES OF GASES or GAS LAWS 1 General Properties of Gases There is a lot of empty space in a gas. Gases can be expanded infinitely. Gases fill containers uniformly and completely. Gases diffuse and

More information

THE BEHAVIOR OF GASES

THE BEHAVIOR OF GASES 12 THE BEHAVIOR OF GASES Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Chapter 5. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 5. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the pressure of the sample of gas trapped in the open-tube mercury manometer

More information

Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1

Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1 Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0

More information

Chapter 13 Gases. An Introduction to Chemistry by Mark Bishop

Chapter 13 Gases. An Introduction to Chemistry by Mark Bishop Chapter 13 Gases An Introduction to Chemistry by Mark Bishop Chapter Map Gas Gas Model Gases are composed of tiny, widely-spaced particles. For a typical gas, the average distance between particles is

More information

The Gas, Liquid, and Solid Phase

The Gas, Liquid, and Solid Phase The Gas, Liquid, and Solid Phase When are interparticle forces important? Ron Robertson Kinetic Theory A. Principles Matter is composed of particles in constant, random, motion Particles collide elastically

More information

Honors Chemistry. Chapter 11: Gas Law Worksheet Answer Key Date / / Period

Honors Chemistry. Chapter 11: Gas Law Worksheet Answer Key Date / / Period Honors Chemistry Name Chapter 11: Gas Law Worksheet Answer Key Date / / Period Complete the following calculation by list the given information, rewriting the formula to solve for the unknown, and plugging

More information

Abbreviations Conversions Standard Conditions Boyle s Law

Abbreviations Conversions Standard Conditions Boyle s Law Gas Law Problems Abbreviations Conversions atm - atmosphere K = C + 273 mmhg - millimeters of mercury 1 cm 3 (cubic centimeter) = 1 ml (milliliter) torr - another name for mmhg 1 dm 3 (cubic decimeter)

More information

CHEMISTRY GAS LAW S WORKSHEET

CHEMISTRY GAS LAW S WORKSHEET Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

More information

Major chemistry laws. Mole and Avogadro s number. Calculating concentrations.

Major chemistry laws. Mole and Avogadro s number. Calculating concentrations. Major chemistry laws. Mole and Avogadro s number. Calculating concentrations. Major chemistry laws Avogadro's Law Equal volumes of gases under identical temperature and pressure conditions will contain

More information

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Kinetic Molecular Theory of Gases 1. Large number of atoms/molecules in random motion 2.

More information

Wed Sep 12, 2007 THE GASEOUS STATE

Wed Sep 12, 2007 THE GASEOUS STATE Chapter 5: Gases Gas Stoichiometry Partial Pressure Kinetic Theory Effusion and Diffusion Wed Sep 12, 2007 Exam #1 - Friday, Sep 14 Attendance is mandatory! Practice exam today in recitation Week 3 CHEM

More information

An increase in temperature causes an increase in pressure due to more collisions.

An increase in temperature causes an increase in pressure due to more collisions. SESSION 7: KINETIC THEORY OF GASES Key Concepts In this session we will focus on summarising what you need to know about: Kinetic molecular theory Pressure, volume and temperature relationships Properties

More information

6 Evaluation of the Gas Law Constant

6 Evaluation of the Gas Law Constant 6 Evaluation of the Gas Law Constant Name: Date: Section: Objectives Measure the value of the gas constant R Use Dalton s Law to calculate the partial pressure of hydrogen in a closed container Learn to

More information

1. Which graph shows the pressure-temperature relationship expected for an ideal gas? 1) 3)

1. Which graph shows the pressure-temperature relationship expected for an ideal gas? 1) 3) 1. Which graph shows the pressure-temperature relationship expected for an ideal gas? 2. Under which conditions does a real gas behave most like an ideal gas? 1) at low temperatures and high pressures

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

CHM1045 Practice Test 3 v.1 - Answers Name Fall 2013 & 2011 (Ch. 5, 6, 7, & part 11) Revised April 10, 2014

CHM1045 Practice Test 3 v.1 - Answers Name Fall 2013 & 2011 (Ch. 5, 6, 7, & part 11) Revised April 10, 2014 CHM1045 Practice Test 3 v.1 - Answers Name Fall 013 & 011 (Ch. 5, 6, 7, & part 11) Revised April 10, 014 Given: Speed of light in a vacuum = 3.00 x 10 8 m/s Planck s constant = 6.66 x 10 34 J s E (-.18x10

More information

1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws. Heat and Temperature 1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

More information

Gas Density. Lift GOODYEAR. Goodyear blimp filled with He gas BADYEAR. Weight. Badyear blimp filled with Cl 2 gas

Gas Density. Lift GOODYEAR. Goodyear blimp filled with He gas BADYEAR. Weight. Badyear blimp filled with Cl 2 gas Gas Density Lift GOODYEAR Goodyear blimp filled with He gas BADYEAR Weight Badyear blimp filled with Cl 2 gas At STP( 1.00 atm, 273 K) 1.00 mole gas = 22.4 L Gas density: d = mass/volume = molar mass/molar

More information

The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015

The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015 The Mole Chapter 10 1 Objectives Use the mole and molar mass to make conversions among moles, mass, and number of particles Determine the percent composition of the components of a compound Calculate empirical

More information

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1 Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Chemistry 360 Dr. Jean M. Standard roblem Set Solutions 1. The atmospheric surface pressure on Venus is 90 bar. The atmosphere near the surface is composed of 96% carbon dioxide and 4% other gases. Given

More information

Guide to Chapter 9. Gases Answers in green and red.

Guide to Chapter 9. Gases Answers in green and red. Guide to Chapter 9. Gases Answers in green and red. We will spend three lecture days on this chapter. Day 1. Pressure, barometers, STP, manometers, Charles Law, Boyles Law, Aogadro's Law, Combined Gas

More information

CHAPTER 12 GASES AND THEIR BEHAVIOR

CHAPTER 12 GASES AND THEIR BEHAVIOR Chapter 12 Gases and Their Behavior Page 1 CHAPTER 12 GASES AND THEIR BEHAVIOR 12-1. Which of the following represents the largest gas pressure? (a) 1.0 atm (b) 1.0 mm Hg (c) 1.0 Pa (d) 1.0 KPa 12-2. Nitrogen

More information

Molar Mass of Butane

Molar Mass of Butane Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

More information

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

More information

Chapter 5 Practise Test

Chapter 5 Practise Test Chapter 5 Practise Test 1. An open end mercury manometer was constructed from a U shaped tube. In a particular measurement, the level in the end connected to the gas manifold, on which the experiment was

More information

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

ESSAY. Write your answer in the space provided or on a separate sheet of paper. Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

More information

Kinetic Theory of Gases

Kinetic Theory of Gases Kinetic Theory of Gases Important Points:. Assumptions: a) Every gas consists of extremely small particles called molecules. b) The molecules of a gas are identical, spherical, rigid and perfectly elastic

More information

Gas Laws. vacuum. 760 mm. air pressure. mercury

Gas Laws. vacuum. 760 mm. air pressure. mercury Gas Laws Some chemical reactions take place in the gas phase and others produce products that are gases. We need a way to measure the quantity of compounds in a given volume of gas and relate that to moles.

More information

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7. Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

More information

IDEAL AND NON-IDEAL GASES

IDEAL AND NON-IDEAL GASES 2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to

More information

THE IDEAL GAS LAW AND KINETIC THEORY

THE IDEAL GAS LAW AND KINETIC THEORY Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant

More information

Chapter 10. Can You... 1. draw the Lewis structure for a given covalently bonded molecule?

Chapter 10. Can You... 1. draw the Lewis structure for a given covalently bonded molecule? Chapter 10 Can You... 1. draw the Lewis structure for a given covalently bonded molecule? e.g. SF 6 and CH 3 Cl 2. identify and count the number of non-bonding and bonding domains within a given covalently

More information

Physics Notes Class 11 CHAPTER 13 KINETIC THEORY

Physics Notes Class 11 CHAPTER 13 KINETIC THEORY 1 P a g e Physics Notes Class 11 CHAPTER 13 KINETIC THEORY Assumptions of Kinetic Theory of Gases 1. Every gas consists of extremely small particles known as molecules. The molecules of a given gas are

More information

CHAPTER 25 IDEAL GAS LAWS

CHAPTER 25 IDEAL GAS LAWS EXERCISE 139, Page 303 CHAPTER 5 IDEAL GAS LAWS 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume

More information

Version 001 HW03-Non Ideal, Gas Mixtures & KMT vandenbout (52130) 1. = torr

Version 001 HW03-Non Ideal, Gas Mixtures & KMT vandenbout (52130) 1. = torr Version 001 HW03-Non Ideal, Gas Mixtures & KMT vandenbout (52130) 1 This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Version 001 HW04-Ideal Gas Laws, Gas Mixtures and KMT sparks (52100) 1

Version 001 HW04-Ideal Gas Laws, Gas Mixtures and KMT sparks (52100) 1 Version 001 HW04-Ideal Gas Laws, Gas Mixtures and KMT sparks (52100) 1 This print-out should have 15 questions. Multiple-choice questions may continue on the next column or page find all choices before

More information

Course 2 Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving

Course 2 Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving Course Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving 1 Basic Algebra Computations 1st degree equations - =0 Collect numerical values on one side and unknown to the otherside

More information

The Decomposition of Potassium Chlorate

The Decomposition of Potassium Chlorate The Decomposition of Potassium Chlorate Small quantities of molecular oxygen (O 2 ) can be obtained from the thermal decomposition of certain oxides, peroxides, and salts of oxoacids. Some examples of

More information

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

More information

Type: Double Date: Kinetic Energy of an Ideal Gas II. Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (28, 29, 31, 37)

Type: Double Date: Kinetic Energy of an Ideal Gas II. Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (28, 29, 31, 37) Type: Double Date: Objective: Kinetic Energy of an Ideal Gas I Kinetic Energy of an Ideal Gas II Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (8, 9, 31, 37) AP Physics Mr. Mirro Kinetic Energy

More information

Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

More information

CHEM 1411, chapter 5 exercises

CHEM 1411, chapter 5 exercises CHEM 1411, chapter 5 exercises 1. A gas-filled balloon with a volume of 12.5 L at 0.90 atm and 21 C is allowed to rise to the stratosphere where the temperature is 5 C and the pressure is 1.0 millibar.

More information

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004 Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information

THE KINETIC THEORY OF GASES

THE KINETIC THEORY OF GASES Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

More information

KINETIC THEORY OF GASES. Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure.

KINETIC THEORY OF GASES. Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure. KINETIC THEORY OF GASES Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure. Charle s Law: At constant pressure volume of a given mass of gas is directly

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

More information

Molar Mass of Butane

Molar Mass of Butane Suggested reading: Chang 10 th edition text pages 175-201 Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine

More information

Gas Thermometer and Absolute Zero

Gas Thermometer and Absolute Zero Chapter 1 Gas Thermometer and Absolute Zero Name: Lab Partner: Section: 1.1 Purpose Construct a temperature scale and determine absolute zero temperature (the temperature at which molecular motion ceases).

More information

Gas Laws. E k = ½ (mass)(speed) 2. v101613_10am

Gas Laws. E k = ½ (mass)(speed) 2. v101613_10am Gas Laws v101613_10am Objective: In this lab you will become familiar with the Ideal Gas Law and Dalton s Law of Partial Pressures. You will be able to use the information collected along with stoichiometry

More information

Thermal Properties of Matter

Thermal Properties of Matter Chapter 18 Thermal Properties of Matter PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 18 To relate the

More information

Chemistry 110 Lecture Unit 5 Chapter 11-GASES

Chemistry 110 Lecture Unit 5 Chapter 11-GASES Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all

More information

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

Chemical Process calculation III

Chemical Process calculation III Chapter 7 Ideal and Real Gases Gas, Liquid, and Solid Chemical Process calculation III Gas: a substance in a form like air, relatively low in density and viscosity Liquid: a substance that flows freely

More information

CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start

More information

Final Exam Review Questions PHY Final Chapters

Final Exam Review Questions PHY Final Chapters Final Exam Review Questions PHY 2425 - Final Chapters Section: 17 1 Topic: Thermal Equilibrium and Temperature Type: Numerical 12 A temperature of 14ºF is equivalent to A) 10ºC B) 7.77ºC C) 25.5ºC D) 26.7ºC

More information

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X HOMEWORK 5A Barometer; Boyle s Law 1. The pressure of the first two gases below is determined with a manometer that is filled with mercury (density = 13.6 g/ml). The pressure of the last two gases below

More information

PHYS-2010: General Physics I Course Lecture Notes Section XIII

PHYS-2010: General Physics I Course Lecture Notes Section XIII PHYS-2010: General Physics I Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and

More information

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3 Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.

More information

3-1 Copyright Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014)

3-1 Copyright Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014) EQUATIONS OF STATE FOR GASES Questions A gas enters a reactor at a rate of 255 SCMH. What does that mean? An orifice meter mounted in a process gas line indicates a flow rate of 24 ft 3 /min. The gas temperature

More information

Thermodynamics: The Kinetic Theory of Gases

Thermodynamics: The Kinetic Theory of Gases Thermodynamics: The Kinetic Theory of Gases Resources: Serway The Kinetic Theory of Gases: 10.6 AP Physics B Videos Physics B Lesson 5: Mechanical Equivalent of Heat Physics B Lesson 6: Specific and Latent

More information

b. As you draw a vacuum in your mouth, atmospheric pressure pushing on the surface of the liquid forces the liquid up the straw.

b. As you draw a vacuum in your mouth, atmospheric pressure pushing on the surface of the liquid forces the liquid up the straw. CHAPTER FIVE Questions 16. a. Heating the can will increase the pressure of the gas inside the can, P T, V and n constant. As the pressure increases, it may be enough to rupture the can. b. As you draw

More information