Special course in Computer Science: Molecular Computing

Size: px
Start display at page:

Download "Special course in Computer Science: Molecular Computing"

Transcription

1 Special course in Computer Science: Molecular Computing Lecture 7: DNA Computing by Splicing and by Insertion-Deletion, basics of formal languages and computability Vladimir Rogojin Department of IT, Åbo Akademi Fall 2013

2 Storing data with DNA DNA/RNA molecules: Data carrier media Alphabet implemented via: Adenine (Uracil, in case of RNA) Cytosine Guanine Thymine WK complementarity: Antimorphism θ(uv)=θ(v)θ(u): θ(a)=t, θ(t)=a θ(c)=g, θ(g)=c θ(w)=w - A/U C G T

3 Encoding of information with DNA Designing a set of good DNA strands: Positive design problem: Design a set of input DNA molecules such that there is a sequence of reactions that produces the correct result. Negative design problem: Design a set of input DNA molecules that do not interact in undesirable ways i.e., do not produce incorrect outputs, and do not consume molecules necessary for other programmed interactions

4 DNA complementarity and formal language theory Within framework of formal language theory the positive and negative design problems are addressed when creating libraries of oligonucleotides Avoiding intramolecular undesired hybridization Avoiding intermolecular undesired hybridization

5 Tube languages Tube languages: Formalizes set of molecules in a test tube Tube language L is equal to, or a subset of K+, where K is a finite language whose elements are called codewords In majority cases K consists of words of some fixed length k, i.e., K a code of length k

6 Why compute with DNA? Advantages: Disadvantages: Massive parallelism Building and controlling nano-machines Expensive and complex experimental setup Slow biochemical processes Difficult to program Difficult to interface automatic data input/output Building nanostructures, self-assembly For instance, smart drugs For instance, selfassembled microcircuits Reprogramming cells Synthetic biology Molecular computers cannot be used to play Tetris or Doom

7 What can we compute with DNA? In theory any algorithm can be encoded and executed with DNA In practice, there is a large number of issues: Molecular computers are slow, require more involved programming approach and difficult to interact with However, molecular computers complement the electronic ones: It is way more easy to use molecular computers at microscopicscale environments Molecular computers are capable for self-assembly and selfreplication One could get easily millions of copies Could be naturally integrated into living organisms and organic systems

8 What can we compute with DNA? We will concentrate here on the theoretical aspect: What can we compute with DNA at least hypothetically? The answer could be given by biologically motivated formal computational paradigms in the field of formal language theory and computability

9 Computability Intuitively, studies question of what can be computed by various theoretical and real computing devices Not every computational device can compute any algorithm: For instance: conventional pocket calculator cannot be used for anything else except of performing arithmetics Arithmometer fully mechanical arithmetic calculator. No programming at all. Every operation is directly determined by a button push and by wheel rotation direction

10 Turing universality Theoretically, any computer can execute any algorithm Actually, in practice any computer is a very-very large finite automata with an astronomical number of states Turing machines class of formal theoretical computational devices that can compute any algorithm Turing universality (or Turing completeness) the ability of a computational device to compute any algorithm One can simulate a Turing machine to show the Turing universality for his/her computational model

11 Computing with DNA Can we build a Turing complete computing device basing solely on DNA operations? The answer: YES! There exist many formal DNA-based computational devices/paradigms and even some of their particular implementations that can execute any algorithm (at least in theory) We will focus on a number of computing paradigms inspired by DNA manipulation and investigate their computational power (i.e., what they can compute)

12 Formal language theory We will work in the framework of formal language theory A (formal) language: A word: Set of words (could either finite or infinite) Sequence of letters from some fixed alphabet A family (class) of languages: A type/category of languages sharing some properties

13 Formal language Can be enumerated (in practice this can be done for finite languages) Can be generated By a formal grammar By a finite/pushdown automata or Turing machine Etc. Can be recognized: By a finite/pushdown automata or Turing machine Etc. Can represent concepts from other computational theories/paradigms For instance, sets, multsets, algorithms, etc.

14 Formal grammar A finite set of production rules (rewriting rules): Left-hand-side right-hand-side Each side consists of a sequence of symbols (words) A finite set of nonterminal symbols A finite set of terminal symbols Indicates that some production rule yet can be applied. Denoted by capitals Indicates that no production rule can be applied. Denoted by low-case letters A start symbol: A distinguished nonterminal symbol

15 Generating language with formal grammar A rule is applied to a word as follows: A substring from the word that matches the lefthand-side of the rule is replaced by the right-handside of the rule Generating (defining) a language: Given start symbol S and the set of rules: One applies a sequence of rewriting rules (derivation) from the given set of rules to S and eventually produces a word consisting solely of terminal symbols The set of all words of terminal symbols that can be obtained from S through a sequence rewritings dictated by the set of rules is the language accepted by the grammar

16 Formal grammar, example Nonterminal symbols: Start symbols: S Terminal symbols: S a, b Production rules: S asb S λ

17 Formal grammar, example Derivation: Production rules: S asb S λ S asb or S λ; asb aasbb or asb ab; aasbb aaasbbb or aasbb aabb; ansbn an+1sbn+1 or ansbn anbn Generated language: anbn, n 0

18 (Chomsky) hierarchy of languages. Finite and regular languages Finite language (FIN) finite set of words Regular language (REG) Type-3 grammar: A a and A ab (or A Ba) One nonterminal on the left and one terminal on the right, and at most one nonterminal on the right Also defined by regular expressions Recognized by finite automata Used in defining search patterns and lexical structure of programming languages

19 (Chomsky) hierarchy of languages. Linear and context-free languages Linear languages (LIN): Defined by linear grammar: A ubv and A w One nonterminal on the left and at most one nonterminal on the right. Any number of terminals on the right Recognized by pushdown automata Example: anbn All regular languages are linear, but not all linear languages are regular Context-free languages (CF): Type-2 grammar (context-free): A γ One nonterminal symbol on the left and sequence of any number of terminals and nonterminals on the right

20 (Chomsky) hierarchy of languages. Context-free languages Context-free languages (CF): Type-2 grammar (context-free): A γ One nonterminal symbol on the left and sequence of any number of terminals and nonterminals on the right Recognized by push-down automata Serve as theoretical basis for the phrase structure of most programming languages All linear languages are also context-free languages, but not viceversa Example: Dyck language the language consisting of balanced words of parenthesis This language is important in parsing of expressions that need correctly nested parenthesis

21 (Chomsky) hierarchy of languages. Context-sensitive languages Context-sensitive languages (CS): Type-1 grammars: αaβ αγβ α, β, γ contain any number of terminals and nonterminals. α, β may be empty, but γ must be nonempty α, β the context Recognized by a linear bounded automation a special type of Turing machine Every context-free language is also a contextsensitive language, but not viceversa

22 (Chomsky) hierarchy of languages. Recursively enumerable languages Recursively enumerable languages: Type-0 grammars (unrestricted grammars): α γ Sequence of any number of terminals and nonterminals at both sides Include all formal grammars Generate exactly all languages that can be recognized by a Turing machine

23 Finite automation Set of states and conditional transitions between them A transition switches the automata to another state A transition is chosen basing on the automata state and the input symbol S1(a) S2 S2(b) S3 S3(c) S1 Initial state: S1 Terminal state: S1 Recognizes: (abc)* S1(abcabc) S2(bcabc) S3(cabc) S1(abc) S2(bc) S3(c) S1 ACCEPT! S1(abb) S2(bb) S3(b) REJECT! a S1 S2 b c S3

24 Pushdown automata Pushdown automata recognize context-free languages: Difference from a FA: equipped with stack: Stack: a variable length vector where only the top-most element is accessible Operations on the top element: Push Pop Read Transition is chosen basing on: Incoming signal Current state Top-most symbol in the stack

25 Pushdown automata Transition is chosen basing on: Incoming signal Current state Top-most symbol in the stack During transition: a diagram of the pushdown automaton -Wikipedia New state is chosen Optionally: a modification on top of the stack is performed (either push a symbol or pop) Nondeterministic PDA recognize all CF languages

26 Turing machines A hypothetical device representing a computing machine Manipulates symbols on a strip of tape according to a table of rules Basically, a Turing machine can simulate logic of any computer algorithm Turing machines help scientists to understand the limits of mechanical computation Digital physics assumption: Any process in the Universe can be simulated by a Turing machine

27 Turing machine Introduced in 1936 by Alan Turing He called it an a-machine (automatic machine) A Turing machine that is able to simulate any other Turing machine is called a Universal Turing Machine Church-Turing thesis states that Turing machines capture the informal notion of effective method in logic and mathematics and provide a precise definition of an algorithm (or mechanical procedure )

28 Turing machine Consists of: A tape divided into cells. Each cell contains a symbol from some finite alphabet. The tape is arbitrarily extensible to the left and right A head can read/write a symbol from/to the current cell on the tape, one per time. A head can move along the tape left/right one cell per time A state register stores one of the finite number of the machine's states An instruction table a finite table of instructions

29 Turing machine An instruction: Chosen in condition of the machine's state and the input symbol Dictates to which state to switch the machine Dictates what to print to the tape (overwrite the symbol in current cell on the tape with a new symbol, or just erase the symbol from the current cell, or do not modify the content of the current cell) Dictates where to move the head (left/right/stay)

30 Turing machine Execution: Input: the tape content Starts from a tape (could be either empty or contain some word), some initial head position and some initial state Follows instructions from the instruction table When reached the halting state (or when no instruction is applicable) halt Output: the tape content after halt On some inputs a T machine can work forever It is undecidable whether a machine can halt on a given input

31 Turing machine, some implementations

32 Chomsky hierarchy Finite languages, included in Regular languages, included in Linear languages, included in Context-free languages, included in Context-sensitive languages, included in Recursive enumerable languages: Include any other language family Can express any algorithm Can be computed by Universal Turing Machines

33 Splicing in DNA Computing Splicing: sequence of cut by restriction enzymes, recombination and paste by ligase operations Restriction enzimes recognize sites and perform cut Recombination Ligation α1 α1 A T C G T A α2 α2 β1 β1 A T C G T A β2 β2

34 Splicing in DNA Computing Formally: String rewriting operation Splicing rule: r = u1#u2$u3#u4 Splicing transformation: (x,y) r (z,w), iff x=x1u1u2x2, y=y1u3u4y2 z=x1u1u4y2, w=y1u3u2x2 For some x1, x2, y1, y2 words over V

35 Insertion/Deletion in DNA Computing More complex DNA biochemistry Basic concept: Insertion transformation: x ins y iff x=x1uvx2, y=x1uwvx2, for some insertion rule (u,w,v), where x1, x2 are strings over V Deletion transformation: x del y iff x=x1uwvx2, y=x1uvx2, for some deletion rule (u,w,v), where x 1, x2 are strings over V

36 Computing with DNA: H-systems and Ins/Del-systems We will overview results in the field of computer science and DNA computing related to the computational power and universality of formalized splicing operations and insertion/deletion

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology

Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information

More information

Turing Machines: An Introduction

Turing Machines: An Introduction CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,

More information

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac.

Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh als@inf.ed.ac. Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free

More information

Properties of Stabilizing Computations

Properties of Stabilizing Computations Theory and Applications of Mathematics & Computer Science 5 (1) (2015) 71 93 Properties of Stabilizing Computations Mark Burgin a a University of California, Los Angeles 405 Hilgard Ave. Los Angeles, CA

More information

Pushdown Automata. International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain

Pushdown Automata. International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain Pushdown Automata transparencies made for a course at the International PhD School in Formal Languages and Applications Rovira i Virgili University Tarragona, Spain Hendrik Jan Hoogeboom, Leiden http://www.liacs.nl/

More information

The Halting Problem is Undecidable

The Halting Problem is Undecidable 185 Corollary G = { M, w w L(M) } is not Turing-recognizable. Proof. = ERR, where ERR is the easy to decide language: ERR = { x { 0, 1 }* x does not have a prefix that is a valid code for a Turing machine

More information

3515ICT Theory of Computation Turing Machines

3515ICT Theory of Computation Turing Machines Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation

More information

CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.

CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move. CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write

More information

Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile

Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along

More information

Turing Machines, Part I

Turing Machines, Part I Turing Machines, Part I Languages The $64,000 Question What is a language? What is a class of languages? Computer Science Theory 2 1 Now our picture looks like Context Free Languages Deterministic Context

More information

Introduction to Automata Theory. Reading: Chapter 1

Introduction to Automata Theory. Reading: Chapter 1 Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a

More information

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.

(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. 3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem

More information

Automata and Computability. Solutions to Exercises

Automata and Computability. Solutions to Exercises Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata

More information

CS 3719 (Theory of Computation and Algorithms) Lecture 4

CS 3719 (Theory of Computation and Algorithms) Lecture 4 CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a

More information

24 Uses of Turing Machines

24 Uses of Turing Machines Formal Language and Automata Theory: CS2004 24 Uses of Turing Machines 24 Introduction We have previously covered the application of Turing Machine as a recognizer and decider In this lecture we will discuss

More information

Models of Sequential Computation

Models of Sequential Computation Models of Sequential Computation 13 C H A P T E R Programming is often considered as an art, but it raises mostly practical questions like which language should I choose, which algorithm is adequate, and

More information

Overview of E0222: Automata and Computability

Overview of E0222: Automata and Computability Overview of E0222: Automata and Computability Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. August 3, 2011 What this course is about What we study

More information

a field, in which little has been done, but in which an enormous amount can be done in principle

a field, in which little has been done, but in which an enormous amount can be done in principle 1 2 There's Plenty of Room at the Bottom Richard P. Feynman, 1959 a field, in which little has been done, but in which an enormous amount can be done in principle Nanoworld (1 m = 10 9 nm) Nanofabrication

More information

Computational Models Lecture 8, Spring 2009

Computational Models Lecture 8, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance

More information

Notes on Complexity Theory Last updated: August, 2011. Lecture 1

Notes on Complexity Theory Last updated: August, 2011. Lecture 1 Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look

More information

Computability Theory

Computability Theory CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.

More information

Formal Grammars and Languages

Formal Grammars and Languages Formal Grammars and Languages Tao Jiang Department of Computer Science McMaster University Hamilton, Ontario L8S 4K1, Canada Bala Ravikumar Department of Computer Science University of Rhode Island Kingston,

More information

Chapter 7 Uncomputability

Chapter 7 Uncomputability Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction

More information

CSE 135: Introduction to Theory of Computation Decidability and Recognizability

CSE 135: Introduction to Theory of Computation Decidability and Recognizability CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing

More information

Model 2.4 Faculty member + student

Model 2.4 Faculty member + student Model 2.4 Faculty member + student Course syllabus for Formal languages and Automata Theory. Faculty member information: Name of faculty member responsible for the course Office Hours Office Number Email

More information

Implementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP

Implementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 1 (2014), pp. 79-84 International Research Publications House http://www. irphouse.com /ijict.htm Implementation

More information

Course Manual Automata & Complexity 2015

Course Manual Automata & Complexity 2015 Course Manual Automata & Complexity 2015 Course code: Course homepage: Coordinator: Teachers lectures: Teacher exercise classes: Credits: X_401049 http://www.cs.vu.nl/~tcs/ac prof. dr. W.J. Fokkink home:

More information

Introduction to Turing Machines

Introduction to Turing Machines Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari p. 1/2 Introduction to Turing Machines SITE : http://www.sir.blois.univ-tours.fr/ mirian/ Automata Theory, Languages and Computation

More information

CAs and Turing Machines. The Basis for Universal Computation

CAs and Turing Machines. The Basis for Universal Computation CAs and Turing Machines The Basis for Universal Computation What We Mean By Universal When we claim universal computation we mean that the CA is capable of calculating anything that could possibly be calculated*.

More information

Reading 13 : Finite State Automata and Regular Expressions

Reading 13 : Finite State Automata and Regular Expressions CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

More information

Fast nondeterministic recognition of context-free languages using two queues

Fast nondeterministic recognition of context-free languages using two queues Fast nondeterministic recognition of context-free languages using two queues Burton Rosenberg University of Miami Abstract We show how to accept a context-free language nondeterministically in O( n log

More information

Finite Automata and Formal Languages

Finite Automata and Formal Languages Finite Automata and Formal Languages TMV026/DIT321 LP4 2011 Ana Bove Lecture 1 March 21st 2011 Course Organisation Overview of the Course Overview of today s lecture: Course Organisation Level: This course

More information

CS 301 Course Information

CS 301 Course Information CS 301: Languages and Automata January 9, 2009 CS 301 Course Information Prof. Robert H. Sloan Handout 1 Lecture: Tuesday Thursday, 2:00 3:15, LC A5 Weekly Problem Session: Wednesday, 4:00 4:50 p.m., LC

More information

How To Compare A Markov Algorithm To A Turing Machine

How To Compare A Markov Algorithm To A Turing Machine Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Genetic programming with regular expressions

Genetic programming with regular expressions Genetic programming with regular expressions Børge Svingen Chief Technology Officer, Open AdExchange bsvingen@openadex.com 2009-03-23 Pattern discovery Pattern discovery: Recognizing patterns that characterize

More information

6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008

6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Syntaktická analýza. Ján Šturc. Zima 208

Syntaktická analýza. Ján Šturc. Zima 208 Syntaktická analýza Ján Šturc Zima 208 Position of a Parser in the Compiler Model 2 The parser The task of the parser is to check syntax The syntax-directed translation stage in the compiler s front-end

More information

Universal Turing Machine: A Model for all Computational Problems

Universal Turing Machine: A Model for all Computational Problems Universal Turing Machine: A Model for all Computational Problems Edward E. Ogheneovo Lecturer I, Dept of Computer Science, University of Port Harcourt, Port Harcourt Nigeria. ABSTRACT: Turing machines

More information

How To Understand The Theory Of Computer Science

How To Understand The Theory Of Computer Science Theory of Computation Lecture Notes Abhijat Vichare August 2005 Contents 1 Introduction 2 What is Computation? 3 The λ Calculus 3.1 Conversions: 3.2 The calculus in use 3.3 Few Important Theorems 3.4 Worked

More information

Finite Automata. Reading: Chapter 2

Finite Automata. Reading: Chapter 2 Finite Automata Reading: Chapter 2 1 Finite Automaton (FA) Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream

More information

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office

More information

Testing LTL Formula Translation into Büchi Automata

Testing LTL Formula Translation into Büchi Automata Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland

More information

CS5236 Advanced Automata Theory

CS5236 Advanced Automata Theory CS5236 Advanced Automata Theory Frank Stephan Semester I, Academic Year 2012-2013 Advanced Automata Theory is a lecture which will first review the basics of formal languages and automata theory and then

More information

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

More information

Learning Automata and Grammars

Learning Automata and Grammars WDS'11 Proceedings of Contributed Papers, Part I, 125 130, 2011. ISBN 978-80-7378-184-2 MATFYZPRESS Learning Automata and Grammars P. Černo Charles University, Faculty of Mathematics and Physics, Prague,

More information

Lecture 2: Universality

Lecture 2: Universality CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal

More information

6.080/6.089 GITCS Feb 12, 2008. Lecture 3

6.080/6.089 GITCS Feb 12, 2008. Lecture 3 6.8/6.89 GITCS Feb 2, 28 Lecturer: Scott Aaronson Lecture 3 Scribe: Adam Rogal Administrivia. Scribe notes The purpose of scribe notes is to transcribe our lectures. Although I have formal notes of my

More information

agucacaaacgcu agugcuaguuua uaugcagucuua

agucacaaacgcu agugcuaguuua uaugcagucuua RNA Secondary Structure Prediction: The Co-transcriptional effect on RNA folding agucacaaacgcu agugcuaguuua uaugcagucuua By Conrad Godfrey Abstract RNA secondary structure prediction is an area of bioinformatics

More information

Learning Analysis by Reduction from Positive Data

Learning Analysis by Reduction from Positive Data Learning Analysis by Reduction from Positive Data František Mráz 1, Friedrich Otto 1, and Martin Plátek 2 1 Fachbereich Mathematik/Informatik, Universität Kassel 34109 Kassel, Germany {mraz,otto}@theory.informatik.uni-kassel.de

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

Implementation of DNA Pattern Recognition in Turing Machines

Implementation of DNA Pattern Recognition in Turing Machines 11 Implementation of DNA Pattern Recognition in Turing Machines Sumitha C.H Department of Computer Science and Engineering Karunya University Coimbatore, India e-mail: sumithach@karunya.edu Abstract Pattern

More information

Computer Architecture Syllabus of Qualifying Examination

Computer Architecture Syllabus of Qualifying Examination Computer Architecture Syllabus of Qualifying Examination PhD in Engineering with a focus in Computer Science Reference course: CS 5200 Computer Architecture, College of EAS, UCCS Created by Prof. Xiaobo

More information

Finite Automata. Reading: Chapter 2

Finite Automata. Reading: Chapter 2 Finite Automata Reading: Chapter 2 1 Finite Automata Informally, a state machine that comprehensively captures all possible states and transitions that a machine can take while responding to a stream (or

More information

Computer Science Theory. From the course description:

Computer Science Theory. From the course description: Computer Science Theory Goals of Course From the course description: Introduction to the theory of computation covering regular, context-free and computable (recursive) languages with finite state machines,

More information

On Winning Conditions of High Borel Complexity in Pushdown Games

On Winning Conditions of High Borel Complexity in Pushdown Games Fundamenta Informaticae (2005) 1 22 1 IOS Press On Winning Conditions of High Borel Complexity in Pushdown Games Olivier Finkel Equipe de Logique Mathématique U.F.R. de Mathématiques, Université Paris

More information

Complexity Classes P and NP

Complexity Classes P and NP Complexity Classes P and NP MATH 3220 Supplemental Presentation by John Aleshunas The cure for boredom is curiosity. There is no cure for curiosity Dorothy Parker Computational Complexity Theory In computer

More information

Molecular Computing. david.wishart@ualberta.ca 3-41 Athabasca Hall Sept. 30, 2013

Molecular Computing. david.wishart@ualberta.ca 3-41 Athabasca Hall Sept. 30, 2013 Molecular Computing david.wishart@ualberta.ca 3-41 Athabasca Hall Sept. 30, 2013 What Was The World s First Computer? The World s First Computer? ENIAC - 1946 Antikythera Mechanism - 80 BP Babbage Analytical

More information

1 Definition of a Turing machine

1 Definition of a Turing machine Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,

More information

Informatique Fondamentale IMA S8

Informatique Fondamentale IMA S8 Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech Lille

More information

Increasing Interaction and Support in the Formal Languages and Automata Theory Course

Increasing Interaction and Support in the Formal Languages and Automata Theory Course Increasing Interaction and Support in the Formal Languages and Automata Theory Course [Extended Abstract] Susan H. Rodger rodger@cs.duke.edu Jinghui Lim Stephen Reading ABSTRACT The introduction of educational

More information

Theory of Computation Chapter 2: Turing Machines

Theory of Computation Chapter 2: Turing Machines Theory of Computation Chapter 2: Turing Machines Guan-Shieng Huang Feb. 24, 2003 Feb. 19, 2006 0-0 Turing Machine δ K 0111000a 01bb 1 Definition of TMs A Turing Machine is a quadruple M = (K, Σ, δ, s),

More information

Two-dimensional Languages

Two-dimensional Languages Charles University Faculty of Mathematics and Physics Mgr. Daniel Průša Two-dimensional Languages Doctoral Thesis Supervisor: Martin Plátek, CSc. Prague, 2004 Acknowledgements The results presented in

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)

More information

Regular Languages and Finite State Machines

Regular Languages and Finite State Machines Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection

More information

Oracle Turing machines faced with the verification problem

Oracle Turing machines faced with the verification problem Oracle Turing machines faced with the verification problem 1 Introduction Alan Turing is widely known in logic and computer science to have devised the computing model today named Turing machine. In computer

More information

1. Molecular computation uses molecules to represent information and molecular processes to implement information processing.

1. Molecular computation uses molecules to represent information and molecular processes to implement information processing. Chapter IV Molecular Computation These lecture notes are exclusively for the use of students in Prof. MacLennan s Unconventional Computation course. c 2013, B. J. MacLennan, EECS, University of Tennessee,

More information

10CS35: Data Structures Using C

10CS35: Data Structures Using C CS35: Data Structures Using C QUESTION BANK REVIEW OF STRUCTURES AND POINTERS, INTRODUCTION TO SPECIAL FEATURES OF C OBJECTIVE: Learn : Usage of structures, unions - a conventional tool for handling a

More information

CHAPTER 7 GENERAL PROOF SYSTEMS

CHAPTER 7 GENERAL PROOF SYSTEMS CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes

More information

THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER

THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER THE TURING DEGREES AND THEIR LACK OF LINEAR ORDER JASPER DEANTONIO Abstract. This paper is a study of the Turing Degrees, which are levels of incomputability naturally arising from sets of natural numbers.

More information

T-79.186 Reactive Systems: Introduction and Finite State Automata

T-79.186 Reactive Systems: Introduction and Finite State Automata T-79.186 Reactive Systems: Introduction and Finite State Automata Timo Latvala 14.1.2004 Reactive Systems: Introduction and Finite State Automata 1-1 Reactive Systems Reactive systems are a class of software

More information

Regular Languages and Finite Automata

Regular Languages and Finite Automata Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a

More information

Super Turing-Machines

Super Turing-Machines 1 This preprint differs from the published version. Do not quote or photocopy. Super Turing-Machines B. Jack Copeland 2 1. Universal Turing Machines A universal Turing machine is an idealised computing

More information

SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN

SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Code : CS0355 SRM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY SCHOOL OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING COURSE PLAN Course Title : THEORY OF COMPUTATION Semester : VI Course : June

More information

Grammars with Regulated Rewriting

Grammars with Regulated Rewriting Grammars with Regulated Rewriting Jürgen Dassow Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Lecture in the 5 th PhD Program Formal Languages and Applications PhD Program Formal Languages

More information

Teaching Formal Methods for Computational Linguistics at Uppsala University

Teaching Formal Methods for Computational Linguistics at Uppsala University Teaching Formal Methods for Computational Linguistics at Uppsala University Roussanka Loukanova Computational Linguistics Dept. of Linguistics and Philology, Uppsala University P.O. Box 635, 751 26 Uppsala,

More information

CS5310 Algorithms 3 credit hours 2 hours lecture and 2 hours recitation every week

CS5310 Algorithms 3 credit hours 2 hours lecture and 2 hours recitation every week CS5310 Algorithms 3 credit hours 2 hours lecture and 2 hours recitation every week This course is a continuation of the study of data structures and algorithms, emphasizing methods useful in practice.

More information

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms!

DNA is found in all organisms from the smallest bacteria to humans. DNA has the same composition and structure in all organisms! Biological Sciences Initiative HHMI DNA omponents and Structure Introduction Nucleic acids are molecules that are essential to, and characteristic of, life on Earth. There are two basic types of nucleic

More information

CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015

CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015 CS 341: Foundations of Computer Science II elearning Section Syllabus, Spring 2015 Course Info Instructor: Prof. Marvin K. Nakayama Office: GITC 4312 Phone: 973-596-3398 E-mail: marvin@njit.edu (Be sure

More information

Universality in the theory of algorithms and computer science

Universality in the theory of algorithms and computer science Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)

More information

On String Languages Generated by Spiking Neural P Systems

On String Languages Generated by Spiking Neural P Systems On String Languages Generated by Spiking Neural P Systems Haiming Chen 1, Rudolf Freund 2, Mihai Ionescu 3, Gheorghe Păun 4,5, Mario J. Pérez-Jiménez 5 1 Computer Science Laboratory, Institute of Software

More information

Software Model Checking: Theory and Practice

Software Model Checking: Theory and Practice Software Model Checking: Theory and Practice Lecture: Specification Checking - LTL Model Checking Copyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are

More information

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d. 13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both

More information

Compiler Construction

Compiler Construction Compiler Construction Regular expressions Scanning Görel Hedin Reviderad 2013 01 23.a 2013 Compiler Construction 2013 F02-1 Compiler overview source code lexical analysis tokens intermediate code generation

More information

Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008.

Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008. Philadelphia University Faculty of Information Technology Department of Computer Science First Semester, 2007/2008 Course Syllabus Course Title: Theory of Computation Course Level: 3 Lecture Time: Course

More information

Outline 2. 1 Turing Machines. 2 Coding and Universality. 3 The Busy Beaver Problem. 4 Wolfram Prize. 5 Church-Turing Thesis.

Outline 2. 1 Turing Machines. 2 Coding and Universality. 3 The Busy Beaver Problem. 4 Wolfram Prize. 5 Church-Turing Thesis. Outline 2 CDM Turing Machines Turing Machines 2 Coding and Universality Klaus Sutner Carnegie Mellon University 3-turing-mach 205/8/30 9:46 3 The Busy Beaver Problem 4 Wolfram Prize 5 Church-Turing Thesis

More information

Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy

Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Kim S. Larsen Odense University Abstract For many years, regular expressions with back referencing have been used in a variety

More information

Nondeterministic polynomial time factoring in the tile assembly model

Nondeterministic polynomial time factoring in the tile assembly model Theoretical Computer Science 395 2008) 3 23 www.elsevier.com/locate/tcs Nondeterministic polynomial time factoring in the tile assembly model Yuriy Brun Department of Computer Science, University of Southern

More information

2110711 THEORY of COMPUTATION

2110711 THEORY of COMPUTATION 2110711 THEORY of COMPUTATION ATHASIT SURARERKS ELITE Athasit Surarerks ELITE Engineering Laboratory in Theoretical Enumerable System Computer Engineering, Faculty of Engineering Chulalongkorn University

More information

Theoretical Computer Science (Bridging Course) Complexity

Theoretical Computer Science (Bridging Course) Complexity Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the

More information

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,

More information

Complexity of Algorithms

Complexity of Algorithms 1 Complexity of Algorithms Lecture Notes, Spring 1999 Peter Gács Boston University and László Lovász Yale University 2 Contents 1 Introduction and Preliminaries 1 1.1 The subject of complexity theory.........................

More information

Lecture 1. Basic Concepts of Set Theory, Functions and Relations

Lecture 1. Basic Concepts of Set Theory, Functions and Relations September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2

More information

Bottom-Up Parsing. An Introductory Example

Bottom-Up Parsing. An Introductory Example Bottom-Up Parsing Bottom-up parsing is more general than top-down parsing Just as efficient Builds on ideas in top-down parsing Bottom-up is the preferred method in practice Reading: Section 4.5 An Introductory

More information

Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.

Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Background One basic goal in complexity theory is to separate interesting complexity

More information

NP-Completeness and Cook s Theorem

NP-Completeness and Cook s Theorem NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:

More information

CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013

CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 CMPSCI 250: Introduction to Computation Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 Regular Expressions and Their Languages Alphabets, Strings and Languages

More information

Computability Classes for Enforcement Mechanisms*

Computability Classes for Enforcement Mechanisms* Computability Classes for Enforcement Mechanisms* KEVIN W. HAMLEN Cornell University GREG MORRISETT Harvard University and FRED B. SCHNEIDER Cornell University A precise characterization of those security

More information

Automata on Infinite Words and Trees

Automata on Infinite Words and Trees Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:

More information

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism )

Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Biology 1406 Exam 3 Notes Structure of DNA Ch. 10 Genetic information (DNA) determines structure of proteins DNA RNA proteins cell structure 3.11 3.15 enzymes control cell chemistry ( metabolism ) Proteins

More information