Stellar & Supernovae Nucleosynthesis And Cosmic Chemical Evolution. Jim Truran

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Stellar & Supernovae Nucleosynthesis And Cosmic Chemical Evolution. Jim Truran"

Transcription

1 Stellar & Supernovae Nucleosynthesis And Cosmic Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago and Argonne National Laboratory The First Stars and Evolution of the Universe Institute for Nuclear Theory, Seattle July 5th, 2006

2 Constraining the First Stars? Critical questions concerning the first stars include: What was the nature of the first stellar population? What were its nucleosynthesis products? Did the first stars differ from normal stars (stellar populations), and if so how so? How are they related to the oldest stars (halo stars, globular clusters, dwarf spheroidals, ) observed in our Galaxy and other galaxies today? How might we address these issues? We note: (1) the first stars were born with a primordial (e.g. BBN) composition; (2) the synthesis of the heavy elements occurred in stars and supernovae; and (3) the compositions of stars as a function of time (increasing metallicity) reflect the integrated nucleosynthesis enrichment history of the gas out of which they were formed. Since distinctive abundance patterns can be identified with the nucleosynthesis products of stars of specific ranges of stellar mass (and lifetime), we can use this to trace the chemical evolution of the oldest stars and stellar populations.

3 Nucleosynthesis Sites and Production Timescales We need first to identify the most significant contributers to nucleosynthesis in galaxies. We consider three main nucleosynthesis sites and note the (production) timescales for the entry of the ejecta of each of these sites into the ISM of galaxies. Massive stars (M > M ) and SNe II: Red Giant Stars (1 < M < M ): synthesis of the heavy s-process elements (τ > 9 years) SNe Ia: synthesis of the 1/2-2/3 of the iron peak nuclei not produced by SNe II (τ > x9 years) H,He G bang) (big Abundance relative to 6 silicon synthesis of most of the nuclear species from oxygen through zinc, and of the rprocess heavy elements (τ < 8 years) 11 Carbon (AGB stars) 9 Solar system abundances (at the time of solar system formation) α-elements (mostly Type II SN) 8 7 Fe peak (mostly Type I SN) 6 5 N=82 s-process peak Ba, La, Ce (AGB stars) 4 3 N=82 r-process peak Te, Xe (Type II SN) 2 1 N=126 s-process peak Pb,Bi (AGB stars) N-126 r-process peak Os,Ir,Pt (Type II SN) U,Th U II SN) Th (Type Mass number 200

4 Type Ia SNe Type II SNe Standard model (Hoyle & Fowler 1960): Standard model (Hoyle & Fowler 1960): SNe Ia are thermonuclear explosions of C+O white dwarf stars. Evolution to criticality? SNe II are the product of the evolution of massive stars < M < 0 M. Evolution to criticality: Accretion from a binary companion (Whelan and Iben 1973) leads to growth of the WD to the critical mass ( 1.4 M ). A succession of nuclear burning stages yield a layered compositional structure and a core dominated by 56Fe. After ~00 years of thermonuclear cooking, a violent explosion is triggered at or near the center. Complete incineration then ensues within two seconds. Collapse of the 56Fe core yields a neutron star or black hole. The gravitational energy is released in the form of neutrinos, which interact with the overlying matter and drive explosion. Nucleosynthesis products include primarily iron-peak nuclei; their contributions to intermediate mass nuclei are at less significant levels. (τnucleosynthesis > 1.5 x 9 yrs) Nucleosynthesis contributions: elements from oxygen to iron [(O-Ca)/Fe ~ 3 times Solar] and neutron capture products from krypton through uranium and thorium. (τnucleosynthesis < 8 yrs) Light curve powered by radioactive decay of 56Ni. (Nickel mass 0.6 M.) Peak luminosity M(56Ni). Production of 0.1 M of 56Fe as 56Ni.

5 Supernova Nucleosynthesis: SNe II and SNe Ia M = 15 M Type Ia Nucleosynthesis Type II Nucleosynthesis M = 25 M

6 Synthesis of Nuclei Beyond Iron Nuclei heavier than iron (A > 60) are understood to be formed in neutron capture processes: The helium shells of red giant stars ( 1- ) provide the s-process environment, with the 13 C(α,n) 16 O reaction providing neutrons. (τ > 9 years) Supernovae II provide the astronomical setting for the r-process. (τ < 8 years)

7 Clues from Metal-Deficient Stars Heavy Elements in CS Platinum Germanium Sneden et al. (2002)

8 Halo Abundance Trends for -3 [Fe/H] -1 Oxygen and α-elements R-Process Elements Calcium Titanium (Truran et al. 2002) These behaviors are compatible with nucleosynthesis predictions for SNe II.

9 s-process/r-process Chemical Evolution Truran et al. (2002)

10 Abundance Trends in Globular Clusters [(α-elements)/fe] (neutron-capture elements)

11 Summary: Abundance Evolution Trends [Fe/H] > -3 Extremely metal-deficient stars of [Fe/H] ~ -2 to 3 are characterized by both high O/Fe and (Ne-Ca)/Fe ratios and an r- process heavy element pattern SNe II production (τ 8 years) Signatures of an increasing s-process contamination first appear at [Fe/H] -2.5 to 2.0 first input from AGB stars (τ 9 years) Evidence for entry of SNe Ia ejecta first appears at [Fe/H] -1.5 to 1.0, as evidenced in the [O/Fe] and [(Ne-Ca)/Fe] histories input from SNe Ia on timescales > x 9 years

12 Trends at the Lowest Metallicities [Cr/Fe] r-process Scatter [Mn/Fe] [Zn/Fe] Truran et al. (2002) Cayrel et al. (2005)

13 Summary: Abundance Evolution Trends -4 <[Fe/H]< -2.5 Evidence for increasing scatter exists in the (r-process/fe) ratio below metallicity [Fe/H] ~ -2.5, suggesting both that only a small fraction of massive stars form r-process nuclei - and that the ISM was highly inhomogeneous at that epoch. In contrast, the scatter in abundance ratios of nuclei from Mg to Zn with respect to iron is remarkably small. Given the level of inhomogeneity reflected in the r-process/fe ratio, this quite strongly implies the massive stars responsible for these early products were extremely robust in their synthesis of nuclei through iron. (Keep in mind that the heavy elements introduced into stars formed at metallicities [Fe/H] ~ -4 are most likely to have come from a single progenitor.)

14 Very Massive Primordial Stars Very massive stars (~ M ) can be stable at low metallicities. Pair instability supernovae eject nuclei from oxygen to iron. Nucleosynthesis signatures include a pronounced odd-even variation. These signatures are not observed in the most metal deficient stars. Heger & Woosley (2000)

15 Abundance Trends for [Fe/H] < -4?? Frebel et al. (2005) The abundances in the two most iron-deficient stars known do not trace the smooth trends found (Cayrel et al. 2004) above [Fe/H] = -4. The details of their evolutions remain uncertain.

16 Understanding the Iron Peak Trends at Low Z The trends in iron peak nuclei identifiable in the Cayrel (2005) data include: decreasing [Cr/Fe] with [Fe/H] decreasing [Mn/Fe] with [Fe/H] increasing [Co/Fe] with [Fe/H] increasing [Zn/Fe] with [Fe/H] constancy of [Ni/Fe] with [Fe/H] Ge trends with [Fe/H] (figure) These suggest a high entropy (αrich) freeze which tends to produce nuclei past iron at the expence of nuclei below iron. Note that if the trends in Ge arise in this manner it may likely implies buildup along the alpha chain (at Y e 0.5 ) through the self-conjugate nucleus 72 Se (yielding 72 Ge). Note such conditions are achieved for hypernovae (Nomoto 2006).

17 Explosive Nucleosynthesis of Fe-Peak Nuclei 68 Se 72 Kr 67 As 64 Ge 65 Ge 66 Ge 63 Ga 70 Ge 72 Ge 69 Ga 71 Ga 60 Zn 61 Zn 62 Zn 64 Zn 66 Zn 6 7 Zn 68 Zn 70 Zn 59 Cu 63 Cu 65 Cu 56 Ni 57 Ni 58 Ni 60 Ni 61 Ni 62 Ni 64 Ni Z 55 Co 59 Co 52 Fe 53 Fe 54 Fe 56 Fe 57 Fe 58 Fe 51 Mn 55 Mn 48 Cr 49 Cr 50 Cr 52 Cr 53 Cr 54 Cr 47 V 50 V 51 V 44 Ti 45 Ti 46 Ti 47 Ti 48 Ti 49 Ti 50 Ti 43 Sc 45 Sc 40 Ca 42 Ca 43 Ca 44 Ca 46 Ca 48 Ca N

18 DLAs: Abundance Evolution with Red Shift (Pettini 2003) (Lu et al. 1996) The paucity of DLAs with metallicities below [Fe/H] -3 is compatible with their having been enriched by only a very few stars - but in star forming regions/clouds typically ~ 6 M. (Note that the introduction of M of metals from a single ~ M star is sufficient to enrich a ~ 6 M cloud to a metallicity -3 Z.)

19 Abundances in Dwarf Spheroidals and Globular Clusters Recent abundance determinations for dwarf spheroidal galaxies reveal distinctive trends relative to halo stars (e.g. Shetrone et al. 2003; Geisler et al. 2005). The presence of significant concentrations of s-process elements challenges the view (e.g. Gnedin and Kravtsov 2006) that most dsphs are fossils of recombination (see also Fenner et al. 2006). Outstanding issues include: How can we understand the distinctly non-halo-like behaviors of the [(α-element)/fe] and [s-process/r-process] abundances of dsphs with current models for the hierarchical assembly history of our Galaxy. Why to the globular cluster patterns for [(α-element)/fe] and [s-process/r-process] as a function of metallicity generally parallel those of the field halo population while the dsphs seem not to do so?

20 Abundances in Dwarf Spheroidal Galaxies [Ba/Eu] [Alpha Elements/Fe] Tolstoy et al. (2005) Geisler (2005)

21 Summary Based upon existing observations of abundances in our Galaxy and QSO absorption line systems, we are led to conclude: Only normal stars in a Salpeter-like initial mass function seem required to produce the elements seen in the oldest stars. While contributions from massive stars clearly dominate at early epochs, this may be simply a consequence of their shorter production time scales (lifetimes) rather than of an altered IMF. Very massive stars (0 < M < 300 M ) do not appear to have made a significant contribution to early Galactic (or pre-galactic) nucleosynthesis. Our present knowledge of the abundance history of our Galaxy provides no compelling evidence for a distinct earlier stellar Population (III?). The absence of significant star-to-star scatter in the most metal deficient stars studied to date - given the fact that these stars likely boast in the mean only ~ one progenitor (e.g. Tumlinson 2005) - implies a robust nucleosynthesis mechanism and/or a narrow mass range of (massive) star zero-metallicity progenitors. A significant degree of inhomogeneity - as reflected in (r-process/fe) ratios - persists through metallicities [Fe/H] ~ -2.0.

22

Galactic Chemical Evolution. Ena Choi

Galactic Chemical Evolution. Ena Choi Galactic Chemical Evolution Ena Choi Contents Introduction Formation and evolution of the Milky Way Galactic Halo Galactic Disk Cosmic Chemical Evolution References Introduction Simple chemical evolution

More information

The Synthesis of the Elements

The Synthesis of the Elements The Synthesis of the Elements In the beginning, there was only H and He. Early in the Big Bang, it was a soup of elementary particles. As the Universe expanded and cooled, there was a period of proton

More information

The Universe Inside of You: Where do the atoms in your body come from?

The Universe Inside of You: Where do the atoms in your body come from? The Universe Inside of You: Where do the atoms in your body come from? Matthew Mumpower University of Notre Dame Thursday June 27th 2013 Nucleosynthesis nu cle o syn the sis The formation of new atomic

More information

JINA AT UNIVERSITY OF CHICAGO

JINA AT UNIVERSITY OF CHICAGO Jim Truran Astronomy and Astrophysics Enrico Fermi Institute ASC Center for Astrophysical Thermonuclear Flashes University of Chicago JINA Advisory Committee Meeting University of Notre Dame April 30,

More information

L2: The building-up of the chemical elements

L2: The building-up of the chemical elements credit: NASA L2: The building-up of the chemical elements UCL Certificate of astronomy Dr. Ingo Waldmann What ordinary stuff is made of What ordinary stuff is made of Build up of metallicity 2 What are

More information

The Birth, Life, and Death of Stars

The Birth, Life, and Death of Stars The Birth, Life, and Death of Stars The Osher Lifelong Learning Institute Florida State University Jorge Piekarewicz Department of Physics jpiekarewicz@fsu.edu Schedule: September 29 November 3 Time: 11:30am

More information

WHERE DID ALL THE ELEMENTS COME FROM??

WHERE DID ALL THE ELEMENTS COME FROM?? WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup

More information

Radioactivity Review

Radioactivity Review Science Section 7- Name: Block: Radioactivity Review. Complete the following table: Isotope Mass Number Atomic Number (number of protons) Number of Neutrons nitrogen-5 5 7 8 sulfur-3 3 6 neon- magnesium-5

More information

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,

More information

ATOMIC THEORY. Name Symbol Mass (approx.; kg) Charge

ATOMIC THEORY. Name Symbol Mass (approx.; kg) Charge ATOMIC THEORY The smallest component of an element that uniquely defines the identity of that element is called an atom. Individual atoms are extremely small. It would take about fifty million atoms in

More information

Lecture 28 High Temperature Geochemistry Formation of chemical elements

Lecture 28 High Temperature Geochemistry Formation of chemical elements Lecture 28 High Temperature Geochemistry Formation of chemical elements Reading this week: White Ch 8.1 8.4.1(dig. 313-326) and Ch 10.1 to 10.5.3 (dig. 421-464) Today 1. Stellar processes 2. nucleosynthesis

More information

CHEM 1180 Fall 2015 Element Quiz A 28 AUG 15. Guard your quiz and conduct yourself properly. Spelling counts!

CHEM 1180 Fall 2015 Element Quiz A 28 AUG 15. Guard your quiz and conduct yourself properly. Spelling counts! CHEM 1180 Fall 2015 Element Quiz A 28 AUG 15 a) Chromium Cr b) Lithium Li c) Thallium Tl d) Tellurium Te e) Cadmium Cd f) Vanadium V g) Titanium Ti h) Sulfur S i) Silicon Si j) Beryllium Be a) Mn Manganese

More information

Supernova. Author: Alex Nervosa. Essay Supervisor: Brad Gibson, HET611 Swinburne Astronomy Online

Supernova. Author: Alex Nervosa. Essay Supervisor: Brad Gibson, HET611 Swinburne Astronomy Online Supernova Author: Alex Nervosa Essay Supervisor: Brad Gibson, HET611 Swinburne Astronomy Online Introduction A supernova (SNa) is a stellar cataclysmic explosion which occurs at the end of a star s life.

More information

Atomic Theory: The Nuclear Model of the Atom

Atomic Theory: The Nuclear Model of the Atom Chapter 5 Atomic Theory: The Nuclear Model of the Atom Section 5.1 Dalton s Atomic Theory Goal 1 Precursors to John Dalton s atomic theory Law of Definite Composition The percentage by mass of the elements

More information

Chapter 2 Atoms and the Periodic Table

Chapter 2 Atoms and the Periodic Table Chapter 2 1 Chapter 2 Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.

More information

thermal history of the universe and big bang nucleosynthesis

thermal history of the universe and big bang nucleosynthesis thermal history of the universe and big bang nucleosynthesis Kosmologie für Nichtphysiker Markus Pössel (vertreten durch Björn Malte Schäfer) Fakultät für Physik und Astronomie, Universität Heidelberg

More information

Answers and Solutions to Text Problems

Answers and Solutions to Text Problems Atoms and Elements 2 Answers and Solutions to Text Problems 2.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 2.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 2.3 a. carbon b. chlorine c. iodine d. mercury

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

The parts of a nuclear fission reactor

The parts of a nuclear fission reactor P2 6.1a Student practical sheet The parts of a nuclear fission reactor Making uranium-235 split and produce energy is actually remarkably easy. The trick is to make it do so in a controllable way. Aim

More information

Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

More information

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size.

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size. Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution This file has many figures missing, in order to keep it a reasonable size. Main Sequence and the Range of Stellar Masses MS is defined as the locus

More information

Our Galaxy, the Milky Way

Our Galaxy, the Milky Way Our Galaxy, the Milky Way In the night sky, the Milky Way appears as a faint band of light. Dusty gas clouds obscure our view because they absorb visible light. This is the interstellar medium that makes

More information

Elemental Abundances as Tracers of Star Formation

Elemental Abundances as Tracers of Star Formation Elemental Abundances as Tracers of Star Formation S. Veilleux (U. Maryland) Three Pagodas, Dali, China (8/15/05) (Tremonti+04) Plan Basics of chemical evolution Simple closed-, leaky-, accreting-box models

More information

Chemical Evolution of Galaxies. Francesca Matteucci, Trieste University Russbach, 15 March 2011

Chemical Evolution of Galaxies. Francesca Matteucci, Trieste University Russbach, 15 March 2011 Chemical Evolution of Galaxies Francesca Matteucci, Trieste University Russbach, 15 March 2011 Outline of the talk Basic ingredients for building chemical evolution models Examples of chemical abundance

More information

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

More information

p-process in SNIa with multi-d models: their role in Galactic chemical evolution

p-process in SNIa with multi-d models: their role in Galactic chemical evolution in SNIa with multi-d models: their role in Galactic chemical evolution C. Travaglio INAF Observatory of Turin (Italy) R. Gallino University of Turin (Italy) F. Rӧpke, W. Hillebrandt Uni-Würzburg, MPA Munich

More information

The Ba II hfs components were calculated in a manner

The Ba II hfs components were calculated in a manner THE ASTRONOMICAL JOURNAL, 115:1640È1647, 1998 April ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. BARIUM ABUNDANCES IN EXTREMELY METAL-POOR STARS ANDREW MCWILLIAM Observatories

More information

Chapter 15. The Chandrasekhar Limit, Iron-56 and Core Collapse Supernovae

Chapter 15. The Chandrasekhar Limit, Iron-56 and Core Collapse Supernovae Chapter 15. The Chandrasekhar Limit, Iron-56 and Core Collapse Supernovae 1. The Equation of State: Pressure of an Ideal Gas Before discussing results of stellar structure and stellar evolution models

More information

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation Faber-Jackson relation: Faber-Jackson Relation In 1976, Faber & Jackson found that: Roughly, L! " 4 More luminous galaxies have deeper potentials Can show that this follows from the Virial Theorem Why

More information

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:) Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

1 Big Bang Nucleosynthesis: Overview

1 Big Bang Nucleosynthesis: Overview 1 Big Bang Nucleosynthesis: Overview A few seconds after the Big Bang, almost all of the energy density in the Universe was in photons, neutrinos, and e + e pairs, but some was in the form of baryons.

More information

2. All of the atoms of argon have the same. 1. The atomic number of an atom is always equal to the total number of. A. mass number B.

2. All of the atoms of argon have the same. 1. The atomic number of an atom is always equal to the total number of. A. mass number B. 1. The atomic number of an atom is always equal to the total number of A. neutrons in the nucleus B. protons in the nucleus 2. All of the atoms of argon have the same A. mass number B. atomic number C.

More information

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D. 1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

More information

The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

More information

Nuclear fission and fusion

Nuclear fission and fusion Nuclear fission and fusion P2 62 minutes 62 marks Page of 23 Q. Nuclear power stations use the energy released from nuclear fuels to generate electricity. (a) Which substance do the majority of nuclear

More information

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

More information

ELECTRONIC CONFIGURATIONS

ELECTRONIC CONFIGURATIONS ELECTRONIC CONFIGURATIONS ELECTRONIC CONFIGURATIONS CONTENTS The Bohr Atom Levels and sub-levels Rules and principles Orbitals Rules for filling orbitals. The Aufbau principle Electronic configurations

More information

1 Electrons and Chemical Bonding

1 Electrons and Chemical Bonding CHAPTER 1 1 Electrons and Chemical Bonding SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is chemical bonding? What are valence

More information

The Nature of Chemistry

The Nature of Chemistry CHAPTER 1 The Nature of Chemistry Objectives You will be able to do the following. 1. Describe how science in general is done. 2. Given a description of a property of a substance, identify the property

More information

Low-Mass X-Ray Binary Models for Ellipticals NGC3379 and NGC4278

Low-Mass X-Ray Binary Models for Ellipticals NGC3379 and NGC4278 Low-Mass X-Ray Binary Models for Ellipticals NGC3379 and NGC4278 Tassos Fragos with V. Kalogera, K. Belczynski, G. Fabbiano et al. Department of Physics and Astronomy Northwestern University MODEST 7b

More information

Constraints on the explosion mechanism and progenitors of Type Ia supernovae

Constraints on the explosion mechanism and progenitors of Type Ia supernovae Constraints on the explosion mechanism and progenitors of Type Ia supernovae Stéphane Blondin Laboratoire d Astrophysique de Marseille Luc Dessart Observatoire de la Côte d Azur John Hillier University

More information

Evolution of Close Binary Systems

Evolution of Close Binary Systems Evolution of Close Binary Systems Before going on to the evolution of massive stars and supernovae II, we ll think about the evolution of close binary systems. There are many multiple star systems in the

More information

Chemical Signatures in Dwarf Galaxies

Chemical Signatures in Dwarf Galaxies Chemical Signatures in Dwarf Galaxies Kim A. Venn 1 Vanessa M. Hill 2 1 University of Victoria, British Columbia, Canada 2 Observatoire de la Côte d Azur, Nice, France Chemical signatures in dwarf galaxies

More information

Thursday, 14 March, 13

Thursday, 14 March, 13 The Hot Big Bang http://www.bayho.com/info/vote universe @ the big bang was dense at the Planck time (t ~ 10-43 sec) our visible universe was ~ 0.01 cm across (10 30 smaller) but any observer only sees

More information

The s- and r-process or The synthesis of the heavy elements

The s- and r-process or The synthesis of the heavy elements The s- and r-process or The synthesis of the heavy elements René Reifarth Goethe-University Frankfurt Erice School/Workshop on Neutrino Physics September 16-24 2013 Erice, Italy The synthesis of the heavy

More information

All answers must use the correct number of significant figures, and must show units!

All answers must use the correct number of significant figures, and must show units! CHEM 10113, Quiz 2 September 7, 2011 Name (please print) All answers must use the correct number of significant figures, and must show units! IA Periodic Table of the Elements VIIIA (1) (18) 1 2 1 H IIA

More information

Stellar Evolution: a Journey through the H-R Diagram

Stellar Evolution: a Journey through the H-R Diagram Stellar Evolution: a Journey through the H-R Diagram Mike Montgomery 21 Apr, 2001 0-0 The Herztsprung-Russell Diagram (HRD) was independently invented by Herztsprung (1911) and Russell (1913) They plotted

More information

Pre-lab The Origin of the Elements

Pre-lab The Origin of the Elements name Pre-lab The Origin of the Elements Introduction Have you ever wondered where all the matter around us comes from? It must have been created somewhere in this universe. In this exercise you will learn

More information

Astronomy 100 Exam 2

Astronomy 100 Exam 2 1 Prof. Mo Exam Version A Astronomy 100 Exam 2 INSTRUCTIONS: Write your name and ID number on BOTH this sheet and the computer grading form. Use a #2 Pencil on the computer grading form. Be careful to

More information

Nuclear Chemistry Chapter 28 Assignment & Problem Set

Nuclear Chemistry Chapter 28 Assignment & Problem Set Nuclear Chemistry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Nuclear Chemistry 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

EXPERIMENT 4 The Periodic Table - Atoms and Elements

EXPERIMENT 4 The Periodic Table - Atoms and Elements EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements

More information

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, 2003 ed. A. McWilliam and M. Rauch (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium4/proceedings.html)

More information

arxiv:astro-ph/0006350v1 25 Jun 2000

arxiv:astro-ph/0006350v1 25 Jun 2000 Nucleosynthesis in Massive Stars Including All Stable Isotopes A. Heger 1, R. D. Hoffman 2, T. Rauscher 1,3, & S. E. Woosley 1 arxiv:astro-ph/0006350v1 25 Jun 2000 1 Astronomy Department, University of

More information

The Early Universe. Lecture 27-1

The Early Universe. Lecture 27-1 The Early Universe Lecture 27-1 Back to the Big Bang The total energy of the universe consists of both radiation and matter. As the Universe cooled, it went from being radiation dominated to being matter

More information

Atomic Origins: Chapter Problems

Atomic Origins: Chapter Problems Atomic Origins: Chapter Problems Big Bang 1. How old is the Universe? 2. Name and describe the three subatomic particles. 3. Nuclear fusion reactions power stars. Name 2 elements that can be formed in

More information

Chapter 2 Atoms, Ions, and the Periodic Table

Chapter 2 Atoms, Ions, and the Periodic Table Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)

More information

The Periodic Table and Periodic Law

The Periodic Table and Periodic Law The Periodic Table and Periodic Law Section 6.1 Development of the Modern Periodic Table In your textbook, reads about the history of the periodic table s development. Use each of the terms below just

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

Electronic Stability & Periodic Table

Electronic Stability & Periodic Table Electronic Stability & Periodic Table Things at higher energy are less stable!! All living things are dependent on their ability to acquire energy from unstable things! The compounds in the food you eat

More information

Electron Configurations

Electron Configurations SECTION 4.3 Electron Configurations Bohr s model of the atom described the possible energy states of the electron in a hydrogen atom. The energy states were deduced from observations of hydrogen s emissionline

More information

Lecture Outlines. Chapter 27. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc.

Lecture Outlines. Chapter 27. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc. Lecture Outlines Chapter 27 Astronomy Today 7th Edition Chaisson/McMillan Chapter 27 The Early Universe Units of Chapter 27 27.1 Back to the Big Bang 27.2 The Evolution of the Universe More on Fundamental

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

Worksheet 11 - Periodic Trends

Worksheet 11 - Periodic Trends Worksheet 11 - Periodic Trends A number of physical and chemical properties of elements can be predicted from their position in the Periodic Table. Among these properties are Ionization Energy, Electron

More information

Chapter 27: The Early Universe

Chapter 27: The Early Universe Chapter 27: The Early Universe The plan: 1. A brief survey of the entire history of the big bang universe. 2. A more detailed discussion of each phase, or epoch, from the Planck era through particle production,

More information

Chapter 3 Applying Your Knowledge- Even Numbered

Chapter 3 Applying Your Knowledge- Even Numbered Chapter 3 Applying Your Knowledge- Even Numbered 2. Elements in a specific compound are always present in a definite proportion by mass; for example, in methane, CH 4, 12 g of carbon are combined with

More information

Solar Energy Production

Solar Energy Production Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the

More information

1. Structure and Properties of the Atom

1. Structure and Properties of the Atom 1. Structure and Properties of the Atom 1.1 Atoms: A simple definition of the atom is that it is the smallest particle that contains the properties of that element. The idea of atoms was first suggested

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Topic 3 Periodic Trends

Topic 3 Periodic Trends Topic 3 Periodic Trends Chapter 06 Trends on the Periodic Table Chapter 07 Relationships between the elements CHEM 10 T03D01 How are elements arranged Prior to 1735, only 12 elements were known to man

More information

Chapter 6. Periodic Relationships Among the Elements

Chapter 6. Periodic Relationships Among the Elements Chapter 6. Periodic Relationships Among the Elements Student: 1. The nineteenth century chemists arranged elements in the periodic table according to increasing A. atomic number. B. number of electrons.

More information

Ernst Zinner Washington University St. Louis

Ernst Zinner Washington University St. Louis QuickTime and a decompressor are needed to see this picture. QuickTime and a decompressor are needed to see this picture. QuickTime and a decompressor are needed to see this picture. Constraints on SN

More information

Chemistry: Nuclear Reactions Guided Inquiry

Chemistry: Nuclear Reactions Guided Inquiry Chemistry: Nuclear Reactions Guided Inquiry Nuclear reactions change the nucleus of an atom. Chemical Reactions vs. Nuclear Reactions Atoms and molecules are striving to achieve the most stable arrangement.

More information

Chemical tagging with. Ricardo Schiavon

Chemical tagging with. Ricardo Schiavon Chemical tagging with Ricardo Schiavon Stellar Populations Newton Meeting São Paulo, November 30, 2015 Chemical tagging with Discovery of a new stellar population in the Galactic bulge Astrophysics Research

More information

7 Big Bang Nucleosynthesis

7 Big Bang Nucleosynthesis 79 7 Big Bang Nucleosynthesis One quarter (by mass) of the baryonic matter in the universe is helium. Heavier elements make up a few per cent. The rest, i.e., the major part, is hydrogen. The building

More information

Blocks on the periodic table. Atomic weight: This is either a decimal number or a number in parenthesis.

Blocks on the periodic table. Atomic weight: This is either a decimal number or a number in parenthesis. 68 Blocks on the periodic table 11 Sodium 22.99 Atomic number: This is always a whole number. The periodic table is arranged by atomic number! Element symbol: A one or two letter abbreviation for the name

More information

Atoms and Elements. Atoms: Learning Goals. Chapter 3. Atoms and Elements; Isotopes and Ions; Minerals and Rocks. Clicker 1. Chemistry Background?

Atoms and Elements. Atoms: Learning Goals. Chapter 3. Atoms and Elements; Isotopes and Ions; Minerals and Rocks. Clicker 1. Chemistry Background? Chapter 3 Atoms Atoms and Elements; Isotopes and Ions; Minerals and Rocks A Review of Chemistry: What geochemistry tells us Clicker 1 Chemistry Background? A. No HS or College Chemistry B. High School

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14

Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Astro 102 Test 5 Review Spring 2016 See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Sec 14.5 Expanding Universe Know: Doppler shift, redshift, Hubble s Law, cosmic distance ladder, standard candles,

More information

1. Structure and Properties of the Atom

1. Structure and Properties of the Atom SACE Stage 1 Chemistry - The Essentials 1. Structure and Properties of the Atom 1.1 Atoms: A simple definition of the atom is that it is the smallest particle that contains the properties of that element.

More information

Unit 2: Atomic Theory Practice Packet

Unit 2: Atomic Theory Practice Packet Unit 2: Atomic Theory Practice Packet 1 Name History of Atomic Theory Period Fill in the missing information in the chart below: Name of Researcher Equipment Sketch of Model Major Idea/Discovery N/A All

More information

Periodic Table Packet #1

Periodic Table Packet #1 Directions: Answer the questions with the proper information using your notes, book, and the periodic table. 1. Define a family. 2. What is a period? 3. What is the symbol for the following elements. a.

More information

Late Helium Flashes and Hydrogen-Poor Stars

Late Helium Flashes and Hydrogen-Poor Stars Kepler Center for Astro and Particle Physics, University of Tübingen Late Helium Flashes and Hydrogen-Poor Stars K. Werner, T. Rauch University of Tübingen, Germany and J.W. Kruk Johns Hopkins University,

More information

Topic 3. Evidence for the Big Bang

Topic 3. Evidence for the Big Bang Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question

More information

3.01 Elements, Symbols and Periodic Table

3.01 Elements, Symbols and Periodic Table .0 Elements, Symbols and Periodic Table Dr. Fred O. Garces Chemistry 00 Miramar College.0 Elements, symbols and the Periodic Table January 0 The Elements: Building block of Matter The periodic table of

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Ay 20 - Fall Lecture 17. Stellar Luminosity and Mass Functions * * * * * History and Formation of Our Galaxy

Ay 20 - Fall Lecture 17. Stellar Luminosity and Mass Functions * * * * * History and Formation of Our Galaxy Ay 20 - Fall 2004 - Lecture 17 Stellar Luminosity and Mass Functions * * * * * History and Formation of Our Galaxy Stellar Luminosity and Mass Functions Basic statistical descriptors of stellar populations:

More information

SAI. Protons Electrons Neutrons Isotope Name. Isotope Symbol 131i S3 1. Atomic Number. Mass Number

SAI. Protons Electrons Neutrons Isotope Name. Isotope Symbol 131i S3 1. Atomic Number. Mass Number ATOMIC STRUCTURE AND THE PERIODIC TABLE CHAPTER 4 WORKSHEET PART A Given the following isotopes, determine the atomic number, the mass number, the number of protons, electrons and neutrons. Isotope Symbol

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics Introduction to Nuclear Physics 1. Atomic Structure and the Periodic Table According to the Bohr-Rutherford model of the atom, also called the solar system model, the atom consists of a central nucleus

More information

Class #14/15 14/16 October 2008

Class #14/15 14/16 October 2008 Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM

More information

Lewis dot structures for molecules

Lewis dot structures for molecules 1 Lewis dot structures for molecules In the dot structure of a molecule, - SHARED valence electrons are shown with dashes - one per pair. - UNSHARED valence electrons ("lone pairs") are represented by

More information

The Atom Atomic Number Mass Number Isotopes

The Atom Atomic Number Mass Number Isotopes The Atom Atomic Number Mass Number Isotopes 1 Atomic Theory Atoms are building blocks of elements Similar atoms in each element Different from atoms of other elements Two or more different atoms bond in

More information

W. M. White Geochemistry Chapter 10: Cosmochemistry

W. M. White Geochemistry Chapter 10: Cosmochemistry CHAPTER 10: THE BIG PICTURE: COSMOCHEMISTRY 10.1 INTRODUCTION I n the previous nine chapters we acquired a full set of geochemical tools. In this and subsequent chapters, we will apply these tools to understanding

More information

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

More information

Progenitors of Supernovae and GRBs

Progenitors of Supernovae and GRBs Progenitors of Supernovae and GRBs Hideyuki Umeda ( 梅 田 秀 之 ) SNe, GRB 研 究 会 2014@ 理 研 和 光 キャンパス 2014.8.25 1 SN progenitors introduchon compactness parameter rotahng models binary models GRB progenitor

More information

The Structure of the Atom

The Structure of the Atom The Structure of the Atom Section 4.1 Early Ideas About Matter In your textbook, read about the philosophers, John Dalton, and defining the atom. For each statement below, write true or false. 1. Ancient

More information

Chapter 20: Nuclear Chemistry

Chapter 20: Nuclear Chemistry Chapter 2: Nuclear Chemistry Nuclear Reactions vs. Chemical Reactions There are some very distinct differences between a nuclear reaction and a chemical reaction. in a chemical reaction bonds break, atoms

More information

Mass transfer dynamics in white dwarf binary systems

Mass transfer dynamics in white dwarf binary systems Mass transfer dynamics in white dwarf binary systems In collaboration with: Stephan Rosswog & Marcus Brüggen EUROWD10, Tübingen, 2010 Numbers on Galactic WDs total number of WDs: 10 10 Napiwotzki (2009)

More information