Equations and Inequalities


 Erik Hawkins
 1 years ago
 Views:
Transcription
1 Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations. Equations and Inequalities Main Overarching Questions: 1. How do you solve rational equations?. What is an extraneous solution? Objectives: Activities and Questions to ask students: Solve rational equations Determine whether an equation represents an identity, conditional, or inconsistent statement. Give students a simple example of a rational equation: 1 3 x x. Ask students to observe what value of x is not allowed. If they are not sure, says we are never allowed to have blank in the denominator. Next ask them how they might proceed to solve the equation. Why is this equation NOT linear? (It has fractions) How can we clear our fractions? What one quantity can we multiply by to ensure all fractions are cleared? Ask students what the LCD is in the previous example 1 3 x x. Do we have to multiply the by the LCD? Why? Have students multiply through by LCD to clear the fraction. What kind of equation is left over? How do we solve it? Have students summarize the process of solving radical equations. x 3 Give students another rational equation: 9. Ask them to solve it. x 3 x 3 What solution did you get? Does this solution work when plugged in? How could we have known the solution would not work? Define the solution x = 3 in the previous example as an extraneous solution. Remind students to always list out restrictions on the variable at the beginning of the problem. Since this is a MAC 1105 topic, make sure to graduate to more difficult problems that involve multiple factors in the LCD. Give students a simple identity: x x for example. Ask them what they notice? What is the solution to this equation? 0/01/10 1
2 Some students make call out specific values of x. Take note of them and continue to ask if there are other solutions. How many solutions are there? Once the students see that every real number is a solution to this equation, ask them how they could tell this might happen from looking at the equation. What would happen if we had tried to solve for x? What would have been left over? Have students see that solving for x, would have resulted in the true statement. Point out that equations of this type are called identities. Identities have the formal solution { x x is a real number} Give students another identity: 4( x 7) (x 14). Ask them to solve the equation. What happens? What type of equation is this? What is its solutions? Next, give students a simple inconsistent equation: x x 3. Ask them what they notice? What is the solution to this equation? If students call out specific values of x, make sure to have the class check them. Once the students see that no real number will satisfy the equation, ask them how they could tell this might happen from looking at the equation. What would happen if we had tried to solve for x? What would have been left over? Have students see that solving for x, would have resulted in the false statement 3. Point out that equations of this type are called inconsistencies. Inconsistencies have no real solution. Give students another identity: 8x x 10x 6. Ask them to solve the equation. What happens? What type of equation is this? What is its solutions? Point out that all other equations that we have solved resulting in at least one solution (but not all real numbers as the solution set) are called conditional equations. Complex Numbers Overview of Objectives, students should be able to: 1. Define complex numbers.. Add and subtract complex numbers 3. Multiply complex numbers. 4. Divide complex numbers. 5. Perform operations with square roots of negative numbers. Objectives: Main Overarching Questions: 1. What is a complex number?. How do we perform operations on complex numbers? Activities and Questions to ask students: Define complex numbers Begin by introducing 4. Ask students what it is. What does it simplify to? If students say or , have all students verify this is not correct. 0/01/10
3 Add and subtract complex numbers. Multiply complex numbers. Divide complex numbers Once students see that there is no REAL number to represent 4, define the imaginary unit i 1. What is i? Ask students how we might now rewrite 4 in terms of i. If students have trouble, suggest the factorization: Have students practice with a few other imaginary roots to attain mastery. Next, state the definition of a complex number: a bi, where a and b are real numbers. Give students an example like 3 4i Tell students the real part is 3 and the imaginary part is 4. To extend the concept, ask students if the real number 5 is in fact a complex number. How could we rewrite it in the complex form? What is the real part? What is the imaginary part? What about the purely imaginary number 4i? Is it complex? What is the real part? What is the imaginary part? The idea is to get students to see they are simply combining like terms. Have students simplify the linear expression: ( 3x ) (4 5x). How did you simplify? Have them repeat the process with ( 3i ) (4 5i) Make sure to tell students that complex numbers must be in a bi form to be completely simplified. How about subtraction? ( 3 7i ) (3 i) How about the problem: (5 i ) 3( 4i). If students are unsure, tell them to consider how they would proceed if we substituted x for i. Again, the idea is comparable to multiplying polynomials. Start with the simple distribution: x ( x 3). How would you simplify this? Now, what about i ( i 3)? Most students should see that i( i 3) i 6i. But this isn t in simplified form, what is i? Have students simplify the rest of the problem. Give students a FOIL problem: ( 5 4i )(3 i). Ask students what previously learned multiplication rule will come in handy. If a review of FOIL is necessary, take a minute to review the steps, then continue. If students forget to convert i, remind them their answer needs to be in the form a bi. For further practice and review give another example to try: ( 3i ). Follow the same line of questioning as did with FOIL. If we want to divide two complex numbers, we seek to remove the complex number in the denominator. But how do we get rid of this complex number? Ask students to recall how they rationalized the denominator in their previous math 0/01/10 3
4 Perform operations with square roots of negative numbers. 3 class:? What did we have to multiply by? What would we need to multiply by in the x examples: i For another approach, have students multiply ( a bi)( a bi). What is the result? What type of number is this? Tell students that we are multiplying by what is called the complex conjugate. What is the complex conjugate of i? Next, can we just multiply the denominator by the conjugate i? Why not? How do we keep the original fraction equivalent (balanced)? Have students see that we need to multiply the numerator AND denominator by the complex conjugate. Have students finish the problem. Give students another example to practice of similar type. To get the discussion going, give the simple example How do we simplify this expression? If students try to ADD the radicands, remind them of their radical rules. You can also have students demonstrate on the calculator this will not work. What did we need to do first? Have students note that they must simplify the imaginary radical FIRST, before combining together. How about 64 5? Again, if any student tries to cancel the two negatives, remind them of radical rules and use the calculator to demonstrate the error in their logic. Give a slightly more complicated example like How is this example different? How do we proceed? Next, give a multiplication problem: 5 4. How do we simplify? A logical (yet incorrect) way to proceed, is to combine the two radicals via multiplication. If students follow this route, explain that the multiplication rule does not apply for imaginary numbers. How did we begin our simplification of the last two problems? CONVERT, then MULTIPLY. Have students compare the answers by the incorrect and correct method, if the former answer was previously found. Quadratic Equations Overview of Objectives, students should be able to: 1. Solve quadratic equations by factoring.. Solve quadratic equations by the square root property. Main Overarching Questions: 1. How do we solve quadratic equations?. How do we decide which method is best to solve a particular quadratic equation? 0/01/10 4
5 3. Solve quadratic equations by completing the square. 4. Solve quadratic equations using the quadratic formula. 5. Use the discriminant to determine the number and type of solutions. 6. Determine the most efficient method to use when solving a quadratic equation. Objectives: Solve quadratic equations by factoring. Activities and Questions to ask students: Give students the general quadratic equation ax bx c 0 How do you know an equation is quadratic? What properties does it have? Give students a simple product such as 4 0 and ask for the result. Then reverse the order and ask for the result of 0 4. Ask the students if they notice any similarities between the two simple expressions. Why is the final result the same in each case? What requirement must be met for the product of two numbers to be 0? Next, give the students the simple equation: a b 0. What are the possible solutions to this equation? Is there more than one solution? Have students establish the zero product property: if the product of two factors is 0, then either factor is 0. Give students a very simple quadratic equation to solve like ( x )(x 3) 0 How would we solve this equation? If necessary, remind students of what has been discussed so far this discussion. Next give students a simple quadratic equation: x 4x 0 Ask students how they might attempt to solve the equation. How can we use the zero product property to aid in solving the equation? If we need a product to use the property, how can we transform our sum of terms into a product? If students have trouble, give students an arithmetic example to illustrate the point: How would we write 10 as a product? Then, have students solve x 4x 0. What steps did you use to solve the equation? Give students another equation to solve using a different factoring method like x 4x 3 0 What differences did you notice in solving this equation? Give students one additional equation that does not have 0 on the right hand side: x 3x 3 1. What additional steps might be necessary? Summarize the process. In each example, how many solutions did we get? Is there a relationship between the degree of the equation and the number of solutions? 0/01/10 5
6 Solve quadratic equations by the square root property. Give students a very simple quadratic equation to solve like: x 4. If students only give x = as the solution ask them if there any other solutions. If necessary, ask them how many solutions we normally have when solving quadratic equation. Next, ask students (this has already been discussed) what is. How can we get rid of a square on a variable? Now, going back to x 4 ask the students what other process we might use to solve the equation. If we take the square root of both sides, what additional steps do we need to get both solutions? Have students summarize the process of solving quadratic equations by taking square roots. Give students another quadratic equation to solve: x 18. What is different about this equation? What step could we use to make the equation look similar to the first one? Have students summarize the steps to solve this equation. What steps would be necessary to solve: 5x 7? What is different about this equation? What step or steps would be necessary to make it look like the first equation? Finally, have students summarize the steps to solve x 4 5. What is different about the squared portion of this equation? After taking the square root of both sides what additional step or steps is necessary? Solve quadratic equations by completing the square. Begin by explaining the purpose of the method. We want to add a constant to the x bx to obtain a perfect square. Say for example we want to solve x 8x 9 First give a few simple examples: x 8x (x 4). Have students FOIL the right hand side to confirm. Repeat with a few other simple examples. In each case what did we need to add (i.e. fill in the blank)? Is there a pattern? Have students draw the conclusion that generally b is added to complete the square. Now, return to the problem at hand. If we need to complete the square on the left hand side for x 8x 9, we need to add 16. But if we add 16 to the LHS, what do we need to do to the RHS? (add 16). Have students do this. x 8x So we have (x 4) 5 Now, how do we proceed to solve? Have students use the square root property to finish the problem. Have students summarize the process of completing the square. Solve quadratic equations using the quadratic Give students the general quadratic equation and quadratic formula: ax bx c 0 and 0/01/10 6 x
7 formula. Use the discriminant to determine the number and type of solutions. b b 4ac x. a What do you notice about the formula? What does the formula give us? How many solutions should we get? In what instances would we get 1 solution? No solutions? Ask students how could they identify what the a, b, and c values are. Give students the example 3x 4x 1 0. Ask students to summarize the process they use to solve the equation. Ask in particular that they summarize the steps in simplifying the expression. What about x 4x 1? What are the a, b, and c values? What additional step do we need before plugging into the formula? First, ask students how many solutions we have usually encountered when solving quadratic equations. Review the quadratic formula. Looking at the formula, how does it give us two solutions? (The + and ). If some students do not see this, ask them what solutions are yielded from x 4. What happens AFTER the? (The square root) Now, ask students if there is way to only get one solution. To draw out this concept, ask them what number you can add and subtract and still have the SAME number. (Zero). So, what happens when the inside of the square root is 0? How many solutions do we have? Give a simple example if necessary. Next, ask them what happens if the inside of the square root is negative? What kind of values do we get? Summarize the results, with 3 plugged in quadratic formula problems: Quadratic Formula Number of Solutions Type of Solutions In all cases, what value controls the number and type of solution? Have students see the inside of the square root solely determines the number and type of solutions. Define the inside of the square root from the quadratic formula: b 4ac as the disriminant. Have students see that they only need to calculate this quantity to see what type of solutions 0/01/10 7
8 and how many there are to the quadratic formula. What happens if the discriminant is positive? Zero? Negative? Give students several examples to work. Determine the most efficient method to use when solving a quadratic equation. Give students several quadratic equations, one of which is factorable, another that is in u d form, and a third that is not factorable or in the square root property form. Ask students what method or methods they COULD use to solve each equation. Then ask students which method they would PREFER to use. Ask students which method can be used to solve ANY quadratic equation. Students should realize they can always use quadratic formula. Ask students which method is the easiest. Hopefully they realize that checking for factoring is normally the best first step, but some will prefer to use the quadratic formula every time. Ask students how they might spot a square root property type of problem. 0/01/10 8
9 Other Types of Equations Overview of Objectives, students should be able to: 1. Solve polynomial equations by factoring.. Solve radical equations. 3. Solve equations with rational exponents. 4. Solve equations using substitutions. 5. Solve absolute value equations. Objectives: Solve polynomial equations by factoring Main Overarching Questions: 1. How do we solve polynomial equations using factoring?. How do we solve radical equations? 3. How do we solve equations with rational exponents? 4. How do we solve equations using substitutions? 5. How do we solve absolute value equations? Activities and Questions to ask students: 4 Give students a simple polynomial equation like: 3x 48x 0 How is this equation different from the quadratic equations studied earlier? Ask students to think about the easiest way to solve quadratic equations. What did we do? Have students come to the conclusion that factoring can sometimes be used to solve polynomial equations. Have students factor the left hand side: 3 x ( x 4)( x 4) 0 Ask students how we proceeded before. Hopefully, they remember that we can use the zero product property to set each factor to zero: 3x 0 or x 4 0 or x 4 0 Have students solve and check their solutions. 4 Give another example, but in nongeneral form: 5x 0x. If students want to divide by x, remind them that we never divide by a factor of x, since x could possibly be zero and we can never divide by zero. How can we make it look like the first example? Once students subtract the right hand side, remind them this is the general form. Have students solve and check. Give one more example that requires a different factoring technique like grouping: 3 x x 4x 4. Have students solve and check. As an aside, ask students to count up the number of solutions in each example worked. How many were there? What was the most number of solutions we could have with quadratic equations? Does it have anything to do with the degree of the equation? Can we form a pattern? What is it? Solve radical equations Give students a simple example: if x =. What is x =? What about if x = 3, x =? Do you see a pattern? What operation are we performing on both sides of the equation? 0/01/10 9
10 Solve equations with rational exponents. Have students draw the conclusion that if a b then a b (squaring principle) Now ask students how they would solve: x 4. If students just observe the answer is 16, ask them how they would solve the equation using the squaring principle. Does it match the solution you observed? How can you check your solution is correct? Write down the process you used to solve and check your answer. How do you solve x 4? What happens if you use the squaring principle? How could you check that 16 is not the solution? Mention that solutions that do not work in an equation but that are the result of an algebraic method are called extraneous solutions Give another example similar to this one. Do you see a pattern? How could you predict there would be no solution? How would you solve: x 4 6. How is this example different than the last one? How would you need to modify your process to solve it? If students take exception to the  on the right hand side, ask them if the radical has been isolated. Remind them that in the previous simple example, the radical was by itself when we realized the negative on the right hand side would give an extraneous solution. Ask students how they would find: x 4 previously learned processes or rules are you using?. Have you done this before? Which How would you solve: x x 4? What is different about this example than the last ones? How can you use the squaring process at the beginning to help you solve? After using the squaring property you still have a radical in the equation, now what do you do? How many radicals do you have now? Does it look similar to the first type of radical equations you solved? Write the process you would use to continue. Ask students to summarize the process of solving radical equations of the types studied. Give students a worksheet with several radical equations (1 and radicals, some with real solutions, and some with no real solution) to complete. Have them use the process they wrote down. Is there more than one way to solve? Compare with your classmates. A brief review of rational exponents might be necessary. First, try to get students to understand why we raise both sides of the equation to the reciprocal of the given power. Start with a simple example: How we would solve 1 x 4. If students have trouble, ask them if there is another way to write 1 x. Hopefully students see the squaring both sides is on order. What is the solution? (16). Make sure students see that 16 is the ONLY solution. 0/01/10 10
11 Solve equations using substitutions. Solve absolute value equations. Now, how about 1 x 3? What do we need to do to both sides? How are 3 and 1 3 related? How are and 1 related? Now, have students try x 3 4. They should see what to do, but they may have trouble evaluating x 4 3. Have them use the definition of rational exponents to calculate this value and use the calculator as a check. Was 8 the only solution to the previous equation? Would 8 have also worked? Have students show by substitution that both 8 and 8 are solutions. Repeat with another rational exponent with an even numerator. Now, follow the same steps with an exponent with an odd numerator. Do both the positive and negative solutions work? Have students draw the conclusion that if the power has an even numerator, we keep both the positive and negative solutions. If the power has an odd numerator, we only take the positive solution. Have students work an example, where they have to isolate the rational exponent term first. After solving, have them summarize their steps. 4 Give students a simple equation in quadratic form like: x 5x 4 0. What do they notice? Have them compare it with the quadratic equation x 5x 4 0. Since we know how to solve the latter equation, can we somehow make a substitution to make the former equation look like the latter? It will most likely be difficult for the students to see this one on their own. Have students think about it for a minute, then suggest (if no one else has) to let x u. Tell students that we want to write the equation in terms of u now. 4 What is x then? Have students transform the equation to u 5u 4 0. Temporarily we should forget about the original equation and just focus on solving the u equation. How do we solve this? What type of equation is it? Have students solve for u. Then ask, are we finished? Did we solve the original equation? NO! We needed x not u. How do we get x? What is the relationship between u and x? The substitution linked the two variables. Have students substitute each value of u to find x. 6 3 Give students another example to try, but give different power of x like x and x. Ask students if there is a pattern to what u is. What is absolute value? Can more than one number have the same absolute value? Give an example and explain your reasoning. What number is the exception? For x = 5, what numbers could replace the x? How many solutions are there? Write 0/01/10 11
12 equations for these solutions. For x + 1 = 5, what two numbers could x be? Using our equations for the example above, write two equations to solve this problem. Write an absolute value equation where you might have only one solution. Write an absolute value equation where you might have no solution. Now give the students an equation where the absolute value is not isolated. What needs to be done first to solve x = 9? Solve and check. Now, if x = what must be true about x? Must x =? Write equations for x. If x = or x = , then how can we solve an equation like x+ = x 3 using opposites? Ask students to solve and check both answers. Systems of Equations Overview of Objectives, students should be able to: 1. Determine if a given ordered pair is a solution to a system of linear equations.. Solve systems of linear equations using graphing. 3. Solve systems of linear equations by substitution. 4. Solve systems of linear equations by addition. 5. Identify systems that have no solution or infinitely many solutions. 6. Solve systems of linear equations in three variables. Objectives: Determine if a given ordered pair is a solution to a system of linear equations. Solve systems of linear equations using graphing Main Overarching Questions: 1. When is an ordered pair a solution of a system?. How do you solve systems of equations by graphing? 3. How do you solve systems of equations by algebraic methods? 4. Compare and contrast the methods of solving systems for efficiency and accuracy. 5. How do you determine when a system has no solution or infinitely many solutions? Activities and Questions to ask students: Present two linear equations and have students substitute an ordered pair into x and y. What is meant by the term solution to an equation? Does the ordered pair create true or false statements? Is this point a solution for both of these equations? When is an ordered a solution of a system of linear equations? Students will graph 3 systems of linear equations: a pair of intersecting lines, a pair of parallel lines, and two equations that are the same line. Direct students to compare the three systems: describe the type of lines, describe how many points they have in common, and compare the equations within each system Students may present their results. 0/01/10 1
13 Solve systems of linear equations by substitution. Solve systems of linear equations by addition Select the most efficient method for solving a system of linear equations. Identify systems that have no solution or infinitely many solutions. Have students summarize their results. What does substitution mean? What can be substituted without changing the solution of an equation? If equations are solved for y like y x 1and y x 4, can you say that x 1 x 4? Why or why not? Have students solve for x. Now that you can solve for x, how can you find y? For students who struggle with substitution method, try the above method. Demonstrate technique of solving one equation for a variable. How can we use substitution to combine these two equations into a single equation with one variable? How does this help us solve the system? How do you find the second variable? What happens if you substitute into the wrong variable? How do you add two equations? What parts can you add? Ask students to add two given equations (where a variable will cancel). How does this help us solve the system? How do you find the second variable? Ask students to add two given equations where a variable does not cancel. Does this help us solve the system? Why not? What needs to happen? What is it about the coefficients that make a variable cancel when adding? How can we change an equation so that a variable will cancel when we add? IF we change one part of the equation, what must be done to the remaining terms in the equation? Introduce or reemphasize term: equivalent equations Have students compare/contrast the 3 methods of solving a system. Do lines always intersect at integer points? Can you always read the coordinates of the intersection on a graph? Can you determine fraction solutions when solving using algebraic methods? Ask students to make a conclusion about the efficiency and accuracy of each method. Give students a system with no solution and ask them to use either the substitution or addition method to solve. What happens to the variables? What kind of statement is left? Is it true or false? Ask students to solve each equation for y and compare the slopes and yintercepts. What kind of lines are they and how many solutions are there for this system? Give students a system with infinitely many solutions and ask them to solve using addition or substitution method. What happens to the variables and the constants? What statement is left? True or false? Ask students to solve both equations for y and to make a conclusion about the type of lines 0/01/10 13
14 Solve systems of linear equations in three variables. and the number of solutions. Students should see this is an extension of solving systems of linear equations in two variables. Begin by giving students a system of linear equations in three variables and a numeric ordered triple in the form ( x, y, z). How do the numbers and variables correspond? How can we verify the ordered triple satisfies the system? Ask students to think about how we solved systems in two variables. Is there a way we can transform the three variable system to a two variable system? To facilitate the discussion it would help to give a simple linear system in three variables, where one variable is easily cleared. Some students will suggest eliminating one variable using two equations. However, ask them how many equations are needed to solve a system of two variables. How can we get another equation in terms of the two remaining variables? Have students conclude they need to eliminate one variable from two PAIRS of equations resulting in two equations in terms of the two remaining variables. Now that we have two equations in terms of two variables, how do we solve? If students have trouble, have them discuss the ways we solved systems of equations earlier. Students should now be able to solve and get numeric values for the two variables. How do we get the value of the third variable we eliminated before? Ask students to specific about which equation they use to find the third variable. Does it matter? Will the answer be different? Have students check their ordered triple in the original system. Solving Linear and Absolute Value Inequalities Overview of Objectives, students should be able to: 1. Use interval notation to represent solutions to inequalities in one variable.. Find intersections and unions of intervals. 3. Solve linear inequalities in one variable. 4. Recognize linear inequalities that have no solution or infinitely many solutions. 5. Solve compound inequalities. 6. Solve absolute value inequalities. Main Overarching Questions: 1. How do you solve and graph inequalities in one variable?. How do you determine the number of solutions to a linear inequality or if no solution exists? 3. How do you use set notation and interval notation to express the solutions of linear inequalities? Objectives: Activities and Questions to ask students: Use interval notation to represent solutions to If x 3, what number(s) does this x stand for? What is the least number included? Is 3 0/01/10 14
15 inequalities in one variable. included? Why or why not? We use (3, ) to show all real numbers great than 3. How can we show all real numbers > 7? > ? We use (,4) to show all real numbers less than 4. How do you use interval notation to show all real numbers < 8? < 3? If x is greater than OR EQUAL TO 5, then using interval notation we write [5, ) and if x is less than OR EQUAL TO, we write (,]. How do you express all real numbers less than or equal to 7 in interval notation? Find intersections and unions of intervals. Begin by giving two intervals that overlap over some interval. Describe as the intersection or overlap of two sets. How can we tell where the two sets overlap? Is there a visual way we can accomplish this? Describe as the union or total collection of both intervals. Have students practice finding unions of two intervals. Solve linear inequalities in one variable. If necessary, review properties used in solving equations. How would we solve x 6? How can we use these properties to solve x 6 How is the solution to an inequality different from a solution to an equation? How can we check our solutions? Ask students to solve 3x 9and check their solution. If students fail to change < to >, ask why their solution does not work when checked? Or ask students to divide or multiply both sides of a true inequality like < 4 by 1. Is this still a true inequality? Why or why not? What must be done to make the solution of 3x 9work? After what other operation will you need to switch the inequality sign? Give students more involved problems to work, including a linear equality that contains fractions. Recognize linear inequalities that have no Can you think of a number for x so that x x 5 is a true statement? Try a positive, a solution or infinitely many solutions. negative, and zero. Will x 5 always be greater than x? How many solutions will this inequality have? If we did not see this was a special type of inequality, what would have happened if we solved the inequality for x? 0 5, which is always a FALSE statement. Can you think of a number for x so that x x 5 is a true statement? Can you think of more numbers? How many solutions will this inequality have? If we did not see this was a special type of inequality, what would have happened if we solved the inequality for x? 0 5, which is always a TRUE statement. Solve compound inequalities. Recall that and statements and between statements are the same. If5 x 8, what numbers could x represent? How could we write this is as two inequalities? Now that students understand this type of inequality, we need to solve them. Give a simple 0/01/10 15
16 Solve absolute value inequalities. o Solve inequalities of the type Ax B C o Solve inequalities of the type Ax B C o Recognize absolute value inequalities with no solution or all real numbers as solutions. example with a step performed and ask students what happened. For example, 8 x 10 becomes 4 x 5. Repeat with addition and subtraction. Ask students what rule(s) do we need to follow to solve this type of inequality. What are we trying to isolate? Direct students to draw a number line and label and graph numbers whose absolute value is less than 5. If students graph only integers or only positive numbers, ask them if .5 has an absolute value < 5. Ask students to draw a conclusion about the numbers whose absolute value is less than 5. Ask students to write an and or between statement to describe their conclusion for all numbers, x, such that x < 5. Using this interpretation, how can we solve x + < 5? Direct students to draw a number line and label and graph numbers whose absolute value is greater than 3. x > 3 Ask students to describe the solutions using inequalities and then write as a compound inequality. Discuss why the word or is used instead of and. How is the solution to a > problem different from a < problem? Can you use a between statement for this problem? Why or why not? Using a compound inequality, how can we solve x + > 3? What happens if we solve x? What values of x make this a true statement? What is the solution set? What happens if we solve x? What values of x make this a true statement? What is the solution set? Ask students if they see a pattern. Have them write a generalization to spot these special cases. Graphing Inequalities Overview of Objectives, students should be able to: 1. Graph (solve) a linear inequality in two variables.. Graph (solve) a system of linear equalities in two variables. Main Overarching Questions: 1. How do you solve and graph a linear inequality in two variables?. What is a boundary line? 3. How do you graph a system of linear inequalities in two variables? Objectives: Graph (solve) a linear inequality in two variables. Activities and Questions to ask students: Background knowledge: How do you graph y x 1? Graph the equation. Ask students to name a point that would make y x 1. Shade the side of the line where the point lies. 0/01/10 16
17 Graph (solve) a system of linear equalities in two variables. Graph the line again on a new grid and ask students to name a point that makes y x 1. Shade the side where the point lies. Define boundary line and the difference between dashed and solid boundary lines. What is the difference in the solution to y x 1and y x 1? Background knowledge. Review graphing a system of linear equations. What is the solution to a system with intersecting lines? Ask students to graph two inequalities that intersect on the same grid. What points do the two graphs have in common? How many? How does the graph show this? Ask student to graph two inequalities on the same grid that do not overlap. What points do the inequalities have in common? What is the solution to this system? Problem Solving and Modeling Overview of Objectives, students should be able to: 1. Use linear equations to solve problems. Solve a formula for a variable. Objectives: Use linear equations to solve problems Main Overarching Questions: 1. How do you setup and solve a linear equation to solve a problem?. How do you solve for a variable in a formula? Activities and Questions to ask students: In these types of sections, it s best to begin with a word problem and discuss solutions with the students. For example consider this problem: A new car is worth $4000 but depreciates by $3000 per year. First we want to determine a model for the worth of the car after x number of years. How much is the car worth in year 0? What about at the end of the first year? nd year? What s the pattern? Can you write an equation to describe the worth of the car after x years? Discuss general problem solving strategies with students. Solve a formula for a variable. Give an example of a formula like E mc. What is different about this equation? How many variables are there? Next ask the students to solve the formula for m. What do you need to move? How do you move it? Can you get a numeric value for m? Why not? Have students practice solving for a variable in a given formula. The contents of this website were developed under Congressionallydirected grants (P116Z090305) from the U.S. Department of Education. However, those contents do not necessarily represent the policy of the U.S. Department of Education, and you should not assume endorsement by the Federal Government. 0/01/10 17
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationwith "a", "b" and "c" representing real numbers, and "a" is not equal to zero.
3.1 SOLVING QUADRATIC EQUATIONS: * A QUADRATIC is a polynomial whose highest exponent is. * The "standard form" of a quadratic equation is: ax + bx + c = 0 with "a", "b" and "c" representing real numbers,
More informationSTUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS
STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an
More informationQuadratic Equations and Inequalities
MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose
More information1.1 Solving a Linear Equation ax + b = 0
1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x = 0 x = (ii)
More informationMath 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
More informationPolynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
More information2. Simplify. College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses
College Algebra Student SelfAssessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2
More informationMath 1111 Journal Entries Unit I (Sections , )
Math 1111 Journal Entries Unit I (Sections 1.11.2, 1.41.6) Name Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. Your portfolio should be a collection
More informationObjectives. By the time the student is finished with this section of the workbook, he/she should be able
QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a
More informationAlgebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )
Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.11.4, 1.61.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order
More informationChapter 3. Algebra. 3.1 Rational expressions BAa1: Reduce to lowest terms
Contents 3 Algebra 3 3.1 Rational expressions................................ 3 3.1.1 BAa1: Reduce to lowest terms...................... 3 3.1. BAa: Add, subtract, multiply, and divide............... 5
More informationAlgebra 1 Chapter 3 Vocabulary. equivalent  Equations with the same solutions as the original equation are called.
Chapter 3 Vocabulary equivalent  Equations with the same solutions as the original equation are called. formula  An algebraic equation that relates two or more reallife quantities. unit rate  A rate
More informationMATH 65 NOTEBOOK CERTIFICATIONS
MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1
More informationPortable Assisted Study Sequence ALGEBRA IIA
SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of
More informationThis is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
More informationChapter 7  Roots, Radicals, and Complex Numbers
Math 233  Spring 2009 Chapter 7  Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
More informationSection P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities
Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationWhat are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
More informationSection 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.
Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:
More informationAnswer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
More informationAlgebra. Indiana Standards 1 ST 6 WEEKS
Chapter 1 Lessons Indiana Standards  11 Variables and Expressions  12 Order of Operations and Evaluating Expressions  13 Real Numbers and the Number Line  14 Properties of Real Numbers  15 Adding
More informationSECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationSUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills
SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)
More information0.7 Quadratic Equations
0.7 Quadratic Equations 8 0.7 Quadratic Equations In Section 0..1, we reviewed how to solve basic nonlinear equations by factoring. The astute reader should have noticed that all of the equations in that
More informationALGEBRA I / ALGEBRA I SUPPORT
Suggested Sequence: CONCEPT MAP ALGEBRA I / ALGEBRA I SUPPORT August 2011 1. Foundations for Algebra 2. Solving Equations 3. Solving Inequalities 4. An Introduction to Functions 5. Linear Functions 6.
More informationSECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations.
(Section 0.11: Solving Equations) 0.11.1 SECTION 0.11: SOLVING EQUATIONS LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. PART A: DISCUSSION Much
More informationAlgebra Practice Problems for Precalculus and Calculus
Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials
More informationMath 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4)
Chapter 2: Functions and Linear Functions 1. Know the definition of a relation. Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4) 2. Know the definition of a function. 3. What
More informationExam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.
Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the
More informationALGEBRA I A PLUS COURSE OUTLINE
ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More informationPractice Math Placement Exam
Practice Math Placement Exam The following are problems like those on the Mansfield University Math Placement Exam. You must pass this test or take MA 0090 before taking any mathematics courses. 1. What
More informationSolutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
More informationMATH 21. College Algebra 1 Lecture Notes
MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More information5.4 The Quadratic Formula
Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function
More informationHIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE:  Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
More informationExponents and Radicals
Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of
More informationReview of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
More informationNorwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction
1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K7. Students must demonstrate
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationMATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
More informationMINI LESSON. Lesson 5b Solving Quadratic Equations
MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.
More informationSystems of Linear Equations  Introduction
Systems of Linear Equations  Introduction What are Systems of Linear Equations Use an Example of a system of linear equations If we have two linear equations, y = x + 2 and y = 3x 6, can these two equations
More informationFlorida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies  Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies  Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
More information1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
More informationAlgebra 1. Curriculum Map
Algebra 1 Curriculum Map Table of Contents Unit 1: Expressions and Unit 2: Linear Unit 3: Representing Linear Unit 4: Linear Inequalities Unit 5: Systems of Linear Unit 6: Polynomials Unit 7: Factoring
More informationSolving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
More informationALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
More informationModuMath Algebra Lessons
ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations
More informationExponential and Logarithmic Functions
Exponential and Logarithmic Functions Exponential Functions Overview of Objectives, students should be able to: 1. Evaluate exponential functions. Main Overarching Questions: 1. How do you graph exponential
More informationCOGNITIVE TUTOR ALGEBRA
COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,
More informationLecture 7 : Inequalities 2.5
3 Lecture 7 : Inequalities.5 Sometimes a problem may require us to find all numbers which satisfy an inequality. An inequality is written like an equation, except the equals sign is replaced by one of
More information5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More informationA Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
More informationSolving Systems of Equations with Absolute Value, Polynomials, and Inequalities
Solving Systems of Equations with Absolute Value, Polynomials, and Inequalities Solving systems of equations with inequalities When solving systems of linear equations, we are looking for the ordered pair
More informationCAHSEE on Target UC Davis, School and University Partnerships
UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More informationSection 5.0A Factoring Part 1
Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (
More informationCore Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
More informationSummer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2
Summer Math Packet Student Name: Say Hello to Algebra 2 For Students Entering Algebra 2 This summer math booklet was developed to provide students in middle school an opportunity to review grade level
More informationGuide to SRW Section 1.7: Solving inequalities
Guide to SRW Section 1.7: Solving inequalities When you solve the equation x 2 = 9, the answer is written as two very simple equations: x = 3 (or) x = 3 The diagram of the solution is 65 43 21 0
More information0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions  that is, algebraic fractions  and equations which contain them. The reader is encouraged to
More informationALGEBRA 1/ALGEBRA 1 HONORS
ALGEBRA 1/ALGEBRA 1 HONORS CREDIT HOURS: 1.0 COURSE LENGTH: 2 Semesters COURSE DESCRIPTION The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical
More informationThe xintercepts of the graph are the xvalues for the points where the graph intersects the xaxis. A parabola may have one, two, or no xintercepts.
Chapter 101 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax
More informationREVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95
REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course. The sheets
More informationCOLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
More informationMethod To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
More informationMyMathLab ecourse for Developmental Mathematics
MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and
More informationDevelopmental Math Course Outcomes and Objectives
Developmental Math Course Outcomes and Objectives I. Math 0910 Basic Arithmetic/PreAlgebra Upon satisfactory completion of this course, the student should be able to perform the following outcomes and
More informationDeterminants can be used to solve a linear system of equations using Cramer s Rule.
2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution
More informationStudents will be able to simplify and evaluate numerical and variable expressions using appropriate properties and order of operations.
Outcome 1: (Introduction to Algebra) Skills/Content 1. Simplify numerical expressions: a). Use order of operations b). Use exponents Students will be able to simplify and evaluate numerical and variable
More informationSuccessful completion of Math 7 or Algebra Readiness along with teacher recommendation.
MODESTO CITY SCHOOLS COURSE OUTLINE COURSE TITLE:... Basic Algebra COURSE NUMBER:... RECOMMENDED GRADE LEVEL:... 811 ABILITY LEVEL:... Basic DURATION:... 1 year CREDIT:... 5.0 per semester MEETS GRADUATION
More informationLAKE ELSINORE UNIFIED SCHOOL DISTRICT
LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1Semester 2 Grade Level: 1012 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:
More informationLesson 9: Radicals and Conjugates
Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.
More informationAlgebra Course KUD. Green Highlight  Incorporate notation in class, with understanding that not tested on
Algebra Course KUD Yellow Highlight Need to address in Seminar Green Highlight  Incorporate notation in class, with understanding that not tested on Blue Highlight Be sure to teach in class Postive and
More informationGrade 8 Math. Content Skills Learning Targets Assessment Resources & Technology
St. MichaelAlbertville Middle School East Teacher: Dawn Tveitbakk Grade 8 Math September 2014 UEQ: (new) CEQ: WHAT IS THE LANGUAGE OF ALGEBRA? HOW ARE FUNCTIONS USED? HOW CAN ALGEBRA BE USED TO SOLVE
More informationWest WindsorPlainsboro Regional School District Algebra I Part 2 Grades 912
West WindsorPlainsboro Regional School District Algebra I Part 2 Grades 912 Unit 1: Polynomials and Factoring Course & Grade Level: Algebra I Part 2, 9 12 This unit involves knowledge and skills relative
More informationThis is Radical Expressions and Equations, chapter 8 from the book Beginning Algebra (index.html) (v. 1.0).
This is Radical Expressions and Equations, chapter 8 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons byncsa 3.0 (http://creativecommons.org/licenses/byncsa/
More informationCourse Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics
Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)
More informationAlgebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students notetaking, problemsolving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
More informationAdvanced Algebra 2. I. Equations and Inequalities
Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers
More information1. Determine graphically the solution set for each system of inequalities and indicate whether the solution set is bounded or unbounded:
Final Study Guide MATH 111 Sample Problems on Algebra, Functions, Exponents, & Logarithms Math 111 Part 1: No calculator or study sheet. Remember to get full credit, you must show your work. 1. Determine
More informationMATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
More informationAlgebra 12. A. Identify and translate variables and expressions.
St. Mary's College High School Algebra 12 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used
More informationPre Cal 2 1 Lesson with notes 1st.notebook. January 22, Operations with Complex Numbers
0 2 Operations with Complex Numbers Objectives: To perform operations with pure imaginary numbers and complex numbers To use complex conjugates to write quotients of complex numbers in standard form Complex
More information
Geometric Series. On the other hand, if 0
Geometric Series In the previous chapter we saw that if a>, then the exponential function with base a, the function f(x) =a x, has a graph that looks like this: On the other hand, if 0
More informationCHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS
CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided
More informationBasic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.
Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:
More informationThe Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
More informationAlgebra II Pacing Guide First Nine Weeks
First Nine Weeks SOL Topic Blocks.4 Place the following sets of numbers in a hierarchy of subsets: complex, pure imaginary, real, rational, irrational, integers, whole and natural. 7. Recognize that the
More informationFlorida Math Correlation of the ALEKS course Florida Math 0022 to the Florida Mathematics Competencies  Lower and Upper
Florida Math 0022 Correlation of the ALEKS course Florida Math 0022 to the Florida Mathematics Competencies  Lower and Upper Whole Numbers MDECL1: Perform operations on whole numbers (with applications,
More informationAnswers to Basic Algebra Review
Answers to Basic Algebra Review 1. 1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
More informationSECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31
More information