Outline. Cryptography. Bret Benesh. Math 331

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Outline. Cryptography. Bret Benesh. Math 331"

Transcription

1 Outline 1 College of St. Benedict/St. John s University Department of Mathematics Math The internet is a lawless place, and people have access to all sorts of information. What is keeping people from stealing your credit card number when you purchase something online? Algebraic structures, that is what. is the study of sending and receiving secret messages. We will see how websites protect buyers through mathematics. References for this are of Gallian and Judson s free text at There are two ways to encrypt a message: via a private key encryption or via a public key encryption. In a private key encryption, one must know the complete code in order to either encrypt or decrypt the message. In public key encryption, one must know the complete code in order to decrypt, but only needs to know part of the code in order to encrypt.

2 We can translate our alphabet a, b,..., z into numbers by making a 01, b 02,... z 26 (perhaps a space translates to 00, so we have 27 symbols). We can encode the word bad by One code would be each letter n n + b for some fixed b; for example, f (n) n + 2 mod 27 is our encryption function. So bad is translated to , which is then encoded as dcf. To decode, you simply apply the additive inverse (subtract 2 module 27). If you know how to encode, it is really easy to figure out how to decode. We can encode the word bad by Let f (n) a n + b mod 27 for each letter, where gcd(a, 27) 1. For example, let f (n) 23 n + 2 mod 27. So bad is translated to , which is then encoded as uym. b 02 23(02) mod 27 a 01 23(01) mod 27 d 04 23(04) mod 27 To decode, you apply the inverse function f 1 (n) a 1 n a 1 b 20n 20(2) 20n 40 20n 13 (since (20)(23) (10)(46) (10)(19) (5)(38) (5)(11) 55 1 mod 27). For example 21 20(21) (15) mod 27 We can encode the word help by (our alphabet now goes a 00, b 01, etc). We will encode the letters in pairs for this code. So we will encode he together and lp together. Our encoding function will be f ( n) A n + b, where A is invertible with entries in Z26. Then the decoding function is f 1 ( x) A 1 x + A 1 b. [ ] [ ] For example, let f ( n) n [ ] [ ] [ ] Then f 1 ( x) x [ ] [ ] [ ] [ ] x + x +.Then [ ] [ ] h 07 e 04 [ ] [ ] 17 r 17 r [ ] [ ] l 11 p 15 [ ] [ ] 2 c 17 r [ [ ] [ ] ] [ ] So help encodes as rrcr. Decoding is similar. [ ] 2 2 [ ] 2 2 [ ] [ ] [ ] [ ]

3 A huge disadvantage to private key cryptography is that, in order to send coded messages, the sender must know the entire key. This is a problem for websites, since they would like everyone to be able to send codes (but they do not want everyone to know how to decrypt the messages). The solution is public key cryptography, where part, but not all, of the encode is made public. This system relies on hard problems to keep the public from knowing the entire coding function. RSA 1 Pick two large primes p, q. We will use p 3 and q Let n pq. In our example, n Let m (p 1)(q 1). In our example, m (2)(10) Pick positive integers at random until you find one that is relatively prime to m; call this integer E for encryption." We will use E 7. 5 Find a number D (for decryption") such that ED 1 mod m. We can use D 3, since DE 21 1 mod 20. RSA 1 Post both n and E to your website for the public to see. So we will post n 33 and E 7. 2 Someone can now send a message x to us now by letting y x E mod n and sending y to us. For example, someone might want to send us x 2 as a message. They would compute y 2 7 mod 33 (2 5 )(2 2 ) mod 33 ( 1)(4) mod 33 29, and send y 29 to us. 3 To decode, we simply compute y D mod n (D is secret, known only to you). For example, 29 3 mod mod 3 33(739) + 2 mod Try to solve the following problems. 1 Find an appropriate E and D if p 3 and q 5. Answer: e.g. E 3, D Using n 33, E 7, and D 3, encrypt x 6. Answer: y 6 7 mod Using n 33, E 7, and D 3, decrypt y 7. Answer: x 7 3 mod Suppose that you knew that n 35 and E 5 (which is always public information), and that you intercepted a code y 2. Figure out how you could break the code. Answer: x 2 5 mod 35 32

4 Why you might be worried. In the last problem with n 35 and E 5, there are two methods you probably thought of on how to crack the code: 1 (Brute force attack) For 0 i 34, check i E i 5 to see which i gives you y 2. 2 (Factoring attack) Factor n 35 5(7), and know that m (5 1)(7 1) 24. Find a number D such that ED 5D 1 mod 24. Why you should (mostly) not be worried. 1 (Brute force defense) We usually take p q, so n pq So you have to check about numbers by this method. If you had a computer that could check one trillion (10 12 ) of these per second, you would need seconds to do this. This should not worry you, since scientists think that the universe is approximately seconds old. 2 (Factoring defense) This relies on factoring huge numbers. This is something that is very hard for us to do right now. However, we are not sure that this is actually a difficult thing to do, we just cannot do it right now. So someone could come up with an easy way to factor and break RSA. Partial Proof for RSA Let n, m, E, and D be as above. Suppose we try to encrypt a message x with x relatively prime to n. Then the encrypted message is y x E, we can decrypt by y D (x E ) D x ED. We picked D so that ED 1 mod m, so there is an a such that ED am + 1. Then y D x ED x am+1 (x m ) a x. Partial Proof for RSA (continued) Since x is relatively prime to n, x is an element of (Cn {0}, ). This has order m (p 1)(q 1), so x m e 1. So y D (x m ) a x 1(x) mod n. (Note: We have not proved the result if (x, n) 1; this is a relatively easy number theory result using the Chinese Remainder Theorem).

5 Digital Signatures Suppose Alice is waiting to receive an encrypted message from Bob. Problem: Even if Bob sends Alice a properly encrypted message, how can Alice be sure that it was Bob who sent it? Digital Signatures (continued) Solution: Suppose that Alice has a public key (n, E) and a private key (n, D), and Bob has a public key (n, E ) and private key (n, D ). Here is what they can do: 1 Bob takes his message x, and encrypts it by using the key D normally used for decrypting, yielding x D. Only Bob could do this, since only Bob knows D. 2 Bob sends his new message x D to Alice using her encryption key (which everybody knows), so he sends her x D E. 3 Alice first decrypts using her private decryption key D, yielding (x D E ) D (x DE ) D x D mod n. 4 Alice then uses Bobs encryption key E to decrypt the message: (x D ) E x D E x mod n. So Alice gets the original message x, and knows that only Bob could have sent it. One more encryption scheme Instead of RSA, we could create an encoding scheme based on elliptic curves, which are planar equations of the form y 2 x 3 + ax + b (along with a point at infinity). These curves have a group structure associated with them. Instead of having the difficult problem being factoring large numbers," the difficult problem is solving the equation g n h where g and h are elements of a group G and n is an integer.

The Mathematics of RSA

The Mathematics of RSA The Mathematics of RSA Dimitri Papaioannou May 24, 2007 1 Introduction Cryptographic systems come in two flavors. Symmetric or Private key encryption and Asymmetric or Public key encryption. Strictly speaking,

More information

MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins

MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins MA2C03 Mathematics School of Mathematics, Trinity College Hilary Term 2016 Lecture 59 (April 1, 2016) David R. Wilkins The RSA encryption scheme works as follows. In order to establish the necessary public

More information

RSA Encryption. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003

RSA Encryption. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003 RSA Encryption Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles October 10, 2003 1 Public Key Cryptography One of the biggest problems in cryptography is the distribution of keys.

More information

PRIME NUMBERS & SECRET MESSAGES

PRIME NUMBERS & SECRET MESSAGES PRIME NUMBERS & SECRET MESSAGES I. RSA CODEBREAKER GAME This is a game with two players or teams. The players take turns selecting either prime or composite numbers as outlined on the board below. The

More information

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Elaine Brow, December 2010 Math 189A: Algebraic Geometry 1. Introduction to Public Key Cryptography To understand the motivation for elliptic curve cryptography, we must first

More information

Today ENCRYPTION. Cryptography example. Basic principles of cryptography

Today ENCRYPTION. Cryptography example. Basic principles of cryptography Today ENCRYPTION The last class described a number of problems in ensuring your security and privacy when using a computer on-line. This lecture discusses one of the main technological solutions. The use

More information

CSCE 465 Computer & Network Security

CSCE 465 Computer & Network Security CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Public Key Cryptogrophy 1 Roadmap Introduction RSA Diffie-Hellman Key Exchange Public key and

More information

RSA Cryptosystem. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong. RSA Cryptosystem

RSA Cryptosystem. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong. RSA Cryptosystem Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong In this lecture, we will discuss the RSA cryptosystem, which is widely adopted as a way to encrypt a message, or

More information

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Cryptography and Network Security Department of Computer Science and Engineering Indian Institute of Technology Kharagpur Module No. # 01 Lecture No. # 05 Classic Cryptosystems (Refer Slide Time: 00:42)

More information

The application of prime numbers to RSA encryption

The application of prime numbers to RSA encryption The application of prime numbers to RSA encryption Prime number definition: Let us begin with the definition of a prime number p The number p, which is a member of the set of natural numbers N, is considered

More information

3. Applications of Number Theory

3. Applications of Number Theory 3. APPLICATIONS OF NUMBER THEORY 163 3. Applications of Number Theory 3.1. Representation of Integers. Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses uniquely as n = a

More information

Notes for Recitation 5

Notes for Recitation 5 6.042/18.062J Mathematics for Computer Science September 24, 2010 Tom Leighton and Marten van Dijk Notes for Recitation 5 1 Exponentiation and Modular Arithmetic Recall that RSA encryption and decryption

More information

UOSEC Week 2: Asymmetric Cryptography. Frank IRC kee Adam IRC xe0 IRC: irc.freenode.net #0x4f

UOSEC Week 2: Asymmetric Cryptography. Frank IRC kee Adam IRC xe0 IRC: irc.freenode.net #0x4f UOSEC Week 2: Asymmetric Cryptography Frank farana@uoregon.edu IRC kee Adam pond2@uoregon.edu IRC xe0 IRC: irc.freenode.net #0x4f Agenda HackIM CTF Results GITSC CTF this Saturday 10:00am Basics of Asymmetric

More information

Public-Key Cryptography. Oregon State University

Public-Key Cryptography. Oregon State University Public-Key Cryptography Çetin Kaya Koç Oregon State University 1 Sender M Receiver Adversary Objective: Secure communication over an insecure channel 2 Solution: Secret-key cryptography Exchange the key

More information

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms

Principles of Public Key Cryptography. Applications of Public Key Cryptography. Security in Public Key Algorithms Principles of Public Key Cryptography Chapter : Security Techniques Background Secret Key Cryptography Public Key Cryptography Hash Functions Authentication Chapter : Security on Network and Transport

More information

Announcements. CS243: Discrete Structures. More on Cryptography and Mathematical Induction. Agenda for Today. Cryptography

Announcements. CS243: Discrete Structures. More on Cryptography and Mathematical Induction. Agenda for Today. Cryptography Announcements CS43: Discrete Structures More on Cryptography and Mathematical Induction Işıl Dillig Class canceled next Thursday I am out of town Homework 4 due Oct instead of next Thursday (Oct 18) Işıl

More information

1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works.

1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works. MATH 13150: Freshman Seminar Unit 18 1. The RSA algorithm In this chapter, we ll learn how the RSA algorithm works. 1.1. Bob and Alice. Suppose that Alice wants to send a message to Bob over the internet

More information

3. (5%) Use the Euclidean algorithm to find gcd(742, 1908). Sol: gcd(742, 1908) = gcd(742, 424) = gcd(424, 318) = gcd(318, 106) = 106

3. (5%) Use the Euclidean algorithm to find gcd(742, 1908). Sol: gcd(742, 1908) = gcd(742, 424) = gcd(424, 318) = gcd(318, 106) = 106 Mid-term Examination on Discrete Mathematics 1. (4%) Encrypt the message LOVE by translating the letters A through Z into numbers 0 through 25, applying the encryption function f(p) = (3p + 7) (mod 26),

More information

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

More information

9 Modular Exponentiation and Cryptography

9 Modular Exponentiation and Cryptography 9 Modular Exponentiation and Cryptography 9.1 Modular Exponentiation Modular arithmetic is used in cryptography. In particular, modular exponentiation is the cornerstone of what is called the RSA system.

More information

Computing exponents modulo a number: Repeated squaring

Computing exponents modulo a number: Repeated squaring Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method

More information

Cryptography. Helmer Aslaksen Department of Mathematics National University of Singapore

Cryptography. Helmer Aslaksen Department of Mathematics National University of Singapore Cryptography Helmer Aslaksen Department of Mathematics National University of Singapore aslaksen@math.nus.edu.sg www.math.nus.edu.sg/aslaksen/sfm/ 1 Basic Concepts There are many situations in life where

More information

A Factoring and Discrete Logarithm based Cryptosystem

A Factoring and Discrete Logarithm based Cryptosystem Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 11, 511-517 HIKARI Ltd, www.m-hikari.com A Factoring and Discrete Logarithm based Cryptosystem Abdoul Aziz Ciss and Ahmed Youssef Ecole doctorale de Mathematiques

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Introduction to Cryptography ECE 597XX/697XX

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Introduction to Cryptography ECE 597XX/697XX UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Introduction to Cryptography ECE 597XX/697XX Part 6 Introduction to Public-Key Cryptography Israel Koren ECE597/697 Koren Part.6.1

More information

The mathematics of cryptology

The mathematics of cryptology The mathematics of cryptology Paul E. Gunnells Department of Mathematics and Statistics University of Massachusetts, Amherst Amherst, MA 01003 www.math.umass.edu/ gunnells April 27, 2004 What is Cryptology?

More information

Advanced Cryptography

Advanced Cryptography Family Name:... First Name:... Section:... Advanced Cryptography Final Exam July 18 th, 2006 Start at 9:15, End at 12:00 This document consists of 12 pages. Instructions Electronic devices are not allowed.

More information

Mathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information

Mathematics of Internet Security. Keeping Eve The Eavesdropper Away From Your Credit Card Information The : Keeping Eve The Eavesdropper Away From Your Credit Card Information Department of Mathematics North Dakota State University 16 September 2010 Science Cafe Introduction Disclaimer: is not an internet

More information

1) A very simple example of RSA encryption

1) A very simple example of RSA encryption Solved Examples 1) A very simple example of RSA encryption This is an extremely simple example using numbers you can work out on a pocket calculator (those of you over the age of 35 45 can probably even

More information

Chapter 10 Asymmetric-Key Cryptography

Chapter 10 Asymmetric-Key Cryptography Chapter 10 Asymmetric-Key Cryptography Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 10.1 Chapter 10 Objectives To distinguish between two cryptosystems: symmetric-key

More information

Homework 7. Using the monoalphabetic cipher in Figure 8.3, encode the message This is an easy problem. Decode the message rmij u uamu xyj.

Homework 7. Using the monoalphabetic cipher in Figure 8.3, encode the message This is an easy problem. Decode the message rmij u uamu xyj. Problems: 1 to 11. Homework 7 Question: 1 Using the monoalphabetic cipher in Figure 8.3, encode the message This is an easy problem. Decode the message rmij u uamu xyj. This is an easy problem. > uasi

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #8 Zheng Ma February 21, 2005 Solutions to Problem Set 1 Problem 1: Cracking the Hill cipher Suppose

More information

ΕΠΛ 674: Εργαστήριο 3

ΕΠΛ 674: Εργαστήριο 3 ΕΠΛ 674: Εργαστήριο 3 Ο αλγόριθμος ασύμμετρης κρυπτογράφησης RSA Παύλος Αντωνίου Department of Computer Science Private-Key Cryptography traditional private/secret/single key cryptography uses one key

More information

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

More information

NUMBER THEORY AND CRYPTOGRAPHY

NUMBER THEORY AND CRYPTOGRAPHY NUMBER THEORY AND CRYPTOGRAPHY KEITH CONRAD 1. Introduction Cryptography is the study of secret messages. For most of human history, cryptography was important primarily for military or diplomatic purposes

More information

Software Tool for Implementing RSA Algorithm

Software Tool for Implementing RSA Algorithm Software Tool for Implementing RSA Algorithm Adriana Borodzhieva, Plamen Manoilov Rousse University Angel Kanchev, Rousse, Bulgaria Abstract: RSA is one of the most-common used algorithms for public-key

More information

CS 161 Computer Security

CS 161 Computer Security Song Spring 2015 CS 161 Computer Security Discussion 11 April 7 & April 8, 2015 Question 1 RSA (10 min) (a) Describe how to find a pair of public key and private key for RSA encryption system. Find two

More information

Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY. Sourav Mukhopadhyay

Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY. Sourav Mukhopadhyay Lecture Note 5 PUBLIC-KEY CRYPTOGRAPHY Sourav Mukhopadhyay Cryptography and Network Security - MA61027 Modern/Public-key cryptography started in 1976 with the publication of the following paper. W. Diffie

More information

Overview of Public-Key Cryptography

Overview of Public-Key Cryptography CS 361S Overview of Public-Key Cryptography Vitaly Shmatikov slide 1 Reading Assignment Kaufman 6.1-6 slide 2 Public-Key Cryptography public key public key? private key Alice Bob Given: Everybody knows

More information

Shor s algorithm and secret sharing

Shor s algorithm and secret sharing Shor s algorithm and secret sharing Libor Nentvich: QC 23 April 2007: Shor s algorithm and secret sharing 1/41 Goals: 1 To explain why the factoring is important. 2 To describe the oldest and most successful

More information

CIS 5371 Cryptography. 8. Encryption --

CIS 5371 Cryptography. 8. Encryption -- CIS 5371 Cryptography p y 8. Encryption -- Asymmetric Techniques Textbook encryption algorithms In this chapter, security (confidentiality) is considered in the following sense: All-or-nothing secrecy.

More information

PUBLIC KEY ENCRYPTION

PUBLIC KEY ENCRYPTION PUBLIC KEY ENCRYPTION http://www.tutorialspoint.com/cryptography/public_key_encryption.htm Copyright tutorialspoint.com Public Key Cryptography Unlike symmetric key cryptography, we do not find historical

More information

Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1

Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1 Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 8-1 Goals v understand principles of network security: cryptography and its many uses beyond

More information

CSC474/574 - Information Systems Security: Homework1 Solutions Sketch

CSC474/574 - Information Systems Security: Homework1 Solutions Sketch CSC474/574 - Information Systems Security: Homework1 Solutions Sketch February 20, 2005 1. Consider slide 12 in the handout for topic 2.2. Prove that the decryption process of a one-round Feistel cipher

More information

The RSA Algorithm. Evgeny Milanov. 3 June 2009

The RSA Algorithm. Evgeny Milanov. 3 June 2009 The RSA Algorithm Evgeny Milanov 3 June 2009 In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman introduced a cryptographic algorithm, which was essentially to replace the less secure National Bureau

More information

Cryptography: Authentication, Blind Signatures, and Digital Cash

Cryptography: Authentication, Blind Signatures, and Digital Cash Cryptography: Authentication, Blind Signatures, and Digital Cash Rebecca Bellovin 1 Introduction One of the most exciting ideas in cryptography in the past few decades, with the widest array of applications,

More information

Notes on Network Security Prof. Hemant K. Soni

Notes on Network Security Prof. Hemant K. Soni Chapter 9 Public Key Cryptography and RSA Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications

More information

Cryptography and Number Theory

Cryptography and Number Theory Chapter 2 Cryptography and Number Theory 2.1 Cryptography and Modular Arithmetic Introduction to Cryptography For thousands of years people have searched for ways to send messages secretly. There is a

More information

Hill s Cipher: Linear Algebra in Cryptography

Hill s Cipher: Linear Algebra in Cryptography Ryan Doyle Hill s Cipher: Linear Algebra in Cryptography Introduction: Since the beginning of written language, humans have wanted to share information secretly. The information could be orders from a

More information

Digital Signatures. (Note that authentication of sender is also achieved by MACs.) Scan your handwritten signature and append it to the document?

Digital Signatures. (Note that authentication of sender is also achieved by MACs.) Scan your handwritten signature and append it to the document? Cryptography Digital Signatures Professor: Marius Zimand Digital signatures are meant to realize authentication of the sender nonrepudiation (Note that authentication of sender is also achieved by MACs.)

More information

Advanced Maths Lecture 3

Advanced Maths Lecture 3 Advanced Maths Lecture 3 Next generation cryptography and the discrete logarithm problem for elliptic curves Richard A. Hayden rh@doc.ic.ac.uk EC crypto p. 1 Public key cryptography Asymmetric cryptography

More information

The Mathematics of the RSA Public-Key Cryptosystem

The Mathematics of the RSA Public-Key Cryptosystem The Mathematics of the RSA Public-Key Cryptosystem Burt Kaliski RSA Laboratories ABOUT THE AUTHOR: Dr Burt Kaliski is a computer scientist whose involvement with the security industry has been through

More information

Network Security. HIT Shimrit Tzur-David

Network Security. HIT Shimrit Tzur-David Network Security HIT Shimrit Tzur-David 1 Goals: 2 Network Security Understand principles of network security: cryptography and its many uses beyond confidentiality authentication message integrity key

More information

SECURITY IN NETWORKS

SECURITY IN NETWORKS SECURITY IN NETWORKS GOALS Understand principles of network security: Cryptography and its many uses beyond confidentiality Authentication Message integrity Security in practice: Security in application,

More information

Secure Network Communication Part II II Public Key Cryptography. Public Key Cryptography

Secure Network Communication Part II II Public Key Cryptography. Public Key Cryptography Kommunikationssysteme (KSy) - Block 8 Secure Network Communication Part II II Public Key Cryptography Dr. Andreas Steffen 2000-2001 A. Steffen, 28.03.2001, KSy_RSA.ppt 1 Secure Key Distribution Problem

More information

Outline. CSc 466/566. Computer Security. 8 : Cryptography Digital Signatures. Digital Signatures. Digital Signatures... Christian Collberg

Outline. CSc 466/566. Computer Security. 8 : Cryptography Digital Signatures. Digital Signatures. Digital Signatures... Christian Collberg Outline CSc 466/566 Computer Security 8 : Cryptography Digital Signatures Version: 2012/02/27 16:07:05 Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2012 Christian

More information

Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23

Network Security. Computer Networking Lecture 08. March 19, 2012. HKU SPACE Community College. HKU SPACE CC CN Lecture 08 1/23 Network Security Computer Networking Lecture 08 HKU SPACE Community College March 19, 2012 HKU SPACE CC CN Lecture 08 1/23 Outline Introduction Cryptography Algorithms Secret Key Algorithm Message Digest

More information

Computer Security: Principles and Practice

Computer Security: Principles and Practice Computer Security: Principles and Practice Chapter 20 Public-Key Cryptography and Message Authentication First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Public-Key Cryptography

More information

Discrete Mathematics, Chapter 4: Number Theory and Cryptography

Discrete Mathematics, Chapter 4: Number Theory and Cryptography Discrete Mathematics, Chapter 4: Number Theory and Cryptography Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 4 1 / 35 Outline 1 Divisibility

More information

Public Key Cryptography: RSA and Lots of Number Theory

Public Key Cryptography: RSA and Lots of Number Theory Public Key Cryptography: RSA and Lots of Number Theory Public vs. Private-Key Cryptography We have just discussed traditional symmetric cryptography: Uses a single key shared between sender and receiver

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security Fifth Edition by William Stallings Chapter 9 Public Key Cryptography and RSA Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared

More information

RSA Encryption. Grade Levels. Objectives and Topics. Introduction and Outline (54)(2)(2) (27)(2)(2)(2) (9)(3)(2)(2)(2) (3)(3)(3)(2)(2)(2)

RSA Encryption. Grade Levels. Objectives and Topics. Introduction and Outline (54)(2)(2) (27)(2)(2)(2) (9)(3)(2)(2)(2) (3)(3)(3)(2)(2)(2) RSA Encryption Grade Levels This activity is intended for high schools students, grades 10 12. Objectives and Topics One of the classical examples of applied mathematics is encryption. Through this activity,

More information

100 Mathematics Teacher Vol. 104, No. 2 September 2010

100 Mathematics Teacher Vol. 104, No. 2 September 2010 Chocolate 100 Mathematics Teacher Vol. 104, No. 2 September 2010 Copyright 2010 The National Council of Teachers of Mathematics, Inc. www.nctm.org. All rights reserved. This material may not be copied

More information

An Introduction to the RSA Encryption Method

An Introduction to the RSA Encryption Method April 17, 2012 Outline 1 History 2 3 4 5 History RSA stands for Rivest, Shamir, and Adelman, the last names of the designers It was first published in 1978 as one of the first public-key crytographic systems

More information

Chapter 10 Asymmetric-Key Cryptography

Chapter 10 Asymmetric-Key Cryptography Chapter 10 Asymmetric-Key Cryptography Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 10.1 Chapter 10 Objectives Present asymmetric-key cryptography. Distinguish

More information

Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures

Outline. Computer Science 418. Digital Signatures: Observations. Digital Signatures: Definition. Definition 1 (Digital signature) Digital Signatures Outline Computer Science 418 Digital Signatures Mike Jacobson Department of Computer Science University of Calgary Week 12 1 Digital Signatures 2 Signatures via Public Key Cryptosystems 3 Provable 4 Mike

More information

Signature Schemes. CSG 252 Fall 2006. Riccardo Pucella

Signature Schemes. CSG 252 Fall 2006. Riccardo Pucella Signature Schemes CSG 252 Fall 2006 Riccardo Pucella Signatures Signatures in real life have a number of properties They specify the person responsible for a document E.g. that it has been produced by

More information

Lukasz Pater CMMS Administrator and Developer

Lukasz Pater CMMS Administrator and Developer Lukasz Pater CMMS Administrator and Developer EDMS 1373428 Agenda Introduction Why do we need asymmetric ciphers? One-way functions RSA Cipher Message Integrity Examples Secure Socket Layer Single Sign

More information

Mathematics of Cryptography

Mathematics of Cryptography CHAPTER 2 Mathematics of Cryptography Part I: Modular Arithmetic, Congruence, and Matrices Objectives This chapter is intended to prepare the reader for the next few chapters in cryptography. The chapter

More information

IMPLEMENTATION OF ELLIPTIC CURVE CRYPTOGRAPHY ON TEXT AND IMAGE

IMPLEMENTATION OF ELLIPTIC CURVE CRYPTOGRAPHY ON TEXT AND IMAGE IMPLEMENTATION OF ELLIPTIC CURVE CRYPTOGRAPHY ON TEXT AND IMAGE Mrs. Megha Kolhekar Assistant Professor, Department of Electronics and Telecommunication Engineering Fr. C. Rodrigues Institute of Technology,

More information

Public Key Cryptography and RSA. Review: Number Theory Basics

Public Key Cryptography and RSA. Review: Number Theory Basics Public Key Cryptography and RSA Murat Kantarcioglu Based on Prof. Ninghui Li s Slides Review: Number Theory Basics Definition An integer n > 1 is called a prime number if its positive divisors are 1 and

More information

Is this number prime? Berkeley Math Circle Kiran Kedlaya

Is this number prime? Berkeley Math Circle Kiran Kedlaya Is this number prime? Berkeley Math Circle 2002 2003 Kiran Kedlaya Given a positive integer, how do you check whether it is prime (has itself and 1 as its only two positive divisors) or composite (not

More information

CS Computer and Network Security: Applied Cryptography

CS Computer and Network Security: Applied Cryptography CS 5410 - Computer and Network Security: Applied Cryptography Professor Patrick Traynor Spring 2016 Reminders Project Ideas are due on Tuesday. Where are we with these? Assignment #2 is posted. Let s get

More information

A SOFTWARE COMPARISON OF RSA AND ECC

A SOFTWARE COMPARISON OF RSA AND ECC International Journal Of Computer Science And Applications Vol. 2, No. 1, April / May 29 ISSN: 974-13 A SOFTWARE COMPARISON OF RSA AND ECC Vivek B. Kute Lecturer. CSE Department, SVPCET, Nagpur 9975549138

More information

Cryptography and Cryptanalysis

Cryptography and Cryptanalysis Cryptography and Cryptanalysis Feryâl Alayont University of Arizona December 9, 2003 1 Cryptography: derived from the Greek words kryptos, meaning hidden, and graphos, meaning writing. Cryptography is

More information

MODULAR ARITHMETIC KEITH CONRAD

MODULAR ARITHMETIC KEITH CONRAD MODULAR ARITHMETIC KEITH CONRAD. Introduction We will define the notion of congruent integers (with respect to a modulus) and develop some basic ideas of modular arithmetic. Applications of modular arithmetic

More information

Congruences. Robert Friedman

Congruences. Robert Friedman Congruences Robert Friedman Definition of congruence mod n Congruences are a very handy way to work with the information of divisibility and remainders, and their use permeates number theory. Definition

More information

CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives

CIS 6930 Emerging Topics in Network Security. Topic 2. Network Security Primitives CIS 6930 Emerging Topics in Network Security Topic 2. Network Security Primitives 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Application of hash

More information

The RSA Algorithm: A Mathematical History of the Ubiquitous Cryptological Algorithm

The RSA Algorithm: A Mathematical History of the Ubiquitous Cryptological Algorithm The RSA Algorithm: A Mathematical History of the Ubiquitous Cryptological Algorithm Maria D. Kelly December 7, 2009 Abstract The RSA algorithm, developed in 1977 by Rivest, Shamir, and Adlemen, is an algorithm

More information

The science of encryption: prime numbers and mod n arithmetic

The science of encryption: prime numbers and mod n arithmetic The science of encryption: prime numbers and mod n arithmetic Go check your e-mail. You ll notice that the webpage address starts with https://. The s at the end stands for secure meaning that a process

More information

Introduction to Security Proof of Cryptosystems

Introduction to Security Proof of Cryptosystems Introduction to Security Proof of Cryptosystems D. J. Guan November 16, 2007 Abstract Provide proof of security is the most important work in the design of cryptosystems. Problem reduction is a tool to

More information

RSA and Primality Testing

RSA and Primality Testing and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Correctness of cryptography cryptography Introduction to number theory Correctness of with 2

More information

Computer Science 308-547A Cryptography and Data Security. Claude Crépeau

Computer Science 308-547A Cryptography and Data Security. Claude Crépeau Computer Science 308-547A Cryptography and Data Security Claude Crépeau These notes are, largely, transcriptions by Anton Stiglic of class notes from the former course Cryptography and Data Security (308-647A)

More information

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:

More information

RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true?

RSA Question 2. Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? RSA Question 2 Bob thinks that p and q are primes but p isn t. Then, Bob thinks Φ Bob :=(p-1)(q-1) = φ(n). Is this true? Bob chooses a random e (1 < e < Φ Bob ) such that gcd(e,φ Bob )=1. Then, d = e -1

More information

Cryptography: RSA and the discrete logarithm problem

Cryptography: RSA and the discrete logarithm problem Cryptography: and the discrete logarithm problem R. Hayden Advanced Maths Lectures Department of Computing Imperial College London February 2010 Public key cryptography Assymmetric cryptography two keys:

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

Digital Signature. Raj Jain. Washington University in St. Louis

Digital Signature. Raj Jain. Washington University in St. Louis Digital Signature Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/

More information

Chapter 9 Public Key Cryptography and RSA

Chapter 9 Public Key Cryptography and RSA Chapter 9 Public Key Cryptography and RSA Cryptography and Network Security: Principles and Practices (3rd Ed.) 2004/1/15 1 9.1 Principles of Public Key Private-Key Cryptography traditional private/secret/single

More information

Paillier Threshold Encryption Toolbox

Paillier Threshold Encryption Toolbox Paillier Threshold Encryption Toolbox October 23, 2010 1 Introduction Following a desire for secure (encrypted) multiparty computation, the University of Texas at Dallas Data Security and Privacy Lab created

More information

Mathematics of Cryptography Part I

Mathematics of Cryptography Part I CHAPTER 2 Mathematics of Cryptography Part I (Solution to Odd-Numbered Problems) Review Questions 1. The set of integers is Z. It contains all integral numbers from negative infinity to positive infinity.

More information

Cryptography and Network Security Chapter 10

Cryptography and Network Security Chapter 10 Cryptography and Network Security Chapter 10 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 10 Other Public Key Cryptosystems Amongst the tribes of Central

More information

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

More information

Cryptography: RSA and Factoring; Digital Signatures; Ssh

Cryptography: RSA and Factoring; Digital Signatures; Ssh Cryptography: RSA and Factoring; Digital Signatures; Ssh Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin The Hardness of Breaking RSA

More information

QUANTUM COMPUTERS AND CRYPTOGRAPHY. Mark Zhandry Stanford University

QUANTUM COMPUTERS AND CRYPTOGRAPHY. Mark Zhandry Stanford University QUANTUM COMPUTERS AND CRYPTOGRAPHY Mark Zhandry Stanford University Classical Encryption pk m c = E(pk,m) sk m = D(sk,c) m??? Quantum Computing Attack pk m aka Post-quantum Crypto c = E(pk,m) sk m = D(sk,c)

More information

Asymmetric Cryptography. Mahalingam Ramkumar Department of CSE Mississippi State University

Asymmetric Cryptography. Mahalingam Ramkumar Department of CSE Mississippi State University Asymmetric Cryptography Mahalingam Ramkumar Department of CSE Mississippi State University Mathematical Preliminaries CRT Chinese Remainder Theorem Euler Phi Function Fermat's Theorem Euler Fermat's Theorem

More information

Applied Cryptology. Ed Crowley

Applied Cryptology. Ed Crowley Applied Cryptology Ed Crowley 1 Basics Topics Basic Services and Operations Symmetric Cryptography Encryption and Symmetric Algorithms Asymmetric Cryptography Authentication, Nonrepudiation, and Asymmetric

More information

Data Encryption A B C D E F G H I J K L M N O P Q R S T U V W X Y Z. we would encrypt the string IDESOFMARCH as follows:

Data Encryption A B C D E F G H I J K L M N O P Q R S T U V W X Y Z. we would encrypt the string IDESOFMARCH as follows: Data Encryption Encryption refers to the coding of information in order to keep it secret. Encryption is accomplished by transforming the string of characters comprising the information to produce a new

More information

159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology

159.334 Computer Networks. Network Security 1. Professor Richard Harris School of Engineering and Advanced Technology Network Security 1 Professor Richard Harris School of Engineering and Advanced Technology Presentation Outline Overview of Identification and Authentication The importance of identification and Authentication

More information

Basic Algorithms In Computer Algebra

Basic Algorithms In Computer Algebra Basic Algorithms In Computer Algebra Kaiserslautern SS 2011 Prof. Dr. Wolfram Decker 2. Mai 2011 References Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, 1993. Cox, D.; Little,

More information

Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1

Network Security. Abusayeed Saifullah. CS 5600 Computer Networks. These slides are adapted from Kurose and Ross 8-1 Network Security Abusayeed Saifullah CS 5600 Computer Networks These slides are adapted from Kurose and Ross 8-1 Public Key Cryptography symmetric key crypto v requires sender, receiver know shared secret

More information