Application Note # AP0102 Mar 2011 X-ray Dose and System Efficiency (including -ray and ß Efficiencies) in the Carestream DXS Digital X-ray System

Size: px
Start display at page:

Download "Application Note # AP0102 Mar 2011 X-ray Dose and System Efficiency (including -ray and ß Efficiencies) in the Carestream DXS Digital X-ray System"

Transcription

1 Application Note # AP0102 Mar 2011 X-ray Dose and System Efficiency (including -ray and ß Efficiencies) in the Carestream DXS Digital X-ray System Douglas Vizard Author Information: Bruker BioSpin, 15 Fortune Drive, Billerica, MA Application Overview The measure of X-ray dose for an imaging system is critical to those concerned about any physical or biological damage that a specimen or subject might incur during the imaging process. Further, the measured radiation dose of the In-Vivo DXS Digital X-ray System (DXS) enables a reasonable estimate of the efficiency with which an X-ray event is detected. The dose rate measured with precision instruments at the platen is 4.7 Rad/min, where a Rad is a measure of absorbed dose and presumes the subject or any detection devise (such as a phosphor screen) absorbs all of the X-ray energy delivered. The quoted dose rate is for unfiltered X-rays at 35 Kvp and the maximum current for the existing model of the X-ray head (150 µa). An accurate energy spectrum (from an X-ray spectrometer) of the unfiltered beam is presented in Figure 1. X-rays below 10 Kev (with multiple edge structures) contribute less to dose or detection measures given that they are significantly attenuated by air, but those lower energies will exert some effect upon the average energy detected by differing devices. A clearer understanding of the energy spectrum influence may be ascertained from filtration measures, or the extent to which dose is attenuated by known filters. Filter attenuation is shown in Figure 1 for qualified aluminum. Figure 1. X-ray Energy Spectra, Dose and Response for the DXS Digital X-ray System.

2 filters having of the stated thickness, where the data has been reduced to relative measures. If the measures were ideal (mono-energetic X-rays), the graphed response should be log-linear with negative slopes corresponding to the material characteristics as shown by the calculated data for aluminum attenuation of 10, 15 and 20 Kev X-rays. Both the dose and screen responses to filter thickness are clearly curved, indicating non-ideal measures as a result of the broad spectrum of X-ray energies. The changing slopes along the dose or screen response curves reflect the average energy detected by the sensor (dosimeter or screen) at the given levels of filtration, and corresponds to the energies cited for the aluminum calculations. The graph shows that lower energy X-rays contribute more to the dose response than and the screen response. Sensor window and other detector efficiency issues cause the dosimeter/screen differences, and there is no difference between the available radiographic screens designed for the system. The conclusions drawn from the dose and screen measures are that the stated maximum dose rate of 4.7 Rad/min (78 mrad/sec) includes very low energy X-radiation with very limited penetration. The weighted average energy that will contribute to a small animal dose and imaging is about Kev. The estimate of system X-ray detection efficiency is outlined below. The discussion focuses on the endpoint of estimating the output/input ratio, where the input is an X-ray event (or photon) and the output is a digital response. The input estimate is a significant overestimate, given that both very low and high energy X-rays do not participate in the detection/imaging or dose response. The resulting underestimate of efficiency is not known with certainty, but is likely a factor of 2-3. The assumptions are simply that a dose of 4.7 Rad/min of 35 Kvp X-rays (maximum output) impinges upon a 100 mm field of an DXS system using f4 optics, and the digital output (net mean signal) of the system is about 150 digits/sec for the Radiographic Screen designed for the system. 1. A Rad is a fully absorbed Roentgen (R, a measure of ionizing radiation), and the measured fluence is R/sec. 2. A Roentgen is one esu/cc of charge which is due to primary ionizations (pi), an electron is 4.8e -10 esu, a Roentgen/sec is 2.08e 9 electrons/sec/cc; R/sec is 1.6e 8 electrons (pi)/sec/cc. 3. Using an estimated 12 Kev as an average for 35 Kvp X- rays, the usually accepted 60 ev/pi implies 200 pi (electrons) per absorbed X-ray event. From 2 (above), 1.6e 8 pi/sec/cc at one event/200 pi implies 8e 5 events/sec/cc. 4. Applying a 2Kx2K array to a 100 mm field implies a mm pixel, or a pixel area of 2.4e -5 cm Projecting 8e 5 events/sec/cc onto a 1cm 2 footprint implies 8e 5 x 2.4e -5 = 19 events/sec per pixel. 6. An approximate signal of about 150 dig/sec as a mean response (per pixel) is nominal measure for the screen, yielding a response of about 150 digits/19 events=8 digits/event. 7. With a dark noise of about 13 digits (from the nominal camera read noise), a signal/noise ratio of about one per X-ray event is predicted actually S/N = 0.6 at f4, 1.2 at f2.8, both of which are underestimates. 8. Using a similar reasoning to estimate the dose required to attain the highest system resolution (a 40 µm microfocus X-ray spot size limitation), the minimum absorbed dose to resolve a 40x40 µm 2 feature at SN=10 will correspond to 100 absorbed events, which translates to 0.73 Rad. 9. These same arguments apply to a cone-beam CT. For the 40 µm voxel, each voxel of the specimen must be sampled in the same manner fir about 100 angles, implying a dose of 73 Rad. A conservative underestimate of system efficiency suggests that an X-ray event is detected at the inherent system noise level using the Radiographic Screen. Since the dark noise of the system (camera electronics) does not significantly increase for exposure times of less than thousands of seconds, practical exposures of 10 s to 100 s of seconds will have a significance that is determined by X-ray event statistics rather than any other system limitation. Other aspects of screen efficiency may be estimated in the following discussion and Figure 2 summarizes the estimates.. 2

3 Estimating Speed and Efficiency of DXS Screens Two screens are available for the DXS: Radiographic for high resolution X-ray imaging and Radio-isotopic for the efficient detection of radiation emitted from isotopic decays. The event-based efficiency (or speed) of the screens depends upon the event energy. The Absorbed Fraction roughly corresponds to the S/N of an event detection. The Radiographic Screen is efficient for <15 Kev X-rays. The Radio-isotopic Screen is efficient for some isotopes, where the gamma energies of selected isotopes are designated. The efficiency estimates of isotopes assumes that the source is on the screen surface. The spatial resolution of the Radio-isotopic Screen is significantly lower than the Radiographic Screen. Figure 2. System efficiencies based on screen absorption of X- and -rays. The above discussion focused on estimating the number of X-ray events that were directed toward the screen. The number of events associated with isotopic emission ( -rays) is more easily estimated since isotope preparations are measured in units of emitted events (Curies). The difficulty estimating isotope event efficiency arises from the fact that the emission of an isotope has no directional preference. If a sample of isotope were intimately associated with the surface of a screen, the screen would sample less than half of the emitted radiation. The further the sample is removed from the screen, the fewer events are absorbed by the screen and the more ill defined the sample image becomes. An example is shown in Figure 3, in which the event efficiency of 111 In emissions is estimated using the Isotopic Screen. Efficiency of 111 In Using Radio-isotope Screen/DXS System Figure 3. A syringe containing 111 In solution is placed on a Radio-isotope Screen; the emission image is captured; the object X-ray is captured; and the emission image is overlaid (in color) onto the X-ray image. The emission image is dispersed over a large area but is centered about the object footprint (the closest proximity of the isotope to the screen). The system counts (digits of response) are graphed for several areas centric to the object, where the border region including 50% of the counts are shown in the figure. The colored area over the object center was produced by simply thresholding the response, and it contains 30% of the counts. 3

4 The event efficiency estimate summarized in the above is for an approximate total counts per isotopic emission and may be experimentally useful for circumstances where an object to be imaged is near the screen. Clearly, if the object were closer to the screen (such as a surface tumor) a much larger fraction of the counts would appear as a more confined image of the real object. A better estimate of event efficiency considers the object geometry, where no more than a onesteradian fraction (about 1/12th) of the total emissions, are projected toward the screen, and this includes no more than 30-40% of the total counts detected. Correcting for the geometry increases the event efficiency estimate to more than 12%. Note that using the Absorbed Fraction graph estimate (Figure 2), an event efficiency of about 3.5% is estimated, indicating that the Absorbed Fraction is a significant underestimate. While the above estimates of event efficiency have focused on X- and -rays, the ß-particle is commonly used for isotopic emission imaging (e.g., 32 P autoradiography). Estimating ß efficiency has the same geometric problems as X-rays and is further complicated by a screen absorption mechanism that differs considerably from the X-ray. The ß emission is a charged particle that interacts more strongly with materials and is much less penetrating than an X-ray. The practical usage of many ß-emitting isotopes commonly used for autoradiography is seriously limited by the selfabsorption of the particle in the sample. Among the most commonly used ß-emitters is 32 P, which is among the highest energy (1.7 Mev) and most penetrating examples. Figure 4 summarizes event efficiency estimates for 32 P emissions, where the object is as close as possible to the sensor (screen or film). Figure 4. Analysis estimates that the event efficiency for 32 P using the Radio-isotope Screen is about 6% for S/N = 1. Assuming about 40% of the emissions are directed toward the screen, the event efficiency estimate rises to 15%. The event efficiency measured on the Radiographic Screen is 10-fold less, consistent with the relative thickness of the different screens. The speed estimate statement in the figure compares an autoradiographic film response to the digital system. Note the enhanced spatial resolution of the digital system compared to the film. 4

5 For more information, contact your Bruker BioSpin dealer, or contact us directly at: Telephone: Call and select Option 4. Mon. through Fri., 8:00 a.m. 6:00 p.m. EST Web: Bruker BioSpin is a division of Bruker, Inc. and is a trademark of Bruker, Inc. All other products or name brands are trademarks of their respective holders. Bruker BioSpin, All rights are reserved. No section of this document may be photocopied, reproduced, translated to another language, stored in a retrieval system, or transmitted in any form without the prior written consent of Bruker BioSpin. The information contained in this document is subject to change without notice. Bruker BioSpin makes no warranty of any kind with regard to this written material. Bruker BioSpin assumes no responsibility for any errors that may appear in this document. 5

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13

Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13 Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis Tushita Patel 4/2/13 Breast Cancer Statistics Second most common cancer after skin cancer Second leading cause of cancer

More information

Introduction to Geiger Counters

Introduction to Geiger Counters Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

More information

CHAPTER 5 QC Test For Radiographic Equipment. Prepared by:- Kamarul Amin bin Abdullah @ Abu Bakar School of Medical Imaging KLMUC

CHAPTER 5 QC Test For Radiographic Equipment. Prepared by:- Kamarul Amin bin Abdullah @ Abu Bakar School of Medical Imaging KLMUC CHAPTER 5 QC Test For Radiographic Equipment Prepared by:- Kamarul Amin bin Abdullah @ Abu Bakar School of Medical Imaging KLMUC Lesson Outcomes Describe the objectives of each QC test done.(importance)

More information

Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ.

Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ. Choosing a digital camera for your microscope John C. Russ, Materials Science and Engineering Dept., North Carolina State Univ., Raleigh, NC One vital step is to choose a transfer lens matched to your

More information

Production of X-rays and Interactions of X-rays with Matter

Production of X-rays and Interactions of X-rays with Matter Production of X-rays and Interactions of X-rays with Matter Goaz and Pharoah. Pages 11-20. Neill Serman Electrons traveling from the filament ( cathode) to the target (anode) convert a small percentage

More information

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies

Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies Activitity (of a radioisotope): The number of nuclei in a sample undergoing radioactive decay in each second. It is commonly expressed in curies (Ci), where 1 Ci = 3.7x10 10 disintegrations per second.

More information

College on Medical Physics. Digital Imaging Science and Technology to Enhance Healthcare in the Developing Countries

College on Medical Physics. Digital Imaging Science and Technology to Enhance Healthcare in the Developing Countries 2166-Handout College on Medical Physics. Digital Imaging Science and Technology to Enhance Healthcare in the Developing Countries 13 September - 1 October, 2010 Digital Radiography Image Parameters SNR,

More information

Lectures about XRF (X-Ray Fluorescence)

Lectures about XRF (X-Ray Fluorescence) 1 / 38 Lectures about XRF (X-Ray Fluorescence) Advanced Physics Laboratory Laurea Magistrale in Fisica year 2013 - Camerino 2 / 38 X-ray Fluorescence XRF is an acronym for X-Ray Fluorescence. The XRF technique

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

Radiographic Grid. Principles of Imaging Science II (RAD 120) Image-Forming X-Rays. Radiographic Grids

Radiographic Grid. Principles of Imaging Science II (RAD 120) Image-Forming X-Rays. Radiographic Grids Principles of Imaging Science II (RAD 120) Radiographic Grids 1 Image-Forming X-Rays Four X-ray paths a. X-rays interact with patient and scatter away from the receptor b. X-rays interact and are absorbed

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration.

Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration. Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration. Gary H. Kramer, Linda C. Burns and Steven Guerriere Human Monitoring Laboratory, Radiation

More information

Physics testing of image detectors

Physics testing of image detectors Physics testing of image detectors Parameters to test Spatial resolution Contrast resolution Uniformity/geometric distortion Features and Weaknesses of Phantoms for CR/DR System Testing Dose response/signal

More information

Principle of Thermal Imaging

Principle of Thermal Imaging Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging

More information

Radiation Strip Thickness Measurement Systems

Radiation Strip Thickness Measurement Systems Radiation Strip Thickness Measurement Systems During the past years we have increased our sales of radiometric Vollmer strip thickness measurement systems, i.e. X-ray or isotope gauges, dramatically. Now,

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

Diagnostic x-ray imaging relies on the attenuation of

Diagnostic x-ray imaging relies on the attenuation of X-Ray Imaging Physics for Nuclear Medicine Technologists. Part 2: X-Ray Interactions and Image Formation* J. Anthony Seibert, PhD; and John M. Boone, PhD Department of Radiology, University of California

More information

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS Department of Health and Human services Population Health Radiation Protection Act 2005 Section 17 CERTIFICATE OF COMPLIANCE: STANDARD FOR RADIATION APPARATUS - X-RAY MEDICAL DIAGNOSTIC (MAMMOGRAPHY) SECTION

More information

GAMMA-RAY SPECTRA REFERENCES

GAMMA-RAY SPECTRA REFERENCES GAMMA-RAY SPECTRA REFERENCES 1. K. Siegbahn, Alpha, Beta and Gamma-Ray Spectroscopy, Vol. I, particularly Chapts. 5, 8A. 2. Nucleonics Data Sheets, Nos. 1-45 (available from the Resource Centre) 3. H.E.

More information

Comparing Digital and Analogue X-ray Inspection for BGA, Flip Chip and CSP Analysis

Comparing Digital and Analogue X-ray Inspection for BGA, Flip Chip and CSP Analysis Comparing Digital and Analogue X-ray Inspection for BGA, Flip Chip and CSP Analysis David Bernard & Steve Ainsworth Dage Precision Industries Abstract Non-destructive testing during the manufacture of

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

W. C. Reinig. Savannah River Laboratory E. I. du Pent de Nemours and Company Aiken, South Carolina 298o1

W. C. Reinig. Savannah River Laboratory E. I. du Pent de Nemours and Company Aiken, South Carolina 298o1 .*. *.-a /dp73j/3~ DP-MS-68-48 calforn1um-252: A NEW SOTOPC SOUR(!EFOR NEUTRON RADOGRAPHY by W. C. Reinig Savannah River Laboratory E.. du Pent de Nemours and Company Aiken, South Carolina 298o1. SRL7

More information

Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter

Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter T.M.Taha Radiation Protection Department, Nuclear Research Center, Atomic Energy Authority, Cairo.P.O.13759 Egypt.

More information

Radiographic Image Production. Radiographic Image Production. Principles of Imaging Science I (RAD 119) Film, Screens, and Cassettes

Radiographic Image Production. Radiographic Image Production. Principles of Imaging Science I (RAD 119) Film, Screens, and Cassettes Principles of Imaging Science I (RAD 119) Film, Screens, and Cassettes Radiographic Image Production X-ray photons emitted from the x-ray tube interact with the body, exit the patient (exit beam) and interact

More information

An Overview of Digital Imaging Systems for Radiography and Fluoroscopy

An Overview of Digital Imaging Systems for Radiography and Fluoroscopy An Overview of Digital Imaging Systems for Radiography and Fluoroscopy Michael Yester, Ph.D. University of Alabama at Birmingham Outline Introduction Imaging Considerations Receptor Properties General

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

SSO Transmission Grating Spectrograph (TGS) User s Guide

SSO Transmission Grating Spectrograph (TGS) User s Guide SSO Transmission Grating Spectrograph (TGS) User s Guide The Rigel TGS User s Guide available online explains how a transmission grating spectrograph (TGS) works and how efficient they are. Please refer

More information

INTRODUCTION. A. Purpose

INTRODUCTION. A. Purpose New York State Department of Health Bureau of Environmental Radiation Protection Guide for Radiation Safety/Quality Assurance Programs Computed Radiography INTRODUCTION A. Purpose This guide describes

More information

Performance of the Vidar Red LED Dosimetry Pro Advantage : A scanner optimized for use with GAFCHROMIC EBT Dosimetry Film.

Performance of the Vidar Red LED Dosimetry Pro Advantage : A scanner optimized for use with GAFCHROMIC EBT Dosimetry Film. INTERNATIONAL SPECIALTY PRODUCTS 1361 Alps Road Wayne NJ 07470 Tel: 973-628-4000 Performance of the Vidar Red LED Dosimetry Pro Advantage : A scanner optimized for use with GAFCHROMIC EBT Dosimetry Film.

More information

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008.

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. X-Ray Fluorescence (XRF) is a very simple analytical technique: X-rays excite atoms

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects.

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects. RADIATION SAFETY: HOW TO EDUCATE AND PROTECT YOURSELF AND YOUR STAFF John Farrelly, DVM, MS, ACVIM (Oncology), ACVR (Radiation Oncology) Cornell University Veterinary Specialists The Veterinary Cancer

More information

Standard Test Method for Classification of Film Systems for Industrial Radiography 1

Standard Test Method for Classification of Film Systems for Industrial Radiography 1 Designation: E 1815 96 (Reapproved 2001) Standard Test Method for Classification of Film Systems for Industrial Radiography 1 This standard is issued under the fixed designation E 1815; the number immediately

More information

Construction of an Alpha- Beta and Gamma-Sensitive Radiation Detector on the Basis of a Low-Cost PIN-Diode

Construction of an Alpha- Beta and Gamma-Sensitive Radiation Detector on the Basis of a Low-Cost PIN-Diode Construction of an Alpha- Beta and Gamma-Sensitive Radiation Detector on the Basis of a Low-Cost PIN-Diode Bernd Laquai, 12.6.2012 Encouraged by the observation, that the Am241 alpha source of an old smoke

More information

Gamma Rays OBJECT: READINGS: APPARATUS: BACKGROUND:

Gamma Rays OBJECT: READINGS: APPARATUS: BACKGROUND: Gamma Rays OBJECT: To understand the various interactions of gamma rays with matter. To calibrate a gamma ray scintillation spectrometer, using gamma rays of known energy, and use it to measure the energy

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Azam Niroomand-Rad, PhD Georgetown University Medical Center Washington D.C. AAPM 41st Annual Meeting Continuing Education Courses

Azam Niroomand-Rad, PhD Georgetown University Medical Center Washington D.C. AAPM 41st Annual Meeting Continuing Education Courses AAPM 41st Annual Meeting Continuing Education Courses Special Dosimetry Measurements-3 Two Dimensional Radiation Field Mapping Using Radiochromic Film Wednesday, July 28, 1999 7:30 AM - 8:30 AM Azam Niroomand-Rad,

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

Copyright 1999 2010 by Mark Brandt, Ph.D. 12

Copyright 1999 2010 by Mark Brandt, Ph.D. 12 Introduction to Absorbance Spectroscopy A single beam spectrophotometer is comprised of a light source, a monochromator, a sample holder, and a detector. An ideal instrument has a light source that emits

More information

EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system

EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system EDS system Most common X-Ray measurement system in the SEM lab. Major elements (10 wt% or greater) identified in ~10 secs. Minor elements identifiable in ~100 secs. Rapid qualitative and accurate quantitative

More information

Radiography: 2D and 3D Metrics of Performance Towards Quality Index

Radiography: 2D and 3D Metrics of Performance Towards Quality Index AAPM COMP 011 Radiography: D and 3D Metrics of Performance Towards Quality Index Ehsan Samei, Sam Richard Duke University Learning objectives Outlook 1. To understand methods for D and 3D resolution measurements..

More information

Reflectance Measurements of Materials Used in the Solar Industry. Selecting the Appropriate Accessories for UV/Vis/NIR Measurements.

Reflectance Measurements of Materials Used in the Solar Industry. Selecting the Appropriate Accessories for UV/Vis/NIR Measurements. T e c h n i c a l N o t e Reflectance Measurements of Materials Used in the Solar Industry UV/Vis/NIR Author: Dr. Jeffrey L. Taylor PerkinElmer, Inc. 710 Bridgeport Avenue Shelton, CT 06484 USA Selecting

More information

Measurement of Enhanced Specular Reflector (ESR) Films Using a LAMBDA 1050 UV/Vis/NIR Spectrometer and URA Accessory

Measurement of Enhanced Specular Reflector (ESR) Films Using a LAMBDA 1050 UV/Vis/NIR Spectrometer and URA Accessory FIELD APPLICATION REPORT UV/Vis/NIR Spectroscopy Author: Frank Padera Shelton, CT Contributor: Chris Lynch Shelton, CT Measurement of Enhanced Specular Reflector (ESR) Films Using a LAMBDA 1050 UV/Vis/NIR

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Page: 1 of 6 Page: 1 of 6

Page: 1 of 6 Page: 1 of 6 Page: 1 of 6 Page: 1 of 6 CR Basics and FAQ Overview Computed Radiography is a term used to describe a system that electronically records a radiographic image. Computed Radiographic systems use unique

More information

Optical Communications

Optical Communications Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information

Scanners and How to Use Them

Scanners and How to Use Them Written by Jonathan Sachs Copyright 1996-1999 Digital Light & Color Introduction A scanner is a device that converts images to a digital file you can use with your computer. There are many different types

More information

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza

Medical Applications of radiation physics. Riccardo Faccini Universita di Roma La Sapienza Medical Applications of radiation physics Riccardo Faccini Universita di Roma La Sapienza Outlook Introduction to radiation which one? how does it interact with matter? how is it generated? Diagnostics

More information

Experimental study of beam hardening artefacts in photon counting breast computed tomography

Experimental study of beam hardening artefacts in photon counting breast computed tomography Experimental study of beam hardening artefacts in photon counting breast computed tomography M.G. Bisogni a, A. Del Guerra a,n. Lanconelli b, A. Lauria c, G. Mettivier c, M.C. Montesi c, D. Panetta a,

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

EDXRF of Used Automotive Catalytic Converters

EDXRF of Used Automotive Catalytic Converters EDXRF of Used Automotive Catalytic Converters Energy Dispersive X-Ray Fluorescence (EDXRF) is a very powerful technique for measuring the concentration of elements in a sample. It is fast, nondestructive,

More information

THE NATURE OF LIGHT AND COLOR

THE NATURE OF LIGHT AND COLOR THE NATURE OF LIGHT AND COLOR THE PHYSICS OF LIGHT Electromagnetic radiation travels through space as electric energy and magnetic energy. At times the energy acts like a wave and at other times it acts

More information

Cyclotron Centre in Poland and 2D thermoluminescence dosimetry

Cyclotron Centre in Poland and 2D thermoluminescence dosimetry Cyclotron Centre in Poland and 2D thermoluminescence dosimetry Jan Gajewski Institute of Nuclear Physics, Kraków, Poland Department of Radiation Dosimetry Nuclear Physics Institute Academy of Science of

More information

FTIR Instrumentation

FTIR Instrumentation FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

More information

X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING

X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING Brian L. Riise and Michael B. Biddle MBA Polymers, Inc., Richmond, CA, USA Michael M. Fisher American Plastics Council, Arlington, VA, USA X-Ray Fluorescence

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

More information

ING LA PALMA TECHNICAL NOTE No. 130. Investigation of Low Fringing Detectors on the ISIS Spectrograph.

ING LA PALMA TECHNICAL NOTE No. 130. Investigation of Low Fringing Detectors on the ISIS Spectrograph. ING LA PALMA TECHNICAL NOTE No. 130 Investigation of Low Fringing Detectors on the ISIS Spectrograph. Simon Tulloch (ING) June 2005 Investigation of Low Fringing Detectors on the ISIS Spectrograph. 1.

More information

DETECTION OF COATINGS ON PAPER USING INFRA RED SPECTROSCOPY

DETECTION OF COATINGS ON PAPER USING INFRA RED SPECTROSCOPY DETECTION OF COATINGS ON PAPER USING INFRA RED SPECTROSCOPY Eduard Gilli 1,2 and Robert Schennach 1, 2 1 Graz University of Technology, 8010 Graz, Austria 2 CD-Laboratory for Surface Chemical and Physical

More information

Applications: X-ray Microtomography, Streak Tube and CRT Readout, Industrial & Medical Imaging X-RAY GROUP

Applications: X-ray Microtomography, Streak Tube and CRT Readout, Industrial & Medical Imaging X-RAY GROUP Now Powered by LightField FEATURES BENEFITS Back Illuminated CCD (248B) For highest sensitivity Front illuminated CCD (248F) Affordable technology for moderate light level applications Ultra low noise

More information

Fundamentals of Cone-Beam CT Imaging

Fundamentals of Cone-Beam CT Imaging Fundamentals of Cone-Beam CT Imaging Marc Kachelrieß German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de Learning Objectives To understand the principles of volumetric image formation

More information

OmniBSI TM Technology Backgrounder. Embargoed News: June 22, 2009. OmniVision Technologies, Inc.

OmniBSI TM Technology Backgrounder. Embargoed News: June 22, 2009. OmniVision Technologies, Inc. OmniBSI TM Technology Backgrounder Embargoed News: June 22, 2009 OmniVision Technologies, Inc. At the heart of any digital camera lies the image sensor. The image sensor is an integrated circuit, like

More information

1090 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 4, AUGUST 2003. Intelligent Gamma-Ray Spectroscopy Using 3-D Position-Sensitive Detectors

1090 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 4, AUGUST 2003. Intelligent Gamma-Ray Spectroscopy Using 3-D Position-Sensitive Detectors 1090 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 50, NO. 4, AUGUST 2003 Intelligent Gamma-Ray Spectroscopy Using 3-D Position-Sensitive Detectors Carolyn E. Lehner, Student Member, IEEE, Zhong He, Senior

More information

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing

Reprint (R22) Avoiding Errors in UV Radiation Measurements. By Thomas C. Larason July 2001. Reprinted from Photonics Spectra, Laurin Publishing Reprint (R22) Avoiding Errors in UV Radiation Measurements By Thomas C. Larason July 2001 Reprinted from Photonics Spectra, Laurin Publishing Gooch & Housego 4632 36 th Street, Orlando, FL 32811 Tel: 1

More information

Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators

Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators Technical Note: 9 Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators 1- Introduction The VALIDATOR, model TN-ID-60, is a compact, and stand-alone dosimetry

More information

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules Abstract J.L. Crozier, E.E. van Dyk, F.J. Vorster Nelson Mandela Metropolitan University Electroluminescence (EL) is a useful

More information

Concepts for High-Resolution Low-Dose CT of the Breast

Concepts for High-Resolution Low-Dose CT of the Breast RSNA 2012 Refresher Course 721B, Chicago, Nov. 30, 2012 Concepts for High-Resolution Low-Dose CT of the Breast Disclosures WAK is founder, shareholder and CEO of CT Imaging GmbH, Erlangen, Germany. Willi

More information

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission MAVEN Science Community Workshop December 2, 2012 Particles and Fields Package Solar Energetic Particle Instrument (SEP) Davin Larson and the SEP

More information

Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using EDS spectrum imaging

Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using EDS spectrum imaging Quantitative analysis Ceramics sample Peak deconvolution EDS map Phase analysis Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

Monte Carlo Simulation for Solid Angle Calculations in Alpha Particle Spectrometry

Monte Carlo Simulation for Solid Angle Calculations in Alpha Particle Spectrometry Monte Carlo Simulation for Solid Angle Calculations in Alpha Particle Spectrometry John Keightley NSUF 18 May 2010 Acknowledgement: Several discussions with Stefaan Pommé, IRMM, EC-JRC, Geel Some diagrams

More information

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector International Journal of Pure and Applied Physics ISSN 0973-1776 Volume 3, Number 2 (2007), pp. 201 208 Research India Publications http://www.ripublication.com/ijpap.htm Calculation of Source-detector

More information

Performance testing for Precision 500D Classical R/F System

Performance testing for Precision 500D Classical R/F System Performance testing for Precision 500D Classical R/F System John M. Boudry, Ph.D. Image Quality Systems Engineer GE Healthcare Technologies Outline System background Image Quality Signature Test (IQST)

More information

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY 243 CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY B. Chyba, M. Mantler, H. Ebel, R. Svagera Technische Universit Vienna, Austria ABSTRACT The accurate characterization of the spectral distribution

More information

Recognition. Radiation Survey Objectives. Objectives. Part 1 Documentation Radiation Source Survey Objectives Radiation Detectors Techniques

Recognition. Radiation Survey Objectives. Objectives. Part 1 Documentation Radiation Source Survey Objectives Radiation Detectors Techniques Recognition I will take this opportunity to recognize and thank the following people s contributions to this presentation. Considerations for: Diagnostic Radiology, Nuclear Medicine and, Oncology M. S.

More information

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons SLAC-PUB-7722 January 9 degrees Bremsstrahlung Source Term Produced in Thick Targets by 5 MeV to GeV Electrons X. S. Mao et al. Presented at the Ninth International Conference on Radiation Shielding, Tsukuba,

More information

Automatic and Objective Measurement of Residual Stress and Cord in Glass

Automatic and Objective Measurement of Residual Stress and Cord in Glass Automatic and Objective Measurement of Residual Stress and Cord in Glass GlassTrend - ICG TC15/21 Seminar SENSORS AND PROCESS CONTROL 13-14 October 2015, Eindhoven Henning Katte, ilis gmbh copyright ilis

More information

Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered

Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered vs. Wall-Mount X-Ray X Systems Edgar Bailey*, MSEHE, CHP Consultant Joel Gray*, PhD, FAAPM DIQUAD, LLC

More information

GAFCHROMIC DOSIMETRY MEDIA, TYPE HD-V2

GAFCHROMIC DOSIMETRY MEDIA, TYPE HD-V2 GAFCHROMIC DOSIMETRY MEDIA, TYPE HD-V2 WARNING: Store below 25ºC Store away from radiation sources Do not expose film to sunlight Handle film carefully, creasing may cause damage Do not expose to temperatures

More information

Optimization of Digital Industrial Radiography (DIR) Techniques for Specific Applications: An IAEA Coordinated Research Project

Optimization of Digital Industrial Radiography (DIR) Techniques for Specific Applications: An IAEA Coordinated Research Project IV Conferencia Panamericana de END Buenos Aires Octubre 2007 Optimization of Digital Industrial Radiography (DIR) Techniques for Specific Applications: An IAEA Coordinated Research Project U. Ewert, U.

More information

Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems

Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems Characteristics of an Integrated Germanium Detector Based Gamma-Ray Spectrometer for Monitoring Systems Ronald M. Keyser, Timothy R. Twomey, Sam Hitch ORTEC 801 South Illinois Avenue Oak Ridge, TN, 37831

More information

ACCELERATORS AND MEDICAL PHYSICS 2

ACCELERATORS AND MEDICAL PHYSICS 2 ACCELERATORS AND MEDICAL PHYSICS 2 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 2-28.10.10 - U. Amaldi 1 The icone of radiation therapy Radiation beam in matter EPFL 2-28.10.10 - U.

More information

5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION

5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION 5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION 5.2.1 Task The bremsstrahlung produced by the X-ray tube has a continuous spectrum, limited by the set and spreads

More information

Radiation safety in dental radiography

Radiation safety in dental radiography Radiation safety in dental radiography Dental Radiography Series The goal of dental radiography is to obtain diagnostic information while keeping the exposure to the patient and dental staff at minimum

More information

GAFCHROMIC DOSIMETRY MEDIA TYPE MD-V3

GAFCHROMIC DOSIMETRY MEDIA TYPE MD-V3 GAFCHROMIC DOSIMETRY MEDIA TYPE MD-V3 WARNING: Store below 25ºC Store away from radiation sources Do not expose film to sunlight Handle film carefully, creasing may cause damage Do not expose to temperatures

More information

Radiation and the Universe Higher Exam revision questions and answers

Radiation and the Universe Higher Exam revision questions and answers Radiation and the Universe Higher Exam revision questions and answers Madeley High School Q.The names of three different processes are given in List A. Where these processes happen is given in List B.

More information

0 10 20 30 40 50 60 70 m/z

0 10 20 30 40 50 60 70 m/z Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions

More information

A VERSATILE COUNTER FOR CONVERSION MÖSSBAUER SPECTROSCOPY

A VERSATILE COUNTER FOR CONVERSION MÖSSBAUER SPECTROSCOPY A VERSATILE COUNTER FOR CONVERSION MÖSSBAUER SPECTROSCOPY I. BIBICU 1, G. NICOLESCU 2, L. CIOLACU 2, L. SERBINA 2 1 National Institute for Materials Physics, Bucharest 77125, Romania, bibicu@infim.ro 2

More information

X-ray Imaging Systems

X-ray Imaging Systems Principles of Imaging Science I (RAD 119) X-ray Tube & Equipment X-ray Imaging Systems Medical X-ray Equipment Classified by purpose or energy/current levels kvp, ma Radiographic Non-dynamic procedures

More information

Thermal Imaging Test Target THERMAKIN Manufacture and Test Standard

Thermal Imaging Test Target THERMAKIN Manufacture and Test Standard Thermal Imaging Test Target THERMAKIN Manufacture and Test Standard June 2014 This document has been produced by CPNI as the standard for the physical design, manufacture and method of use of the Thermal

More information

Investigation of Color Aliasing of High Spatial Frequencies and Edges for Bayer-Pattern Sensors and Foveon X3 Direct Image Sensors

Investigation of Color Aliasing of High Spatial Frequencies and Edges for Bayer-Pattern Sensors and Foveon X3 Direct Image Sensors Investigation of Color Aliasing of High Spatial Frequencies and Edges for Bayer-Pattern Sensors and Foveon X3 Direct Image Sensors Rudolph J. Guttosch Foveon, Inc. Santa Clara, CA Abstract The reproduction

More information

Module 13 : Measurements on Fiber Optic Systems

Module 13 : Measurements on Fiber Optic Systems Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)

More information

CONTENT SPECIFICATIONS FOR THE FLUOROSCOPY EXAMINATION

CONTENT SPECIFICATIONS FOR THE FLUOROSCOPY EXAMINATION CONTENT SPECIFICATIONS FOR THE FLUOROSCOPY EXAMINATION Publication Date: November 2010 Implementation Date: March 2011 The purpose of the American Registry of Radiologic Technologists Fluoroscopy Examination

More information