Cellular Respiration. Sylvia S. Mader BIOLOGY. Chapter 8: pp Insert figure 8.2 here. 10th Edition

Size: px
Start display at page:

Download "Cellular Respiration. Sylvia S. Mader BIOLOGY. Chapter 8: pp. 133-149. Insert figure 8.2 here. 10th Edition"

Transcription

1 Chapter 8: pp BIOLOGY 10th Edition Cellular Respiration Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Insert figure 8. here and Cytoplasm e F ADH Mitochondrion Sylvia S. Mader glucose Glycolysis pyruvate Preparatory reaction Citric acid cycle Electron transport chain and chemiosmosis ADP ADP 4 ADP 4 total net gain ADP 3 ADP 3 or 34 or 34 PowerPoint Lecture Slides are prepared by Dr. Isaac Barjis, Biology Instructor 1 Copyright The McGraw Hill Companies Inc. Permission required for reproduction or display

2 Outline Cellular Respiration NAD+ and FAD Phases of Cellular Respiration Glycolysis Fermentation Preparatory Reaction Citric Acid Cycle Electron Transport System Metabolic Pool Catabolism Anabolism

3 Cellular Respiration A cellular process that breaks down carbohydrates and other metabolites with the concomitant buildup of Consumes oxygen and produces carbon dioxide (CO ) Cellular respiration is aerobic process. Usually involves breakdown of glucose to CO and water Energy extracted from glucose molecule: Released step-wise Allows to be produced efficiently Oxidation-reduction enzymes include NAD + and FAD as coenzymes 3

4 Glucose Breakdown: Summary Reaction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Oxidation C 6 H 1 O 6 + 6O 6CO + 6HCO + energy glucose Reduction Electrons are removed from substrates and received by oxygen, which combines with H+ to become water. Glucose is oxidized and O is reduced 4

5 NAD + and FAD NAD + (nicotinamide adenine dinucleotide) Called a coenzyme of oxidation-reduction. It can: Oxidize a metabolite by accepting electrons Reduce a metabolite by giving up electrons Each NAD + molecule used over and over again FAD (flavin adenine dinucleotide) Also a coenzyme of oxidation-reduction Sometimes used instead of NAD + Accepts two electrons and two hydrogen ions (H + ) to become FADH 5

6 Cellular Respiration Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. H O O and glucose enter cells, which release H O and CO. CO intermembrane space cristae Mitochondria use energy from glucose to form from ADP + P. ADP + P E. & P. Bauer/ zefa/ Corbis; (Bread, wine, cheese, p. 139): The McGraw Hill Companies, Inc./ John Thoeming, photographer; (Yogurt, p. 139): The McGraw Hill Companies, Inc./ Bruce M. Johnson, photographer 6

7 Phases of Cellular Respiration Cellular respiration includes four phases: Glycolysis is the breakdown of glucose into two molecules of pyruvate Occurs in cytoplasm is formed Does not utilize oxygen Transition (preparatory) reaction Both pyruvates are oxidized and enter mitochondria Electron energy is stored in Two carbons are released as CO (one from each pyruvate) 7

8 Phases of Cellular Respiration Citric acid cycle Occurs in the matrix of the mitochondrion and produces and FADH In series of reaction releases 4 carbons as CO Turns twice (once for each pyruvate) Produces two immediate molecules per glucose molecule Electron transport chain Extracts energy from & FADH Passes electrons from higher to lower energy states Produces 3 or 34 molecules of 8

9 Glucose Breakdown: Overview of 4 Phases Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display Cytoplasm and FADH Mitochondrion glucose Glycolysis pyruvate Preparatory reaction Citric acid cycle Electron transport chain and chemiosmosis 4 ADP 4 total net gain AD P 3 ADP 3 or 34 or 34 9

10 Glucose Breakdown: Glycolysis Occurs in cytoplasm outside mitochondria Energy Investment Steps: Two are used to activate glucose Glucose splits into two G3P molecules Energy Harvesting Steps: Oxidation of G3P occurs by removal of electrons and hydrogen ions Two electrons and one hydrogen ion are accepted by NAD + resulting two Four produced by substrate-level phosphorylation Net gain of two Both G3Ps converted to pyruvates 10

11 Glycolysis: Inputs and Outputs Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display inputs glucose NAD + Glycolysis outputs pyruvate ADP 4 ADP + 4 P 4 total net gain 11

12 Substrate-level Synthesis Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. enzyme ADP BPG 3PG 1

13 Glycolysis Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. and FADH glucose Glycolysis pyruvate Preparatory reaction Matrix Citric acid cycle Electron transport chain and chemiosmosis 4 ADP 4 total net ADP 3 ADP 3 or 34 or 34 NAD + 1. The cycle begins when an acetyl group carried by CoA combines with a C 4 molecule to form citrate. acetyl CoA Co A oxaloacetate C 4 citrate C 6 Citric acid cycle ketoglutarate C5 CO NAD +. Twice over, substrates are oxidized as NAD + is reduced to, and CO is released. 5. Once again a substrate is oxidized, and NAD + is reduced to. NAD + fumarate C4 succinate C4 FAD CO 4. Again a substrate is oxidized, but this time FAD is reduced to FADH. FADH 3. is produced as an energized phosphate is transferred from a substrate to ADP. 13

14 Glycolysis Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. enzyme ADP BPG 3PG 14

15 Animation Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the Normal or Slide Sorter views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at 15

16 Pyruvate Pyruvate is a pivotal metabolite in cellular respiration If O is not available to the cell, fermentation, an anaerobic process, occurs in the cytoplasm. During fermentation, glucose is incompletely metabolized to lactate, or to CO and alcohol (depending on the organism). If O is available to the cell, pyruvate enters mitochondria by aerobic process. 16

17 Fermentation An anaerobic process that reduces pyruvate to either lactate or alcohol and CO passes its electrons to pyruvate Alcoholic fermentation, carried out by yeasts, produces carbon dioxide and ethyl alcohol Used in the production of alcoholic spirits and breads. Lactic acid fermentation, carried out by certain bacteria and fungi, produces lactic acid (lactate) Used commercially in the production of cheese, yogurt, and sauerkraut. Other bacteria produce chemicals anaerobically, including isopropanol, butyric acid, proprionic acid, and acetic acid. 17

18 Fermentation Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. glucose A T P ADP G3P NAD + 4 ADP BPG +4 4 pyruvate or (net gain) CO lactate or alcohol 18

19 Animation Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the Normal or Slide Sorter views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at 19

20 Animation Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the Normal or Slide Sorter views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at

21 Fermentation Advantages Provides a quick burst of energy for muscular activity. Disadvantages Lactate is toxic to cells. Lactate changes ph and causes muscles to fatigue. Oxygen debt and cramping Efficiency of Fermentation Two produced per glucose of molecule during fermentation is equivalent to 14.6 kcal. 1

22 Products of Fermentation Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The McGraw Hill Companies, Inc./Bruce M. Johnson, photographer

23 Products of Fermentation Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The McGraw Hill Companies, Inc./Bruce M. Johnson, photographer 3

24 Products of Fermentation Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The McGraw Hill Companies, Inc./Bruce M. Johnson, photographer 4

25 Efficiency of Fermentation Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. inputs glucose Fermentation outputs lactate or alcohol and CO ADP + P net gain 5

26 The Preparatory (Prep) Reaction Connects glycolysis to the citric acid cycle End product of glycolysis, pyruvate, enters the mitochondrial matrix Pyruvate converted to -carbon acetyl group Attached to Coenzyme A to form acetyl-coa Electron picked up (as hydrogen atom) by NAD + CO released, and transported out of mitochondria into the cytoplasm 6

27 Preparatory Reaction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. NAD + O OH C CoA C O + CoA C O + CO CH pyruvate 3 CH 3 acetyl CoA carbon dioxide pyruvate + CoA acetyl CoA + carbon dioxide 7

28 Animation Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the Normal or Slide Sorter views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at 8

29 Mitochondrion: Structure & Function Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cristae: location of the electron transport chain (ETC) outer membrane inner membrane Matrix: location of the prep reaction and the citric acid cycle intermembrane space matrix cristae 45,000 Dr. Donald Fawcett and Dr. Porter/Visuals Unlimited 9

30 Glucose Breakdown: The Citric Acid Cycle A.K.A. Krebs cycle Occurs in matrix of mitochondria Begins by the addition of a two-carbon acetyl group to a four-carbon molecule (oxaloacetate), forming a six-carbon molecule (citric acid), FADH capture energy rich electrons formed by substrate-level phosphorylation Turns twice for one glucose molecule. Produces 4 CO,, 6 and FADH (per glucose molecule) 30

31 The Citric Acid Cycle Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. and FADH Glycolysis Preparatory reaction glucose pyruvate Citric acid cycle Electron transport chain and chemiosmosis ADP 4 ADP 4 total net 3 ADP ADP 3 or 34 or 34 NAD + 1. The cycle begins when an acetyl group carried by CoA combines with a C 4 molecule to form citrate. acetyl CoA CoA oxaloacetate C 4 citrate C 6 Citric acid cycle ketoglutarate C 5 CO NAD +. Twice over, substrates are oxidized as NAD + is reduced to, and CO is released. 5. Once again a substrate is oxidized, and NAD + is reduced to. NAD + fumarate C 4 succinate C 4 CO FAD 4. Again a substrate is oxidized, but this time FAD is reduced to FADH. FADH 3. is produced as an energized phosphate is transferred from a substrate to ADP.

32 Animation Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the Normal or Slide Sorter views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at 3

33 Citric Acid Cycle: Balance Sheet Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. inputs acetyl groups 6 NAD + FAD ADP + P Citric acid cycle outputs 4 CO6 FADH

34 Electron Transport Chain Location: Eukaryotes: cristae of the mitochondria Aerobic Prokaryotes: plasma membrane Series of carrier molecules: Pass energy rich electrons successively from one to another Complex arrays of protein and cytochromes Cytochromes are respiratory molecules Complex carbon rings with metal atoms in center Receives electrons from & FADH Produce by oxidative phosphorylation Oxygen serves as a final electron acceptor Oxygen ion combines with hydrogen ions to form water 34

35 Electron Transport Chain The fate of the hydrogens: Hydrogens from deliver enough energy to make 3 s Those from FADH have only enough for s Spent hydrogens combine with oxygen Recycling of coenzymes increases efficiency Once delivers hydrogens, it returns (as NAD + ) to pick up more hydrogens However, hydrogens must be combined with oxygen to make water If O not present, cannot release H No longer recycled back to NAD + 35

36 Electron Transport Chain Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. e e e and e FADH e Glycolysis Preparatory reaction glucose pyruvate Citric acid cycle Electron transport chain and chemiosmosis 4 ADP 4 ADP total ADP net ADP ADP 3 or ADP 3 or ADP H + e - NAD + + H + -Q reductase P e - made by chemiosmosis coenzyme Q e - FADH e - FAD + H + cytochrome reductase e - cytochrome c ADP + P made by chemiosmosis e - cytochrome oxidase e - H + ADP + P made by chemiosmosis 1 / O H O 36

37 Organization of Cristae Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. and FADH glucose Glycolysis pyruvate Preparatory reaction Citric acid cycle Electron transport chain and chemiosmosis ADP 4 ADP 4 total net ADP 3 or ADP 3 or34 34 Electron transport chain -Q reductase H + cytochrome reductase coenzyme Q H + cytochrome c cytochrome oxidase H + FADH FAD H + + NAD + H + H + H + H + H + ADP + P H O 1 / O H + Matrix H + H + channel protein H + synthase complex H + H + Chemiosmosis Intermembrane space 37

38 Animation Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the Normal or Slide Sorter views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at 38

39 Glucose Catabolism: Overall Energy Yield Net yield per glucose: From glycolysis From citric acid cycl From electron transport chain 3 Energy content: Reactant (glucose) 686 kcal Energy yield (36 ) 63 kcal Efficiency 39%; balance is waste heat 39

40 Overall Energy Yielded per Glucose Molecule Mitochondrion Cytoplasm Electron transport chain Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. glucose net A T P pyruvate glycolysis 4 or 6 acetyl CoA 6 CO 6 18 Citric acid cycle 4 CO FADH 4 P subtotal 4 6 O 6 H O subtotal 3 or or 38 total 40

41 Metabolic Pool: Catabolism Foods: Sources of energy rich molecules Carbohydrates, fats, and proteins Degradative reactions (Catabolism) break down molecules Tend to be exergonic (release energy) Synthetic reactions (anabolism) build molecules Tend to be endergonic (consume energy) 41

42 The Metabolic Pool Concept Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. proteins carbohydrates fats amino acids glucose glycerol fatty acids Glycolysis pyruvate acetyl CoA Citric acid cycle Electron transport chain C Squared Studios/Getty Images. 4

43 Animation Please note that due to differing operating systems, some animations will not appear until the presentation is viewed in Presentation Mode (Slide Show view). You may see blank slides in the Normal or Slide Sorter views. All animations will appear after viewing in Presentation Mode and playing each animation. Most animations will require the latest version of the Flash Player, which is available at 43

44 Metabolic Pool: Catabolism Glucose is broken down in cellular respiration. Fat breaks down into glycerol and three fatty acids. Amino acids break down into carbon chains and amino groups Deaminated (NH removed) in liver Results in poisonous ammonia (NH 3 ) Quickly converted to urea Different R-groups from AAs processed differently Fragments enter respiratory pathways at many different points 44

45 Metabolic Pool: Anabolism All metabolic reactions part of metabolic pool Intermediates from respiratory pathways can be used for anabolism Anabolism (build-up side of metabolism): Carbs: Fats Start with acetyl-coa Basically reverses glycolysis (but different pathway) G3P converted to glycerol Acetyls connected in pairs to form fatty acids Not dietary carbohydrate RARELY converted to fat in humans! 45

46 Metabolic Pool: Anabolism Anabolism (cont.): Proteins: Made up of combinations of 0 different amino acids Some amino acids (11) can be synthesized from respiratory intermediates Organic acids in citric acid cycle can make amino acids Add NH transamination However, other amino acids (9) cannot be synthesized by humans Essential amino acids Must be present in diet or die 46

47 Photosynthesis vs. Cellular Respiration Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Photosynthesis Cellular Respiration H O O grana membranes O cristae H O ADP NADPH NADP + CO CH O enzymes CH O NAD + CO 47

48 Review Glycolysis Transition Reaction Citric Acid Cycle Electron Transport System Fermentation Metabolic Pool Catabolism Anabolism 48

49 Chapter 8: pp BIOLOGY 10th Edition Cellular Respiration Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display Insert figure 8. here Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. and Cytoplasm e F ADH Mitochondrion Sylvia S. Mader glucose Glycolysis pyruvate Preparatory reaction Citric acid cycle Electron transport chain and chemiosmosis ADP ADP 4 ADP 4 total net gain ADP 3 ADP 3 or 34 or 34 PowerPoint Lecture Slides are prepared by Dr. Isaac Barjis, Biology Instructor 49 Copyright The McGraw Hill Companies Inc. Permission required for reproduction or display

8 CELLULAR RESPIRATION

8 CELLULAR RESPIRATION Cellular Respiration Test Study Guide Redox Reactions What does it mean when something is reduced? Oxidized? What is an oxidizing agent? Reducing agent? Be able to apply these to the cellular respiration

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Chapter Cellular Respiration 1. Cellular respiration involves various metabolic pathways that break down carbohydrates and other metabolites

Chapter Cellular Respiration 1. Cellular respiration involves various metabolic pathways that break down carbohydrates and other metabolites Chapter 8 8.1 Cellular Respiration 1. Cellular respiration involves various metabolic pathways that break down carbohydrates and other metabolites with the concomitant buildup of ATP. 2. Cellular respiration

More information

7.1 Overview of Cellular Respiration

7.1 Overview of Cellular Respiration 8/30/013 Chapter 07 Lecture and Animation Outline To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. lease Note: Once you

More information

Chapter 6: CELLULAR RESPIRATION

Chapter 6: CELLULAR RESPIRATION Chapter 6: CELLULAR RESPIRATION 1. Overview of Respiration 2. Glycolysis 3. The Citric Acid Cycle 4. Oxidative Phosphorylation 1. Overview of Respiration What is Cellular Respiration? It is the process

More information

Chapter 9: How Cells Harvest Energy

Chapter 9: How Cells Harvest Energy Chapter 9: How Cells Harvest Energy General Pathways for making ATP Aerobic Respiration Anaerobic Respiration Fermentation Differentiate between aerobic respiration, anaerobic respiration, and fermentation

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Name 6 How Cells Harvest Chemical Energy Test Date Study Guide You must know: The difference between fermentation and cellular respiration.

Name 6 How Cells Harvest Chemical Energy Test Date Study Guide You must know: The difference between fermentation and cellular respiration. Name 6 How Cells Harvest Chemical Energy Test Date Study Guide You must know: The difference between fermentation and cellular respiration. The role of glycolysis in oxidizing glucose to two molecules

More information

Chapter 6: CELLULAR RESPIRATION

Chapter 6: CELLULAR RESPIRATION Chapter 6: CELLULAR RESPIRATION 1. Overview of Respiration 2. Glycolysis 3. The Citric Acid Cycle 4. Oxidative Phosphorylation 1. Overview of Respiration What is Cellular Respiration? It is the process

More information

1. Overview of Respiration

1. Overview of Respiration Chapter 6: CELLULAR RESPIRATION 1. Overview of Respiration 2. Glycolysis 3. The Citric Acid Cycle 4. Oxidative Phosphorylation 1. Overview of Respiration What is Cellular Respiration? It is the process

More information

Transfers of electrons during chemical reactions (oxidation-reduction reactions)

Transfers of electrons during chemical reactions (oxidation-reduction reactions) Transfers of electrons during chemical reactions (oxidation-reduction reactions) Relocation of electrons in food molecules releases energy which can be used to synthesize ATP ATP is used to do ALL types

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy. m/watch?v=9wjdfc 5ISKw

Chapter 9. Cellular Respiration: Harvesting Chemical Energy.  m/watch?v=9wjdfc 5ISKw Chapter 9 Cellular Respiration: Harvesting Chemical Energy http://www.youtube.co m/watch?v=9wjdfc 5ISKw Principles of Energy Harvest Photosynthesis vs. Cellular respiration Principles of Energy Harvest

More information

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration.

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration. Chapter 9: Cellular Respiration: Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture.

More information

Chapter 9: CELLULAR RESPIRATION & FERMENTATION

Chapter 9: CELLULAR RESPIRATION & FERMENTATION Chapter 9: CELLULAR RESPIRATION & FERMENTATION 1. Overview of Respiration 2. Glycolysis 3. The Citric Acid Cycle 4. Oxidative Phosphorylation 5. Fermentation 1. Overview of Respiration Chapter Reading

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy I. Introduction A. In eukaryotes, cellular respiration 1. harvests energy from food 2. yields large amounts of ATP 3. B. A similar process takes place in many prokaryotic

More information

ATP. The point is to make ATP!

ATP. The point is to make ATP! ATP The point is to make ATP! 2008-2009 The energy needs of life Organisms are endergonic systems. What do we need energy for? synthesis building biomolecules reproduction movement active transport temperature

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Energy Flows through the Ecosystem Cellular Respiration: Harvesting Chemical Energy Energy enters the ecosystem in form of solar energy Photosynthesis converts solar energy to chemical energy. and O are

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Ch. 6 Cellular Respiration Period

Ch. 6 Cellular Respiration Period Ch. 6 Cellular Respiration Name Period California State Standards covered by this chapter: Cell Biology 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions

More information

CLASS XI BIOLOGY. Plant Respiration. Finish Line & Beyond send your queries to

CLASS XI BIOLOGY. Plant Respiration. Finish Line & Beyond send your queries to CLASS XI BIOLOGY Plant Respiration 1. Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration takes place in cells of

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy. Multiple-Choice Questions

Chapter 9. Cellular Respiration: Harvesting Chemical Energy. Multiple-Choice Questions Chapter 9 Cellular Respiration: Harvesting Chemical Energy Multiple-Choice Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic

More information

Introduction Chapter 6. 6.1 Photosynthesis and cellular respiration provide energy for life. 6.3 Cellular respiration banks energy in ATP molecules

Introduction Chapter 6. 6.1 Photosynthesis and cellular respiration provide energy for life. 6.3 Cellular respiration banks energy in ATP molecules Introduction Chapter 6 In eukaryotes, cellular respiration harvests energy from food, yields large amounts of, and Uses to drive cellular work. A similar process takes place in many prokaryotic organisms.

More information

008 Chapter 8. Student:

008 Chapter 8. Student: 008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of

More information

8/13/2009. Cellular Metabolism. Metabolism. Cellular Metabolism. Summary of Cellular Respiration. Aerobic Cellular respiration

8/13/2009. Cellular Metabolism. Metabolism. Cellular Metabolism. Summary of Cellular Respiration. Aerobic Cellular respiration Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Aerobic cellular respiration requires

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Cellular Respiration: Harvesting Chemical Energy Chapter 9 Objectives Define oxidation and reduction, and, in general terms, explain how redox reactions are involved in energy exchanges. Name the three

More information

INTRODUCTION TO CELLULAR RESPIRATION. Copyright 2009 Pearson Education, Inc.

INTRODUCTION TO CELLULAR RESPIRATION. Copyright 2009 Pearson Education, Inc. INTRODUCTION TO CELLULAR RESPIRATION 6.1 Photosynthesis and cellular respiration provide energy for life Energy is necessary for life processes These include growth, transport, manufacture, movement, reproduction,

More information

Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration

Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration What is Glucose Metabolism? Answer: The breakdown of glucose to release energy from its chemical bonds Photosynthesis: 6 CO 2 + 6 H 2 O

More information

The Stages of Cellular Respiration

The Stages of Cellular Respiration The Stages of Cellular Respiration Cellular respiration has three stages: Glycolysis breaks down glucose into two molecules of pyruvate The citric acid cycle completes the breakdown of glucose Oxidative

More information

Chapter 7. How Cells Release Chemical energy

Chapter 7. How Cells Release Chemical energy Chapter 7 How Cells Release Chemical energy Overview of Carbohydrate Breakdown Pathway Plants and all other photoautotrophs get energy from the sun, heterotrophs get by eating plants and one another ATP

More information

Cellular Energy Acquisition

Cellular Energy Acquisition Cellular Energy Acquisition 1. Organisms that can manufacture their own chemical energy sources are called. 2. depend on energy stored in chemical bonds by autotrophs for their food energy. 3. Simple molecules

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

ATP. Overview of cellular respiration. Cellular Respiration The Krebs Cycle. Oxidation of pyruvate. Glycolysis is only the start. Cellular respiration

ATP. Overview of cellular respiration. Cellular Respiration The Krebs Cycle. Oxidation of pyruvate. Glycolysis is only the start. Cellular respiration Cellular Respiration The Krebs Cycle 2006-2007 Overview of cellular respiration 4 metabolic stages Anaerobic respiration 1. Glycolysis respiration without O 2 in cytosol Aerobic respiration respiration

More information

IB BIOLOGY: Respiration Notes. Draw and annotate a molecule of ATP to show how it stores and releases energy.

IB BIOLOGY: Respiration Notes. Draw and annotate a molecule of ATP to show how it stores and releases energy. IB BIOLOGY: Respiration Notes Draw and annotate a molecule of ATP to show how it stores and releases energy. Contrast oxidation and reduction from the perspectives of (a) the gain or loss of electrons

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

The Citric Acid Cycle and Oxidative Phosphorylation

The Citric Acid Cycle and Oxidative Phosphorylation Honors Biology Chapter 6.8 6.12 Study Sheet The Citric Acid Cycle and Oxidative Phosphorylation PYRUVATE OXIDATION DRAW THE DETAILED REACTION BELOW: REACTION SUMMARY: SUBSTRATES: PRODUCTS: THE CITRIC ACID

More information

4. The final output of the Krebs cycle includes all of the following except A) NADP B) FADH2 C) ATP D) CO2

4. The final output of the Krebs cycle includes all of the following except A) NADP B) FADH2 C) ATP D) CO2 Cellular Respiration Multiple Choice Quiz Please answer all questions 1. When energy-depleted elements associated with a proton are accepted by an organic molecule, the process is called A) fermentation

More information

Cellular Respiration: Harvesting Chemical Energy. Chapter 9

Cellular Respiration: Harvesting Chemical Energy. Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Life Is Work Living cells require energy from outside sources Plants E from? Animals E from? Light energy Energy flows into ecosystem as light

More information

Cell Metabolism. K. Muma Bio 6

Cell Metabolism. K. Muma Bio 6 K. Muma Bio 6 Cell Metabolism Study Objectives: 1. Define oxidation and reduction. 2. Describe the mechanisms of ATP synthesis: substrate level phosphorylation vs. oxidative phosphorylation 3. Write the

More information

9-2 The Krebs Cycle and Electron Transport

9-2 The Krebs Cycle and Electron Transport Biology 1 of 37 2 of 37 1 Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic. 3 of 37 In the presence of oxygen,

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

Lecture Notes Respiration

Lecture Notes Respiration Lecture Notes Respiration We will consider two processes by which organisms harvest energy from food molecules: Aerobic Respiration more efficient, occurs in presence of O 2 Anaerobic Respiration less

More information

CHAPTER 5. Respiration. and Metabolism. Chapter 5 Outline. Metabolism. and the Lactic Acid Pathway. Metabolism of Lipids and Proteins

CHAPTER 5. Respiration. and Metabolism. Chapter 5 Outline. Metabolism. and the Lactic Acid Pathway. Metabolism of Lipids and Proteins CHAPTER 5 Cell Respiration and Metabolism Chapter 5 Outline Glycolysis and the Lactic Acid Pathway Respiration Metabolism of Lipids and Proteins Aerobic Metabolism Is all reactions in body that involve

More information

5.3 Cellular Respiration Releases Energy from Organic Compounds

5.3 Cellular Respiration Releases Energy from Organic Compounds 5.3 Cellular Respiration Releases Energy from Organic Compounds In this section, you will distinguish among aerobic respiration, anaerobic respiration, and fermentation explain how carbohydrates are oxidized

More information

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy for cellular work (ATP) 3. Importance of electrons and

More information

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration Chapter 7 Harvesting Energy: Glycolysis and Cellular Respiration Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education,

More information

Cellular Respiration. Chapter 9 in the textbook

Cellular Respiration. Chapter 9 in the textbook Cellular Respiration Chapter 9 in the textbook Chemical Energy and Food The equation for cellular respiration is catabolic. Catabolic Reactions: a chemical reaction that breaks down larger molecules into

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Slide 1 Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Cellular Respiration: Harvesting Chemical Energy. Chapter 9

Cellular Respiration: Harvesting Chemical Energy. Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Life Is Work Living cells require energy from outside sources Plants E from? Animals E from? Light energy Energy flows into ecosystem as light

More information

The process by which cells break down organic molecules (food) to make ATP is called cellular respiration

The process by which cells break down organic molecules (food) to make ATP is called cellular respiration Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis makes O 2 and organic molecules (like sugars and proteins), which are used in cellular respiration Cells use chemical energy

More information

Cellular Respiration. Chemical Energy and Food (page 221) Overview of Cellular Respiration (page 222) Chapter 9. Mitochondrion.

Cellular Respiration. Chemical Energy and Food (page 221) Overview of Cellular Respiration (page 222) Chapter 9. Mitochondrion. Chapter 9 Cellular Respiration Section 9 1 Chemical Pathways (pages 221 225) This section explains what cellular respiration is. It also describes what happens during a process called glycolysis and describes

More information

Mitochondrial Structure and Aerobic Respiration. Biology Exploring Life section 7.5 Modern Biology section 7-2

Mitochondrial Structure and Aerobic Respiration. Biology Exploring Life section 7.5 Modern Biology section 7-2 Mitochondrial Structure and Aerobic Respiration Biology Exploring Life section 7.5 Modern Biology section 7-2 Mitochondrial Structure and Aerobic Respiration Objectives: Diagram and explain the function

More information

Chapter 9 Cellular Respiration and Fermentation*

Chapter 9 Cellular Respiration and Fermentation* Chapter 9 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Overview : Life

More information

Metabolism - Part 1 Glycolysis & Respiration

Metabolism - Part 1 Glycolysis & Respiration Metabolism - Part 1 Glycolysis & Respiration Cells harvest chemical energy from foodstuffs in a series of exergonic reactions. The harvested energy can then be used to power energy demanding processes

More information

Lecture 8: Cellular Respiration

Lecture 8: Cellular Respiration Lecture 8: Cellular Respiration I. Overview of Aerobic Respiration A. Redox process where energy contained in chemical bonds in glucose is converted to ATP 1. Aerobic respiration a. Requires oxygen C.

More information

Cellular Respiration Review

Cellular Respiration Review MULTIPLE CHOICE: Circle ALL that are TRUE. There may be MORE THAN one correct answer. is the first step in cellular respiration that begins releasing energy stored in glucose. A. Alcoholic fermentation

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Dr. Wendy Sera Houston Community College Biology 1406 Chapter 9 Concepts 1. Catabolic pathways yield energy by oxidizing organic fuels. 2. Glycolysis harvests

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Dr. Wendy Sera Houston Community College Biology 1406 Chapter 9 Concepts 1. Catabolic pathways yield energy by oxidizing organic fuels.. Glycolysis harvests

More information

Cellular Respiration. Review. Glycolysis. The Krebs Cycle

Cellular Respiration. Review. Glycolysis. The Krebs Cycle Cellular Respiration Review Cellular respiration is the first major topic for which you apply your knowledge of chemistry. For the most part, however, the chemistry is descriptive that is, you won t have

More information

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration Chapter 7 Harvesting Energy: Glycolysis and Cellular Respiration Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education,

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

monosaccharides fatty acids amino acids

monosaccharides fatty acids amino acids Cellular Energy In order to sustain life (steady state), cells constantly expend energy in the form of ATP hydrolysis the hydrolysis of ATP yields a molecule of ADP (adenosine diphosphate) and a Phosphate

More information

CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION. Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy

CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION. Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy AP BIOLOGY Text Reference, Campbell v. 8, chapter 9 ACTIVITY1.17 NAME DATE HOUR CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 +

More information

9.2 The Process of Cellular Respiration

9.2 The Process of Cellular Respiration 9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

CELLULAR RESPIRATION REVIEW PACKET

CELLULAR RESPIRATION REVIEW PACKET Name: Date: Period: CELLULAR RESPIRATION REVIEW PACKET MULTIPLE CHOICE. Circle ALL that are TRUE. There may be MORE THAN one correct answer. is the first step in cellular respiration that begins releasing

More information

INTRODUCTION TO CELLULAR RESPIRATION. Copyright 2009 Pearson Education, Inc.

INTRODUCTION TO CELLULAR RESPIRATION. Copyright 2009 Pearson Education, Inc. INTRODUCTION TO CELLULAR RESPIRATION 6.2 Breathing supplies oxygen to our cells for use in cellular respiration and removes carbon dioxide Breathing and cellular respiration are closely related Breathing

More information

Chapter 9 CELLULAR RESPIRATION

Chapter 9 CELLULAR RESPIRATION Chapter 9 CELLULAR RESPIRATION HARVESTING FREE ENERGY Photosynthesis takes free energy and puts it into carbohydrates/sugars Carbohydrates can be stored for later use; light can not and neither can ATP

More information

ADP, ATP and Cellular Respiration. Copyright Cmassengale

ADP, ATP and Cellular Respiration. Copyright Cmassengale ADP, ATP and Cellular Respiration What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing highenergy Phosphate bonds Chemical Structure of ATP Adenine Base 3 Phosphates

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name Advanced Biology Enzyme and Cellular Respiration Test Part I Multiple Choice (75 points) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The

More information

CATABOLISM AND ANABOLISM METABOLISM ENERGY TRANSFER ATP MOLECULE & ENERGY OXIDATION AND REDUCTION

CATABOLISM AND ANABOLISM METABOLISM ENERGY TRANSFER ATP MOLECULE & ENERGY OXIDATION AND REDUCTION METABOLISM Functions of food source of energy essential nutrients stored for future use Metabolism is all the chemical reactions of the body some reactions produce the energy which is stored in that other

More information

THE CELLULAR RESPIRATION SAGA II: THE CITRIC ACID CYCLE & OXIDATIVE PHOSPHORYLATION

THE CELLULAR RESPIRATION SAGA II: THE CITRIC ACID CYCLE & OXIDATIVE PHOSPHORYLATION THE CELLULAR RESPIRATION SAGA II: THE CITRIC ACID CYCLE & OXIDATIVE PHOSPHORYLATION PLAYERS OF CELLULAR RESPIRATION NAD+ is a coenzyme that is reduced to using electrons Becomes reduced + H NAD + H + H

More information

The Structure and Hydrolysis of ATP

The Structure and Hydrolysis of ATP The Structure and Hydrolysis of ATP ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant The recipient molecule is now called a

More information

Cellular respiration. Cellular respiration. Respiration and fermentation. Respiration as a redox rxn. Redox reactions.

Cellular respiration. Cellular respiration. Respiration and fermentation. Respiration as a redox rxn. Redox reactions. Cellular respiration So why do we breathe? The big picture Heterotrophs cannot make their own food to supply their energy needs Instead they break down food to use the chemical energy stored in organic

More information

Using the Energy from Photosynthesis. Harvesting Energy: Glycolysis and Cellular Respiration. Energy Produced through the Breakdown of Glucose

Using the Energy from Photosynthesis. Harvesting Energy: Glycolysis and Cellular Respiration. Energy Produced through the Breakdown of Glucose Harvesting Energy: and Cellular Chapter 8 Using the Energy from Photosynthesis 6CO 2 + 6H 2 O + light C 6 H 12 O 6 + 6O 2 + heat Some ATP is produced in photosynthesis, but most energy is stored in sugars.

More information

Section 9 1 Chemical Pathways (pages )

Section 9 1 Chemical Pathways (pages ) Chapter 9 Cellular Respiration Section 9 1 Chemical Pathways (pages 221 225) TEKS FOCUS: 4B Cellular processes; TEKS SUPPORT: 9A Structure and function of biomolecules This section explains what cellular

More information

9-2 The Krebs Cycle and Electron Transport Slide 1 of 37

9-2 The Krebs Cycle and Electron Transport Slide 1 of 37 1 of 37 9-2 The Krebs Cycle and Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic. 2 of 37 The Krebs Cycle The

More information

Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic.

Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic. 9-2 The Krebs Cycle and Oxygen is required for the final steps of cellular respiration. Because the pathways of cellular respiration require oxygen, they are aerobic. 1 of 37 The Krebs Cycle The Krebs

More information

Cellular respiration

Cellular respiration Section 3 Cellular Respiration Objectives Summarize how glucose is broken down in the first stage of cellular respiration. Describe how is made in the second stage of cellular respiration. 4B Identify

More information

Lecture 9 Cellular Respiration NSCC BIOL211

Lecture 9 Cellular Respiration NSCC BIOL211 Lecture 9 Cellular Respiration NSCC BIOL211 1 First watch this video. Seriously. http://www.khanacademy.org/video/introductionto-cellular-respiration?playlist=biology NSCC BIOL211 2 Cellular respiration

More information

SBI4U: Respiration and Photosynthesis Test. [25 marks]

SBI4U: Respiration and Photosynthesis Test. [25 marks] Part 1: Multiple Choice SBI4U: Respiration and Photosynthesis Test Mr. Dykstra Name: [25 marks] 1. Which of the following molecules links glucose oxidation, fatty acid catabolism, and the catabolism of

More information

Chapter 14- RESPIRATION IN PLANTS

Chapter 14- RESPIRATION IN PLANTS Chapter 14- RESPIRATION IN PLANTS Living cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates,

More information

Zoology 145 course. General Animal Biology. For Premedical Student Zoology Department. Lecture 14: Cellular respiration (continue) H

Zoology 145 course. General Animal Biology. For Premedical Student Zoology Department. Lecture 14: Cellular respiration (continue) H Zoology 145 course General Animal Biology For Premedical Student Zoology Department Lecture 14: Cellular respiration (continue) 1436-1437H 1 Objectives Section B: The Stages of Cellular Respiration: A

More information

Glycolysis and the Krebs Cycle

Glycolysis and the Krebs Cycle Why? Glycolysis and the Krebs Cycle What reactions occur in the cell to turn glucose into carbon dioxide? Glucose is a high potential energy molecule. Carbon dioxide on the other hand is a very stable,

More information

Cellular Respiration. Cellular respiration is a catabolic, energy-yielding pathway.

Cellular Respiration. Cellular respiration is a catabolic, energy-yielding pathway. Cellular Respiration Typical animal cell Cellular respiration is a catabolic, energy-yielding pathway. It is the process by which organisms break down energy rich molecules, such as glucose, releasing

More information

VI. Reaction Coupling and ATP [cont.]

VI. Reaction Coupling and ATP [cont.] VI. Reaction Coupling and [cont.] The cycle hosphorylation Strongly Endergonic Hydrolysis Strongly Exergonic Energy from exergonic reactions AD+ Energy for endergonic reactions Background: VII. Metabolism

More information

CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION. Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy

CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION. Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 NAME DATE HOUR CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy C 6 H 12

More information

Cellular Respiration: How Cells Use Stored Energy. Killer Bees. ATP -- Energy Storage. Chapter 8

Cellular Respiration: How Cells Use Stored Energy. Killer Bees. ATP -- Energy Storage. Chapter 8 Cellular Respiration: How Cells Use Stored Energy Chapter 8 Killer Bees Descendents of African honeybees that were imported to Brazil in the 1950s More aggressive, wider-ranging than other honeybees Africanized

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles

How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles How is a Marathoner Different from a Sprinter? Long-distance runners have many slow fibers in their muscles Slow fibers break down glucose aerobically (using oxygen) for ATP production These muscle cells

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

Glycolysis & Respiration

Glycolysis & Respiration Metabolism - Part 1 Glycolysis & Respiration Cells harvest chemical energy from foodstuffs in a series of exergonic reactions. The harvested energy can then be used to power energy demanding processes

More information

Cellular Respiration: Supplying Energy to Metabolic Reactions

Cellular Respiration: Supplying Energy to Metabolic Reactions Cellular Respiration: Supplying Energy to Metabolic Reactions ATP powers most of the processes in a cell including: * Muscle movement * Active Transport ATP also provides the necessary activation energy

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

What are the basic steps in glycolysis, the TCA cycle, and the electron transport system? An Introduction to Cellular Metabolism.

What are the basic steps in glycolysis, the TCA cycle, and the electron transport system? An Introduction to Cellular Metabolism. What are the basic steps in glycolysis, the TCA cycle, and the electron transport system? An Introduction to Cellular Metabolism Figure 25 1 1 Carbohydrate Metabolism Generates ATP and other high-energy

More information

Introduction to Biology Respiration Chapter 5

Introduction to Biology Respiration Chapter 5 Introduction to Biology Respiration Chapter 5 Introduction Being alive is work. Cells organize small organic molecules into polymers such as the proteins, carbohydrates, and so forth you studied last week.

More information

BSC Exam I Lectures and Text Pages. Citric Acid Cycle. Citric acid cycle completes the energy-yielding oxidation of organic molecules

BSC Exam I Lectures and Text Pages. Citric Acid Cycle. Citric acid cycle completes the energy-yielding oxidation of organic molecules BSC 010 - Exam I Lectures and Text Pages I. Intro to Biology (-9) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

Chapter 4: Cellular Respiration pg : Introduction to Cellular Respiration and Fermentation

Chapter 4: Cellular Respiration pg : Introduction to Cellular Respiration and Fermentation UNIT 2: Metabolic Processes Chapter 4: Cellular Respiration pg. 166-209 4.1: Introduction to Cellular Respiration and Fermentation pg. 168 171 The energy which keeps our planet alive comes from the solar

More information