# Chapter 2. Circuit Analysis Techniques

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 2 Circuit Analysis Techniques 1

2 Objectives To formulate the node-voltage equations. To solve electric circuits using the node voltage method. To introduce the mesh current method. To formulate the mesh-current equations. To solve electric circuits using the mesh-current method. 2

3 Two Powerful Techniques for Circuit Analysis Nodal Analysis, based on a systematic application of Kirchhoff s current law (KCL Mesh Analysis, based on a systematic application of Kirchhoff s voltage law (KVL) we can analyze almost any circuit by obtaining a set of simultaneous equations that are then solved to obtain the required values of current or voltage. 3

4 Nodal Analysis So far, we have been applying KVL and KCL as needed to find voltages and currents in a circuit. Good for developing intuition, finding things quickly but what if the circuit is complicated? What if you get stuck? Systematic way to find all voltages in a circuit by repeatedly applying KCL: Node Voltage Method (Nodal Analysis). 4

5 Branches and Nodes ( reminder from last part) Branch: elements connected end-to-end, nothing coming off in between (in series) Node: place where elements are joined includes entire wire 5

6 Steps to Determine Node Voltages Method : Step 1 Select a node as the reference node. This is the reference Node The reference node is commonly called the ground since it is assumed to have zero potential. 6

7 Steps to Determine Node Voltages Method ( Cont.) Step 2 Assign voltages v 1, v 2,..., vn 1 to the remaining n 1 nodes. The voltages are referenced with respect to the reference node. Node 0 is the reference node (v = 0), while nodes 1 and 2 are assigned voltages v 1 and v 2. 7

8 Steps to Determine Node Voltages Method ( Cont.) Step 3 Apply KCL to each of the n 1 non reference nodes add i 1, i 2, and i 3 as the currents through resistors R 1,R 2, and R 3, respectively. At by applying KCL gives node 1 node 2 8

9 Steps to Determine Node Voltages Method ( Cont.) Step 4 Use Ohm s law to express the branch currents in terms of node voltages. The key idea to bear in mind is that, since resistance is a passive element, by the passive sign convention, current must always flow from a higher potential to a lower potential. 9

10 Steps to Determine Node Voltages Method ( Cont.) Step 5 Solve the resulting simultaneous equations to obtain the unknown node voltages. 10

11 Node Voltage Equations (Resistors) 11

12 Example: The voltage drop from node X to a reference node (ground) is called the node voltage V x. The current through resistors can be expressed as Iab Va = Vb R 12

13 Example Calculate the node voltages Solution 13

14 At node 1 Multiply by 4 14

15 At node 2 Multiply by 12 15

16 Example Find the voltage at node 1, 2 & 3 Solve this example and handle it to me 16

17 Conclusion for Nodal Analysis Nodal analysis is simply writing KCL equations in a systematic way assuming all currents leaving. Nodes voltages are the circuit variables. Currents are expressed in terms of nodes voltages. The number of variables = Number of nodes

18 Nodal Analysis with Voltage Sources note that: A current source produces constant current in a give direction. I s is leaving Va I s Va Vb - I s is leaving Vb A Voltage source maintains the voltage constant between its terminals. Va = Vs No need to consider Va a circuit variable. Vs Va

19 If a voltage source is connected between the reference node and a non-reference node. simply set the voltage at the non-reference node equal to the voltage of the voltage source v1 = 10 V 19

20 If the voltage source (dependent or independent) is connected between two nonreference nodes. we apply both KCL and KVL to determine the node voltages. V 1 and v 2 are called a super-nodes as they enclose a (dependent or independent) voltage source connected between them and any elements connected in parallel. 20

21 Steps to Determine Nodal Analysis with Voltage Sources. Step 1 Choose a reference node (ground, node 0) Step 2 Define unknown node voltages (those not connected to ground by voltage sources). Va, Vb, Step 3 Write KCL equation at each unknown node. How? Each current involved in the KCL equation will either come from a current source (giving you the current value) or through a device like a resistor. If the current comes through a device, relate the current to the node voltages using I -V relationship (like Ohm s law). 21

22 Step 4 Apply KCL to the supper node Super-node 22

23 Step 5 Apply KVL to the supper node Step 6 Solve the set of equations (N linear KCL equations for N unknown node voltages). 23

24 Example node voltage set R 1 V a R 3 V b + - I S V 1 R 2 R 4 Choose a reference node. reference node Define the node voltages (except reference node and the one set by the voltage source). Apply KCL at the nodes Va and Vb with unknown voltage. V V R V R Va V R a 1 + a + b = Vb V R 3 a + V R b 4 = I S Solve for Va and Vb in terms of circuit parameters. 24

25 Example Find the node voltage Solution Apply KCL at the super node Multiply by 4 25

26 .1 Apply KVL to the loop From 1 and

27 Example Calculate the power absorbed by the 6 ohm resistor using nodal analysis Apply nodal KCL at V 1 v 2 v1 v = 0 v1 v2 v1 + 1 =

28 At Node V 2 v1 v2 v2 4 = 6 7 v2 v1 v = 6 7 Solve for 1 & P 6 = i R6 2 v1 v2 144 P = 6 = = 24W

29 Example Find I o using the Node-Voltage At node V 1 4 = i + i 1 2 v = 3 v v 2 v1 v1 v2 + 4 =

30 At node V 2 I o = i 3 + i 4 v 6 1 v2 v v v 6 v2 = 4 v2 + 4 Solve for 1 and 2 V 1 = V V 2 = V = v

31 Example Use nodal analysis, find v o Solution At Node V 1 5 i 1 = i2 + v v1 v0 = v v =

32 40 v v = Multiply by 2 ( ) = ( v v ) ( v v ) = 32

33 At Node V 0 i = i 3 v 2 1 v0 v0 + v0 5 = 4 + ( 20) 8 Multiply by 8 4v 7v0 1 = 20 Solving for v 0 and v 1 V0 = 30v 33

### Mesh-Current Method (Loop Analysis)

Mesh-Current Method (Loop Analysis) Nodal analysis was developed by applying KCL at each non-reference node. Mesh-Current method is developed by applying KVL around meshes in the circuit. A mesh is a loop

### Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Alexander-Sadiku Fundamentals of Electric Circuits Chapter 3 Methods of Analysis Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Methods of Analysis - Chapter

### Chapter 4: Techniques of Circuit Analysis

4.1 Terminology Example 4.1 a. Nodes: a, b, c, d, e, f, g b. Essential Nodes: b, c, e, g c. Branches: v 1, v 2, R 1, R 2, R 3, R 4, R 5, R 6, R 7, I d. Essential Branch: v 1 -R 1, R 2 -R 3, v 2 -R 4, R

### Chapter 4: Methods of Analysis

Chapter 4: Methods of Analysis 4.1 Motivation 4.2 Nodal Voltage Analysis 4.3 Simultaneous Eqs. & Matrix Inversion 4.4 Nodal Voltage Analysis with Voltage Sources 4.5 Mesh Current Analysis 4.6 Mesh Current

### 07-Nodal Analysis Text: ECEGR 210 Electric Circuits I

07Nodal Analysis Text: 3.1 3.4 ECEGR 210 Electric Circuits I Overview Introduction Nodal Analysis Nodal Analysis with Voltage Sources Dr. Louie 2 Basic Circuit Laws Ohm s Law Introduction Kirchhoff s Voltage

### Node and Mesh Analysis

Node and Mesh Analysis 1 Copyright ODL Jan 2005 Open University Malaysia Circuit Terminology Name Definition Node Essential node Path Branch Essential Branch Loop Mesh A point where two ore more branches

### Chapter 4 Objectives

Chapter 4 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 4 Objectives Understand and be able to use the node-voltage method to solve a circuit; Understand and be able to use the mesh-current method

### Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

### Series and Parallel Resistors

Series and Parallel Resistors 1 Objectives To calculate the equivalent resistance of series and parallel resistors. 2 Examples for resistors in parallel and series R 4 R 5 Series R 6 R 7 // R 8 R 4 //

### 4. Basic Nodal and Mesh Analysis

1 4. Basic Nodal and Mesh Analysis This chapter introduces two basic circuit analysis techniques named nodal analysis and mesh analysis 4.1 Nodal Analysis For a simple circuit with two nodes, we often

### EECE251 Circuit Analysis Set 2: Methods of Circuit Analysis

EECE251 Circuit Analysis Set 2: Methods of Circuit Analysis Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca 1 Reading Material Chapter

### ECE 211 WORKSHOP: NODAL AND LOOP ANALYSIS. Tutor: Asad Akram

ECE 211 WORKSHOP: NODAL AND LOOP ANALYSIS Tutor: Asad Akram 1 AGENDA Background: KCL and KVL. Nodal Analysis: Independent Sources and relating problems, Dependent Sources and relating problems. Loop (Mesh

### Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models

EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm

### 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY PROBLEMS SECTION 3.1

IRWI03_082132v3 8/26/04 9:41 AM Page 120 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY Nodal analysis for an Nnode circuit Select one node in the Nnode circuit as the reference node. Assume

### Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit:

Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Solution: We ll begin by choosing the bottom node to be the reference node. Next we ll label the

### EE 201 ELECTRIC CIRCUITS. Class Notes CLASS 8

EE 201 ELECTRIC CIRCUITS Class Notes CLASS 8 The material covered in this class will be as follows: Nodal Analysis in the Presence of Voltage Sources At the end of this class you should be able to: Apply

### Electric Circuits. Overview. Hani Mehrpouyan,

Electric Circuits Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 5 (Mesh Analysis) Sep 8 th, 205 Hani Mehrpouyan (hani.mehr@ieee.org) Boise State c 205 Overview With Ohm s

### Circuit Analysis using the Node and Mesh Methods

Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The

### Chapter 2 Objectives

Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

### Problem set #5 EE 221, 09/26/ /03/2002 1

Chapter 3, Problem 42. Problem set #5 EE 221, 09/26/2002 10/03/2002 1 In the circuit of Fig. 3.75, choose v 1 to obtain a current i x of 2 A. Chapter 3, Solution 42. We first simplify as shown, making

### The node voltage method

The node voltage method Equivalent resistance Voltage / current dividers Source transformations Node voltages Mesh currents Superposition Not every circuit lends itself to short-cut methods. Sometimes

### Nodal Analysis Objective: To analyze circuits using a systematic technique: the nodal analysis.

Circuits (MTE 20) (Spring 200) Nodal Analysis Objective: To analyze circuits using a systematic technique: the nodal analysis. http://pami.uwaterloo.ca/~akrem/ University of Waterloo, Electrical and Computer

### TECHNIQUES OF. C.T. Pan 1. C.T. Pan

TECHNIQUES OF CIRCUIT ANALYSIS C.T. Pan 1 4.1 Introduction 4.2 The Node-Voltage Method ( Nodal Analysis ) 4.3 The Mesh-Current Method ( Mesh Analysis ) 4.4 Fundamental Loop Analysis 4.5 Fundamental Cutset

### 3. Introduction and Chapter Objectives

Real nalog Circuits Chapter 3: Nodal and Mesh nalysis 3. Introduction and Chapter Objectives In Chapters and 2, we introduced several tools used in circuit analysis: Ohm s law, Kirchoff s laws, and circuit

### SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self Study Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self Stud Course MODULE 27 FURTHER APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Inverse of a matri using elimination 2. Mesh analsis of

### How can we deal with a network branch which is part of two networks each with a source? R3 is carrying current supplied by each battery

Network nalysis ims: Consolidate use of KCL in circuit analysis. Use Principle of Superposition. Learn basics of Node Voltage nalysis (uses KCL) Learn basics of Mesh Current nalysis (uses KVL) Lecture

### Chapter 08. Methods of Analysis

Chapter 08 Methods of Analysis Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning C-C Tsai Outline Source Conversion Mesh Analysis Nodal Analysis Delta-Wye ( -Y) Conversion Bridge Networks

### Thevenin Equivalent Circuits

hevenin Equivalent Circuits Introduction In each of these problems, we are shown a circuit and its hevenin or Norton equivalent circuit. he hevenin and Norton equivalent circuits are described using three

### UNIVERSITY OF CALIFORNIA BERKELEY Engineering 7 Department of Civil and Environmental Engineering. Linear Equations: Engineering Supplement

UNIVERSITY OF CALIFORNIA BERKELEY Engineering 7 Department of Civil and Environmental Engineering Spring 203 Professor: S. Govindjee Linear Equations: Engineering Supplement Introduction The workhorse

### Chapter 5. Parallel Circuits ISU EE. C.Y. Lee

Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in

### EE301 - PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW

Objectives a. estate the definition of a node and demonstrate how to measure voltage and current in parallel circuits b. Solve for total circuit resistance of a parallel circuit c. State and apply KCL

### Basic circuit analysis

EIE209 Basic Electronics Basic circuit analysis Analysis 1 Fundamental quantities Voltage potential difference bet. 2 points across quantity analogous to pressure between two points Current flow of charge

### Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010

Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun

### Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide

### Graph theory and systematic analysis

Electronic Circuits 1 Graph theory and systematic analysis Contents: Graph theory Tree and cotree Basic cutsets and loops Independent Kirchhoff s law equations Systematic analysis of resistive circuits

### Kirchhoff s Voltage Law

BASIC ELECTRICAL Kirchhoff s Voltage Law OBJECTIVES Define Kirchhoff s Voltage Law Discuss how Kirchhoff s Voltage Law applies to Series and Parallel Circuits Calculate Voltage drops in a Series and Parallel

### Nodal and Loop Analysis

Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important

### Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node.

Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1 - The sum of the currents

### J. McNames Portland State University ECE 221 Basic Laws Ver

Basic Laws Overview Ideal sources: series & parallel Resistance & Ohm s Law Definitions: open circuit, short circuit, conductance Definitions: nodes, branches, & loops Kirchhoff s Laws Voltage dividers

### 3LEARNING GOALS. Analysis Techniques

IRWI3_8232hr 9/3/4 8:54 AM Page 82 3 Nodal 3LEARNING GOALS and Loop Analysis Techniques 3. Nodal Analysis An analysis technique in which one node in an Nnode network is selected as the reference node and

### Solving for Voltage and Current

Chapter 3 Solving for Voltage and Current Nodal Analysis If you know Ohm s Law, you can solve for all the voltages and currents in simple resistor circuits, like the one shown below. In this chapter, we

### Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

### ADVANCED METHODS OF DC AND AC CIRCUIT

CHAPTER 11 ADVANCED METHODS OF DC AND AC CIRCUIT ANALYSIS Learning Objectives As a result of successfully completing this chapter, you should be able to: 1. Explain why more sophisticated methods of circuit

### Matrices & Their Applications: Nodal Analysis

Matrices & Their Applications: Nodal Analysis Introduction Nodal analysis is a method applied to electrical circuits to determine the nodal voltages. In electrical circuits nodes are points where two or

### Project 4: Introduction to Circuits The attached Project was prepared by Professor Yih-Fang Huang from the department of Electrical Engineering.

Project 4: Introduction to Circuits The attached Project was prepared by Professor Yih-Fang Huang from the department of Electrical Engineering. The examples given are example of basic problems that you

### Series-Parallel Circuits. Objectives

Series-Parallel Circuits Objectives Identify series-parallel configuration Analyze series-parallel circuits Apply KVL and KCL to the series-parallel circuits Analyze loaded voltage dividers Determine the

### Kirchhoff's Current Law (KCL)

Kirchhoff's Current Law (KCL) I. Charge (current flow) conservation law (the Kirchhoff s Current law) Pipe Pipe Pipe 3 Total volume of water per second flowing through pipe = total volume of water per

### International Islamic University Chittagong Department of Electrical & Electronics Engineering

International Islamic University Chittagong Department of Electrical & Electronics Engineering Course No: EEE 1102 Course Title: Electrical Circuit I Sessional Experiment No : 01 Experiment Name: Introduction

### W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

### Parallel Circuits. Objectives

Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s Current Law Determine total parallel resistance Apply Ohm s law in a parallel

### Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn International Institute of Technology Thammasat University at angsit School of Information, Computer and Communication Technology COUSE : ECS 204 Basic Electrical Engineering Lab INSTUCTO :

### Physics Worksheet Electric Circuits Section: Name: Series Circuits

Do Now: (1) What is electric circuit? (2) Convert the following picture into schematic diagram. Series Circuits 4. Label every component of the circuit; identify each of the voltage and current. 5. Relation

### Chapter 28. Direct-Current Circuits

Chapter 28. Direct-Current Circuits esistors in Series and Parallel (gnore internal resistances for batteries in this section.) 28-1. A 5- resistor is connected in series with a 3- resistor and a 16-V

### Chapter 07. Series-Parallel Circuits

Chapter 07 Series-Parallel Circuits Source: Circuit Analysis: Theory and Practice Delmar Cengage Learning The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements

### Chapter 6. Series-Parallel Circuits. Objectives

Chapter 6 Series-Parallel Circuits Objectives Identify series-parallel relationships Analyze series-parallel circuits Analyze loaded voltage dividers Determine the loading effect of a voltmeter on a circuit

### EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

Chapter 19 DC Electrical Circuits Topics in Chapter 19 EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

### BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS Hello everybody! In a series of lecture on basic electronics, learning by doing, we now

### Department of Electrical and Electronic Engineering, California State University, Sacramento

Department of Electrical and Electronic Engineering, California State University, Sacramento Engr 17 Introductory Circuit Analysis, graded, 3 units Instructor: Tatro Fall 2016 Section 1, Call No. 84063,

### Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson

Verification of Ohm s Law, Kirchoff s Voltage Law and Kirchoff s Current Law Brad Peirson 2-24-05 EGR 214 Circuit Analysis I Laboratory Section 04 Prof. Blauch Abstract The purpose of this report is to

### Analysis of a single-loop circuit using the KVL method

Analysis of a single-loop circuit using the KVL method Figure 1 is our circuit to analyze. We shall attempt to determine the current through each element, the voltage across each element, and the power

### EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN

EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson - 3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson - 6 Hrs.) Voltage

### 1.Find the Thévenin equivalent with respect to the 7k ohm resistor.

Tutorial questions 1.Find the Thévenin equivalent with respect to the 7k ohm resistor. Remove the 7k ohm, since it is not part of the circuit we wish to simplify. Keep the terminals open since we are finding

### Chapter 18. Direct Current Circuits

Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating

### NODAL ANALYSIS. Circuits Nodal Analysis 1 M H Miller

NODAL ANALYSIS A branch of an electric circuit is a connection between two points in the circuit. In general a simple wire connection, i.e., a 'short-circuit', is not considered a branch since it is known

### Series-Parallel Circuits

Chapter 6 Series-Parallel Circuits Topics Covered in Chapter 6 6-1: Finding R T for Series-Parallel Resistances 6-2: Resistance Strings in Parallel 6-3: Resistance Banks in Series 6-4: Resistance Banks

### = (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

### NODE ANALYSIS. One of the systematic ways to determine every voltage and current in a circuit

NODE ANALYSIS One of the systematic ways to determine eery oltage and current in a circuit The ariables used to describe the circuit will be Node oltages -- The oltages of each node with respect to a pre-selected

### 2: Resistor Circuits. E1.1 Analysis of Circuits ( ) Resistor Circuits: 2 1 / 13. 2: Resistor Circuits

and E1.1 Analysis of Circuits (2016-8284) Resistor Circuits: 2 1 / 13 Kirchoff s Voltage Law and The five nodes are labelled A, B, C, D, E wheree is the reference node. Each component that links a pair

### 3: Nodal Analysis. E1.1 Analysis of Circuits (2015-7020) Nodal Analysis: 3 1 / 12. 3: Nodal Analysis

Current Floating Voltage Dependent E1.1 Analysis of Circuits (2015-7020) Nodal Analysis: 3 1 / 12 Aim of Nodal Analysis Current Floating Voltage Dependent The aim of nodal analysis is to determine the

### Homework 5 chapter 28: 2, 7, 31, 43

http://iml.umkc.edu/physics/wrobel/phy5/homework.htm Homework 5 chapter 8:, 7, 3, 43 Problem 8. Two.5-V batteries (with their positive terminals in the same direction) are inserted in series into the barrel

### An Introduction to the Mofied Nodal Analysis

An Introduction to the Mofied Nodal Analysis Michael Hanke May 30, 2006 1 Introduction Gilbert Strang provides an introduction to the analysis of electrical circuits in his book Introduction to Applied

### à 7.Electrical Circuits and Kirchhoff's Rules

1 à 7.Electrical Circuits and Kirchhoff's Rules Electrical circuits involving batteries and resistors can be treated using a method of analysis developed by Kirchoff. There are just two Kirchhoff's rules:

### 2. Introduction and Chapter Objectives

Real Analog - Circuits Chapter 2: Circuit Reduction 2. Introduction and Chapter Objectives In Chapter, we presented Kirchoff s laws (which govern the interactions between circuit elements) and Ohm s law

### Homework 6 Solutions PHYS 212 Dr. Amir

Homework 6 Solutions PHYS Dr. Amir Chapter 5: 9. (II) A 00-W lightbulb has a resistance of about Ω when cold (0 C) and 0 Ω when on (hot). Estimate the temperature of the filament when hot assuming an average

### Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com

Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Parallel Circuits. Parallel Circuits are a little bit more complicated

### Unit 1 Physics Foundation, Circuit Elements, KVL & KCL Unit 2 Analysis Techniques Unit 3 Op Amps & Two-Ports

Unit 1 Physics Foundation, Circuit Elements, KVL & KCL Unit 2 Analysis Techniques Unit 3 Op Amps & Two-Ports ROSE-HULMAN INSTITUTE OF TECHNOLOGY ECE 203 DC Circuits Winter 09-10 Course Information and

### Department of Electrical and Electronic Engineering, California State University, Sacramento

Department of Electrical and Electronic Engineering, California State University, Sacramento Engr 17 Introductory Circuit Analysis, graded, 3 units Instructor: Tatro - Spring 2016 Section 2, Call No. 30289,

### Direct-Current Circuits

Chapter 13 Direct-Current Circuits In This Chapter: Resistors in Series Resistors in Parallel EMF and Internal Resistance Kirchhoff s Rules Resistors in Series The equivalent resistance of a set of resistors

### ES203 Electrical Systems Study Guide. C.A. Berry

ES203 Electrical Systems Study Guide C.A. Berry ES203 Electrical Systems Study Guide Lecture 1-1: Introduction and Overview eading: 1.1-3 Objectives: Be able to briefly and clearly explain static electricity,

### Circuits. PHY2049: Chapter 27 1

Circuits PHY2049: Chapter 27 1 What You Already Know Nature of current Current density Drift speed and current Ohm s law Conductivity and resistivity Calculating resistance from resistivity Power in electric

### to-tee) Equivalent Circuits

SIMPLE ESISTIVE CICUIT ANALYSIS C.T. Pan 1 3.1 Series esistive Circuits 3. Parallel esistive Circuits 3.3 Voltage-divider and Current-divider Circuits 3.4 Measuring Current and Voltage 3.5 Measuring esistance-the

### Reactance and Impedance

Reactance and Impedance Capacitance in AC Circuits Professor Andrew H. Andersen 1 Objectives Describe capacitive ac circuits Analyze inductive ac circuits Describe the relationship between current and

### Circuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same

Circuits The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuit II has ½ current of each branch of circuit

### Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and

Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types

### PHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

PHYSICS 176 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (0-20 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that

### ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

### Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 1 What is an electrical circuit? An electrical network

### Unit FE-2 Foundation Electricity: DC Network Analysis

Unit FE-2 Foundation Electricity: DC Network Analysis What this unit is about This unit contains some basic ideas on DC network analysis. It also deals with the Thevenin theorem, a technique of considerable

### Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

### A Practical Exercise Name: Section:

Updated 16 AUG 2016 A Practical Exercise Name: Section: I. Purpose. 1. Review the construction of a DC series circuit on a quad board from a circuit schematic. 2. Review the application of Kirchhoff s

### Experiment 8 Series-Parallel Circuits

Experiment 8 Series-Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to measure

### Series,"Parallel," and"series." Parallel"Circuits"

chapter 25 Series,"Parallel," and"series." Parallel"Circuits" FIGURE 25.1 A series circuit with three bulbs. All current flows through all resistances (bulbs). The total resistance of the circuit is the

### Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits)

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Administration: o Prayer o Turn in quiz Electricity and Electronics, Chapter 8, Introduction: o

### Series & Parallel Circuits Challenge

Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,

### Series and Parallel Circuits

Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

### Circuits. Page The diagram below represents a series circuit containing three resistors.

Name: Circuits Date: 1. Which circuit segment has an equivalent resistance of 6 ohms? 4. The diagram below represents a series circuit containing three resistors. 2. Base your answer to the following question

### Chapter 28A - Direct Current Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 28A - Direct Current Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should

### Circuits 1 M H Miller

Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents