Geometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Geometry Mathematics Curriculum Guide Unit 6 Trig & Spec. Right Triangles 2016 2017"

Transcription

1 Unit 6: Trigonometry and Special Right Time Frame: 14 Days Primary Focus This topic extends the idea of triangle similarity to indirect measurements. Students develop properties of special right triangles, and use properties of similar triangles to develop their understanding of trigonometric ratios. These ideas are then applied to find unknown lengths and angle measurements. Common Core State Standards for Mathematical Practice Standards for Mathematical Practice MP1 Make sense of problems and persevere in solving them. MP3 Construct viable arguments and critique the reasoning of others. MP4 Model with mathematics. MP8 Look for and express regularity in repeated reasoning. How It Applies to this Topic Analyze given information to develop possible strategies for solving the problem. Use observations and prior knowledge (stated assumptions, definitions, and previous established results) to make conjectures and construct arguments. Use a variety of methods to model, represent, and solve real world problems. Generalize the process to create a shortcut which may lead to developing rules or creating a formula. Unit 6 Clover Park School District Page 1

2 Stage 1 Desired Results Transfer Goals Students will be able to independently use their learning to Use the properties of special right triangles to solve real world geometric situations. Solve geometric problems involving the basic trigonometric ratios of sine, cosine, and tangent. UNDERSTANDINGS Students will understand that The angles in right triangles are related to the ratios of the side lengths. The sine and cosine of complementary angles are related. Right triangles properties can be applied to solve problems. Meaning Goals ESSENTIAL QUESTIONS How do the ratios of the side lengths of right triangles relate to the angles in the triangle? What is the relationship of the cosine and the sine of two complementary angles? What does it mean to "solve" a triangle? Acquisition Goals Students will know and will be skilled at Naming the sides of right triangles as related to an acute angle Recognizing that if two right triangles have a pair of acute, congruent angles that the triangles are similar Comparing common ratios for similar right triangles and develop a relationship between the ratio and the acute angle leading to the trigonometry ratios Using the relationship between the sine and cosine of complementary angles Identifying the sine and cosine of acute angles in right triangles Identifying the tangent of acute angles on right triangles Explaining how the sine and cosine of complementary angles are related to each other Recognizing which methods could be used to solve right triangles in applied problems Solving for an unknown angle or side of a right triangle using sine, cosine, and tangent Applying right triangle trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems Unit 6 Clover Park School District Page 2

3 Stage 1 Established Goals: Common Core State Standards for Mathematics Cluster: Standard(s) Prove theorems involving similarity G.SRT.4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. Define trigonometric ratios and solve problems involving right triangles G SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. G SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. G SRT.7 Explain and use the relationship between the sine and cosine of complementary angles. Specific modeling standard (versus an example of the modeling Standard for Mathematical Practice). Explanations, Examples, and Comments Generalize this theorem to prove that the figure formed by joining consecutive midpoints of sides of an arbitrary quadrilateral is a parallelogram. (This result is known as the Midpoint Quadrilateral Theorem or Varignon s Theorem.) Use cardboard cutouts to illustrate that the altitude to the hypotenuse divides a right triangle into two triangles that are similar to the original triangle. Then use AA to prove this theorem. Then, use this result to establish the Pythagorean relationship among the sides of a right triangle and thus obtain an algebraic proof of the Pythagorean Theorem. Prove that the altitude to the hypotenuse of a right triangle is the geometric mean of the two segments into which its foot divides the hypotenuse. Prove the converse of the Pythagorean Theorem, using the theorem itself as one step in the proof. Some students might engage in an exploration of Pythagorean Triples (e.g., 3 4 5, , etc.), which provides an algebraic extension and an opportunity to explore patterns. What students should know prior to this unit and may need to be reviewed Fluency with ratios and proportional reasoning Fluency with dilations Stage 3 MATERIALS BY STANDARD(S): Teacher should use assessment data to determine which of the materials below best meet student instructional needs. All materials listed may not be needed. Holt Geometry Lesson 5 7 The Pythagorean Theorem Holt Geometry Lesson 5 8 Applying Special Right Holt Geometry Lesson 8 1 Similarity in Right Holt Geometry Lesson 8 2 Trigonometric Ratios Holt Geometry Lesson 8 3 Solving Right Holt Geometry Lesson 8 4 Angles of Elevation and Depression Or use EngageNY Lessons Listed Below EngageNY Geometry Module 2: Lesson 21,24 30 Teacher Student Supplemental Resources Pythagorean Theorem Unit 6 Clover Park School District Page 3

4 Recognize a situation s connection to a mathematical model Basic ability to mathematically support a prediction or hypothesis Explanations, Examples, and Comments Students may use applets to explore the range of values of the trigonometric ratios as θ ranges from 0 to 90 degrees. opposite sine of θ = sin θ = hypotenuse hypotenuse adjacent cosine of θ = cos θ = hypotenuse opposite tangent of θ = tan θ = adjacent θ Adjacent to θ opposite of θ hypotenuse cosecant of θ = csc θ = opposite hypotenuse secant of θ = sec θ = adjacent adjacent cotangent of θ = cot θ = opposite Discovering Geometry 9.1The Theorem of Pythagoras Discovering Geometry 9.2 The Converse of the Pythagorean Theorem Special Right Discovering Geometry 9.3 Two Special Right Discovering Geometry 9.4 Story Problems Trigonometry Discovering Geometry 12.1Trigonometric Ratios Discovering Geometry 12.2 Problem Solving in Right Performance Tasks Georgia CCGPS Analytic Geometry Unit 2: Right Triangle Trigonometry Geometric simulation software, applets, and graphing calculators can be used to explore the relationship between sine and cosine. Students may use graphing calculators or programs, tables, spreadsheets, or computer algebra systems to solve right triangle problems. Example: Find the height of a tree to the nearest tenth if the angle of elevation of the sun is 28 and the shadow of the tree is 50 ft. Unit 6 Clover Park School District Page 4

5 Evaluative Criteria/Assessment Level Descriptors (ALDs): Claim 1 Clusters: Define trigonometric ratios and solve problems involving right triangles Claim 2 Clusters: Define trigonometric ratios and solve problems involving right triangles Claim 3 Clusters: Prove theorems involving similarity Go here for Sample SBAC items Sample Assessment Evidence Stage 2 Evidence Concepts and Procedures Level 3 students should be able to use the Pythagorean Theorem, trigonometric ratios, and the sine and cosine of complementary angles to solve unfamiliar problems with minimal scaffolding involving right triangles, finding the missing side or missing angle of a right triangle. Level 4 students should be able to solve unfamiliar, complex, or multistep problems without scaffolding involving right triangles Problem Solving Level 3 students should be able to map, display, and identify relationships, use appropriate tools strategically, and apply mathematics accurately in everyday life, society, and the workplace. They should be able to interpret information and results in the context of an unfamiliar situation. Level 4 students should be able to analyze and interpret the context of an unfamiliar situation for problems of increasing complexity and solve problems with optimal solutions. Communicating Reasoning Level 3 students should be able to use stated assumptions, definitions, and previously established results and examples to test and support their reasoning or to identify, explain, and repair the flaw in an argument. Students should be able to break an argument into cases to determine when the argument does or does not hold. Level 4 students should be able to use stated assumptions, definitions, and previously established results to support their reasoning or repair and explain the flaw in an argument. They should be able to construct a chain of logic to justify or refute a proposition or conjecture and to determine the conditions under which an argument does or does not apply. Go here for more information about the Achievement Level Descriptors for Mathematics Common Assessment Unit 6 Clover Park School District Page 5

6 Stage 3 Learning Plan: Sample Summary of Key Learning Events and Instruction that serves as a guide to a detailed lesson planning LEARNING ACTIVITIES: Suggested Sequence of the Unit (See NOTES section for more detail for Extended Geometry.) Recommended to use EngageNY Geometry Module 2: Lessons 21,24 30 Include Performance Task: Example Trig Performance Tasks Daily Lesson Components Learning Target Warm up Activities Whole Group: Small Group/Guided/Collaborative/Independent: Whole Group: Checking for Understanding (before, during and after): Assessments NOTES: Connection to Prior Grades: 8.G.6 8: These standards develop understanding of Pythagorean Theorem and it converse. Also, the Pythagorean Theorem is applied to develop distance formula. Extended Geometry classes should select two or three of the Discovering Geometry lessons shown above to support student success in the core curriculum. Additionally, Extended Geometry teachers should consider the algebra review lessons below if additional algebra support is needed. Algebra Review: Solving for a variable in a formula A CED.4 Holt Algebra 1: Chapter 2, Lesson 5 Solving for a variable. Simplifying Radical Expressions: N RN.1,2 Holt Algebra 1: Chapter 11, Lesson 6 Radical Expressions. Unit 6 Clover Park School District Page 6

11 Trigonometric Functions of Acute Angles

11 Trigonometric Functions of Acute Angles Arkansas Tech University MATH 10: Trigonometry Dr. Marcel B. Finan 11 Trigonometric Functions of Acute Angles In this section you will learn (1) how to find the trigonometric functions using right triangles,

More information

Geometry Essential Curriculum

Geometry Essential Curriculum Geometry Essential Curriculum Unit I: Fundamental Concepts and Patterns in Geometry Goal: The student will demonstrate the ability to use the fundamental concepts of geometry including the definitions

More information

4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles

4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles 4.3 & 4.8 Right Triangle Trigonometry Anatomy of Right Triangles The right triangle shown at the right uses lower case a, b and c for its sides with c being the hypotenuse. The sides a and b are referred

More information

G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY. Notes & Study Guide

G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY. Notes & Study Guide G E O M E T R Y CHAPTER 9 RIGHT TRIANGLES AND TRIGONOMETRY Notes & Study Guide 2 TABLE OF CONTENTS SIMILAR RIGHT TRIANGLES... 3 THE PYTHAGOREAN THEOREM... 4 SPECIAL RIGHT TRIANGLES... 5 TRIGONOMETRIC RATIOS...

More information

COURSE OVERVIEW. PearsonSchool.com Copyright 2009 Pearson Education, Inc. or its affiliate(s). All rights reserved

COURSE OVERVIEW. PearsonSchool.com Copyright 2009 Pearson Education, Inc. or its affiliate(s). All rights reserved COURSE OVERVIEW The geometry course is centered on the beliefs that The ability to construct a valid argument is the basis of logical communication, in both mathematics and the real-world. There is a need

More information

2. Right Triangle Trigonometry

2. Right Triangle Trigonometry 2. Right Triangle Trigonometry 2.1 Definition II: Right Triangle Trigonometry 2.2 Calculators and Trigonometric Functions of an Acute Angle 2.3 Solving Right Triangles 2.4 Applications 2.5 Vectors: A Geometric

More information

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades. Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

More information

Right Triangle Trigonometry

Right Triangle Trigonometry Right Triangle Trigonometry MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: evaluate trigonometric functions of acute angles, use

More information

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

More information

Distance, Midpoint, and Pythagorean Theorem

Distance, Midpoint, and Pythagorean Theorem Geometry, Quarter 1, Unit 1.1 Distance, Midpoint, and Pythagorean Theorem Overview Number of instructional days: 8 (1 day = 45 minutes) Content to be learned Find distance and midpoint. (2 days) Identify

More information

RIGHT TRIANGLE TRIGONOMETRY

RIGHT TRIANGLE TRIGONOMETRY RIGHT TRIANGLE TRIGONOMETRY The word Trigonometry can be broken into the parts Tri, gon, and metry, which means Three angle measurement, or equivalently Triangle measurement. Throughout this unit, we will

More information

Overview. Essential Questions. Precalculus, Quarter 2, Unit 2.5 Proving Trigonometric Identities. Number of instruction days: 5 7 (1 day = 53 minutes)

Overview. Essential Questions. Precalculus, Quarter 2, Unit 2.5 Proving Trigonometric Identities. Number of instruction days: 5 7 (1 day = 53 minutes) Precalculus, Quarter, Unit.5 Proving Trigonometric Identities Overview Number of instruction days: 5 7 (1 day = 53 minutes) Content to Be Learned Verify proofs of Pythagorean identities. Apply Pythagorean,

More information

Unit 2: Right Triangle Trigonometry RIGHT TRIANGLE RELATIONSHIPS

Unit 2: Right Triangle Trigonometry RIGHT TRIANGLE RELATIONSHIPS Unit 2: Right Triangle Trigonometry This unit investigates the properties of right triangles. The trigonometric ratios sine, cosine, and tangent along with the Pythagorean Theorem are used to solve right

More information

Trigonometry. Week 1 Right Triangle Trigonometry

Trigonometry. Week 1 Right Triangle Trigonometry Trigonometry Introduction Trigonometry is the study of triangle measurement, but it has expanded far beyond that. It is not an independent subject of mathematics. In fact, it depends on your knowledge

More information

Geometry. Higher Mathematics Courses 69. Geometry

Geometry. Higher Mathematics Courses 69. Geometry The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

More information

y = rsin! (opp) x = z cos! (adj) sin! = y z = The Other Trig Functions

y = rsin! (opp) x = z cos! (adj) sin! = y z = The Other Trig Functions MATH 7 Right Triangle Trig Dr. Neal, WKU Previously, we have seen the right triangle formulas x = r cos and y = rsin where the hypotenuse r comes from the radius of a circle, and x is adjacent to and y

More information

Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

More information

Chapter 1: Essentials of Geometry

Chapter 1: Essentials of Geometry Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

You can solve a right triangle if you know either of the following: Two side lengths One side length and one acute angle measure

You can solve a right triangle if you know either of the following: Two side lengths One side length and one acute angle measure Solving a Right Triangle A trigonometric ratio is a ratio of the lengths of two sides of a right triangle. Every right triangle has one right angle, two acute angles, one hypotenuse, and two legs. To solve

More information

Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

More information

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest

More information

New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

More information

Pythagorean Theorem. Overview. Grade 8 Mathematics, Quarter 3, Unit 3.1. Number of instructional days: 15 (1 day = minutes) Essential questions

Pythagorean Theorem. Overview. Grade 8 Mathematics, Quarter 3, Unit 3.1. Number of instructional days: 15 (1 day = minutes) Essential questions Grade 8 Mathematics, Quarter 3, Unit 3.1 Pythagorean Theorem Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Prove the Pythagorean Theorem. Given three side lengths,

More information

Name Period Right Triangles and Trigonometry Section 9.1 Similar right Triangles

Name Period Right Triangles and Trigonometry Section 9.1 Similar right Triangles Name Period CHAPTER 9 Right Triangles and Trigonometry Section 9.1 Similar right Triangles Objectives: Solve problems involving similar right triangles. Use a geometric mean to solve problems. Ex. 1 Use

More information

Solution Guide for Chapter 6: The Geometry of Right Triangles

Solution Guide for Chapter 6: The Geometry of Right Triangles Solution Guide for Chapter 6: The Geometry of Right Triangles 6. THE THEOREM OF PYTHAGORAS E-. Another demonstration: (a) Each triangle has area ( ). ab, so the sum of the areas of the triangles is 4 ab

More information

Similarity, Right Triangles, and Trigonometry

Similarity, Right Triangles, and Trigonometry Instruction Goal: To provide opportunities for students to develop concepts and skills related to trigonometric ratios for right triangles and angles of elevation and depression Common Core Standards Congruence

More information

Trigonometry (Chapters 4 5) Sample Test #1 First, a couple of things to help out:

Trigonometry (Chapters 4 5) Sample Test #1 First, a couple of things to help out: First, a couple of things to help out: Page 1 of 24 Use periodic properties of the trigonometric functions to find the exact value of the expression. 1. cos 2. sin cos sin 2cos 4sin 3. cot cot 2 cot Sin

More information

Types of Angles acute right obtuse straight Types of Triangles acute right obtuse hypotenuse legs

Types of Angles acute right obtuse straight Types of Triangles acute right obtuse hypotenuse legs MTH 065 Class Notes Lecture 18 (4.5 and 4.6) Lesson 4.5: Triangles and the Pythagorean Theorem Types of Triangles Triangles can be classified either by their sides or by their angles. Types of Angles An

More information

2, 3 1, 3 3, 2 3, 2. 3 Exploring Geometry Construction: Copy &: Bisect Segments & Angles Measure & Classify Angles, Describe Angle Pair Relationship

2, 3 1, 3 3, 2 3, 2. 3 Exploring Geometry Construction: Copy &: Bisect Segments & Angles Measure & Classify Angles, Describe Angle Pair Relationship Geometry Honors Semester McDougal 014-015 Day Concepts Lesson Benchmark(s) Complexity Level 1 Identify Points, Lines, & Planes 1-1 MAFS.91.G-CO.1.1 1 Use Segments & Congruence, Use Midpoint & 1-/1- MAFS.91.G-CO.1.1,

More information

Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree.

Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree. Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree. 42. The sum of the measures of the angles of a triangle is 180. Therefore, The sine of an angle

More information

Pythagorean Theorem: 9. x 2 2

Pythagorean Theorem: 9. x 2 2 Geometry Chapter 8 - Right Triangles.7 Notes on Right s Given: any 3 sides of a Prove: the is acute, obtuse, or right (hint: use the converse of Pythagorean Theorem) If the (longest side) 2 > (side) 2

More information

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Geometry Enduring Understandings Students will understand 1. that all circles are similar. High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

More information

Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook

Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook Unit 7: Right Triangles and Trigonometry Lesson 7.1 Use Inequalities in a Triangle Lesson 5.5 from textbook Objectives Use the triangle measurements to decide which side is longest and which angle is largest.

More information

CHAPTER 8: ACUTE TRIANGLE TRIGONOMETRY

CHAPTER 8: ACUTE TRIANGLE TRIGONOMETRY CHAPTER 8: ACUTE TRIANGLE TRIGONOMETRY Specific Expectations Addressed in the Chapter Explore the development of the sine law within acute triangles (e.g., use dynamic geometry software to determine that

More information

Student Academic Learning Services Page 1 of 6 Trigonometry

Student Academic Learning Services Page 1 of 6 Trigonometry Student Academic Learning Services Page 1 of 6 Trigonometry Purpose Trigonometry is used to understand the dimensions of triangles. Using the functions and ratios of trigonometry, the lengths and angles

More information

as a fraction and as a decimal to the nearest hundredth.

as a fraction and as a decimal to the nearest hundredth. Express each ratio as a fraction and as a decimal to the nearest hundredth. 1. sin A The sine of an angle is defined as the ratio of the opposite side to the hypotenuse. So, 2. tan C The tangent of an

More information

Right Triangles 4 A = 144 A = 16 12 5 A = 64

Right Triangles 4 A = 144 A = 16 12 5 A = 64 Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right

More information

MATH 10 COMMON TRIGONOMETRY CHAPTER 2. is always opposite side b.

MATH 10 COMMON TRIGONOMETRY CHAPTER 2. is always opposite side b. MATH 10 OMMON TRIGONOMETRY HAPTER 2 (11 Days) Day 1 Introduction to the Tangent Ratio Review: How to set up your triangles: Angles are always upper case ( A,, etc.) and sides are always lower case (a,b,c).

More information

Any two right triangles, with one other angle congruent, are similar by AA Similarity. This means that their side lengths are.

Any two right triangles, with one other angle congruent, are similar by AA Similarity. This means that their side lengths are. Lesson 1 Trigonometric Functions 1. I CAN state the trig ratios of a right triangle 2. I CAN explain why any right triangle yields the same trig values 3. I CAN explain the relationship of sine and cosine

More information

Section 9.4 Trigonometric Functions of any Angle

Section 9.4 Trigonometric Functions of any Angle Section 9. Trigonometric Functions of any Angle So far we have only really looked at trigonometric functions of acute (less than 90º) angles. We would like to be able to find the trigonometric functions

More information

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

Intermediate Algebra with Trigonometry. J. Avery 4/99 (last revised 11/03)

Intermediate Algebra with Trigonometry. J. Avery 4/99 (last revised 11/03) Intermediate lgebra with Trigonometry J. very 4/99 (last revised 11/0) TOPIC PGE TRIGONOMETRIC FUNCTIONS OF CUTE NGLES.................. SPECIL TRINGLES............................................ 6 FINDING

More information

7.1 Apply the Pythagorean Theorem

7.1 Apply the Pythagorean Theorem 7.1 Apply the Pythagorean Theorem Obj.: Find side lengths in right triangles. Key Vocabulary Pythagorean triple - A Pythagorean triple is a set of three positive integers a, b, and c that satisfy the equation

More information

Georgia Standards of Excellence Mathematics

Georgia Standards of Excellence Mathematics Georgia Standards of Excellence Mathematics Standards GSE Geometry K-12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding

More information

4-1 Right Triangle Trigonometry

4-1 Right Triangle Trigonometry Find the exact values of the six trigonometric functions of θ. 1. The length of the side opposite θ is 8 is 18., the length of the side adjacent to θ is 14, and the length of the hypotenuse 3. The length

More information

Domain: Geometry (G) Cluster: Understand and apply the Pythagorean Theorem.

Domain: Geometry (G) Cluster: Understand and apply the Pythagorean Theorem. Domain: Geometry (G) Cluster: Understand and apply the Pythagorean Theorem. Standard: 8.G.6. Explain a proof of the Pythagorean Theorem and its converse. MP.3. Construct viable arguments and critique the

More information

1. Introduction identity algbriac factoring identities

1. Introduction identity algbriac factoring identities 1. Introduction An identity is an equality relationship between two mathematical expressions. For example, in basic algebra students are expected to master various algbriac factoring identities such as

More information

Right Triangle Trigonometry Test Review

Right Triangle Trigonometry Test Review Class: Date: Right Triangle Trigonometry Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the length of the missing side. Leave your answer

More information

About Trigonometry. Triangles

About Trigonometry. Triangles About Trigonometry TABLE OF CONTENTS About Trigonometry... 1 What is TRIGONOMETRY?... 1 Triangles... 1 Background... 1 Trigonometry with Triangles... 1 Circles... 2 Trigonometry with Circles... 2 Rules/Conversion...

More information

SECTIONS : TRIG FUNCTIONS (VALUES AND IDENTITIES)

SECTIONS : TRIG FUNCTIONS (VALUES AND IDENTITIES) 4.08 SECTIONS 4.-4.4: TRIG FUNCTIONS (VALUES AND IDENTITIES) We will consider two general approaches: the Right Triangle approach, and the Unit Circle approach. PART A: THE RIGHT TRIANGLE APPROACH The

More information

INDEX. Arc Addition Postulate,

INDEX. Arc Addition Postulate, # 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

More information

Wentzville School District Curriculum Development Template Stage 1 Desired Results

Wentzville School District Curriculum Development Template Stage 1 Desired Results Wentzville School District Curriculum Development Template Stage 1 Desired Results Integrated Math 8 Unit Four Geometry Unit Title: Geometry Course: Integrated Math 8 Brief Summary of Unit: In this unit

More information

Functions - Inverse Trigonometry

Functions - Inverse Trigonometry 10.9 Functions - Inverse Trigonometry We used a special function, one of the trig functions, to take an angle of a triangle and find the side length. Here we will do the opposite, take the side lengths

More information

Middle Grades Mathematics 5 9

Middle Grades Mathematics 5 9 Middle Grades Mathematics 5 9 Section 25 1 Knowledge of mathematics through problem solving 1. Identify appropriate mathematical problems from real-world situations. 2. Apply problem-solving strategies

More information

Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

More information

Right Triangle Trigonometry

Right Triangle Trigonometry Section 6.4 OBJECTIVE : Right Triangle Trigonometry Understanding the Right Triangle Definitions of the Trigonometric Functions otenuse osite side otenuse acent side acent side osite side We will be concerned

More information

Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

More information

FLC Ch 1 & 3.1. A ray AB, denoted, is the union of and all points on such that is between and. The endpoint of the ray AB is A.

FLC Ch 1 & 3.1. A ray AB, denoted, is the union of and all points on such that is between and. The endpoint of the ray AB is A. Math 335 Trigonometry Sec 1.1: Angles Definitions A line is an infinite set of points where between any two points, there is another point on the line that lies between them. Line AB, A line segment is

More information

GEOMETRY COMMON CORE STANDARDS

GEOMETRY COMMON CORE STANDARDS 1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

More information

4-1 Right Triangle Trigonometry

4-1 Right Triangle Trigonometry Find the measure of angle θ. Round to the nearest degree, if necessary. 31. Because the lengths of the sides opposite θ and the hypotenuse are given, the sine function can be used to find θ. 35. Because

More information

Lesson 1: Exploring Trigonometric Ratios

Lesson 1: Exploring Trigonometric Ratios Lesson 1: Exploring Trigonometric Ratios Common Core Georgia Performance Standards MCC9 12.G.SRT.6 MCC9 12.G.SRT.7 Essential Questions 1. How are the properties of similar triangles used to create trigonometric

More information

6.3 Inverse Trigonometric Functions

6.3 Inverse Trigonometric Functions Chapter 6 Periodic Functions 863 6.3 Inverse Trigonometric Functions In this section, you will: Learning Objectives 6.3.1 Understand and use the inverse sine, cosine, and tangent functions. 6.3. Find the

More information

Standards for Mathematical Practice: Commentary and Elaborations for 6 8

Standards for Mathematical Practice: Commentary and Elaborations for 6 8 Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:

More information

MA Lesson 19 Summer 2016 Angles and Trigonometric Functions

MA Lesson 19 Summer 2016 Angles and Trigonometric Functions DEFINITIONS: An angle is defined as the set of points determined by two rays, or half-lines, l 1 and l having the same end point O. An angle can also be considered as two finite line segments with a common

More information

Geometry Math Standards and I Can Statements

Geometry Math Standards and I Can Statements Geometry Math Standards and I Can Statements Unit 1 Subsection A CC.9-12.G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions

More information

Unit 6: Pythagorean Theorem

Unit 6: Pythagorean Theorem Approximate Time Frame: 2 weeks Connections to Previous Learning: In Unit 1, students learned to evaluate expressions and equations with exponents and solved equations of the form worked with triangles

More information

4-1 Right Triangle Trigonometry

4-1 Right Triangle Trigonometry Find the exact values of the six trigonometric functions of θ. 3. The length of the side opposite θ is 9, the length of the side adjacent to θ is 4, and the length of the hypotenuse is. 7. The length of

More information

The Simpson s Sunblocker: Similarity and Congruence through Modeling, Exploration, and Reasoning

The Simpson s Sunblocker: Similarity and Congruence through Modeling, Exploration, and Reasoning The Simpson s Sunblocker: Similarity and Congruence through Modeling, Exploration, and Reasoning This unit was created by Jo Boaler and 3 of her graduate students for a local school - in alphabetical order:

More information

High School Geometry Test Sampler Math Common Core Sampler Test

High School Geometry Test Sampler Math Common Core Sampler Test High School Geometry Test Sampler Math Common Core Sampler Test Our High School Geometry sampler covers the twenty most common questions that we see targeted for this level. For complete tests and break

More information

CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide. CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide

CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide. CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide Curriculum Map/Pacing Guide page of 6 2 77.5 Unit : Tools of 5 9 Totals Always Include 2 blocks for Review & Test Activity binder, District Google How do you find length, area? 2 What are the basic tools

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

More information

4-6 Inverse Trigonometric Functions

4-6 Inverse Trigonometric Functions Find the exact value of each expression, if it exists. 1. sin 1 0 Find a point on the unit circle on the interval with a y-coordinate of 0. 3. arcsin Find a point on the unit circle on the interval with

More information

Chapter 8. Right Triangles

Chapter 8. Right Triangles Chapter 8 Right Triangles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the

More information

Inverse Trigonometric Functions

Inverse Trigonometric Functions SECTION 4.7 Inverse Trigonometric Functions Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Find the exact value of an inverse trigonometric function. Use a calculator to approximate

More information

4.1 Radian and Degree Measure

4.1 Radian and Degree Measure Date: 4.1 Radian and Degree Measure Syllabus Objective: 3.1 The student will solve problems using the unit circle. Trigonometry means the measure of triangles. Terminal side Initial side Standard Position

More information

Exploring Trigonometric Ratios

Exploring Trigonometric Ratios Exploring Trigonometric Ratios Lesson Summary: Students will explore the trigonometric ratios by constructing a table of values and exploring the table as the shape of the triangle changes. The lab is

More information

Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to:

Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to: Pre-Algebra Interactive Chalkboard Copyright by The McGraw-Hill Companies, Inc. Send all inquiries to: GLENCOE DIVISION Glencoe/McGraw-Hill 8787 Orion Place Columbus, Ohio 43240 Click the mouse button

More information

Verifying Trigonometric Identities. Introduction. is true for all real numbers x. So, it is an identity. Verifying Trigonometric Identities

Verifying Trigonometric Identities. Introduction. is true for all real numbers x. So, it is an identity. Verifying Trigonometric Identities 333202_0502.qxd 382 2/5/05 Chapter 5 5.2 9:0 AM Page 382 Analytic Trigonometry Verifying Trigonometric Identities What you should learn Verify trigonometric identities. Why you should learn it You can

More information

Pythagorean Theorem & Trigonometric Ratios

Pythagorean Theorem & Trigonometric Ratios Algebra 2012-2013 Pythagorean Theorem & Trigonometric Ratios Name: Teacher: Pd: Table of Contents DAY 1: SWBAT: Calculate the length of a side a right triangle using the Pythagorean Theorem Pgs: 1-4 HW:

More information

Pre-Calculus II. 4.3 Right Angle Trigonometry

Pre-Calculus II. 4.3 Right Angle Trigonometry Pre-Calculus II 4.3 Right Angle Trigonometry y P=(x,y) y P=(x,y) 1 1 y x x x We construct a right triangle by dropping a line segment from point P perpendicular to the x-axis. So now we can view as the

More information

A Correlation of Pearson Texas Geometry Digital, 2015

A Correlation of Pearson Texas Geometry Digital, 2015 A Correlation of Pearson Texas Geometry Digital, 2015 To the Texas Essential Knowledge and Skills (TEKS) for Geometry, High School, and the Texas English Language Proficiency Standards (ELPS) Correlations

More information

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles Definition of Trigonometric Functions using Right Triangle: C hp A θ B Given an right triangle ABC, suppose angle θ is an angle inside ABC, label the leg osite θ the osite side, label the leg acent to

More information

Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179

Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179 Trigonometry Chapters 1 & 2 Test 1 Name Provide an appropriate response. 1) Find the supplement of an angle whose measure is 7. Find the measure of each angle in the problem. 2) Perform the calculation.

More information

Teaching & Learning Plans. Plan 8: Introduction to Trigonometry. Junior Certificate Syllabus

Teaching & Learning Plans. Plan 8: Introduction to Trigonometry. Junior Certificate Syllabus Teaching & Learning Plans Plan 8: Introduction to Trigonometry Junior Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes

More information

Right Triangle Sports

Right Triangle Sports Mathematics Capstone Course Right Triangle Sports I. II. III. IV. V. - - - - VI. VII. VIII. IX. - UNIT OVERVIEW & PURPOSE: This unit will be involving the students in mathematical models relating sport

More information

Right Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?)

Right Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?) Name Period Date Right Triangles and SOHCAHTOA: Finding the Measure of an Angle Given any Two Sides (ONLY for ACUTE TRIANGLES Why?) Preliminary Information: SOH CAH TOA is an acronym to represent the following

More information

CGE 3b 2 What s My Ratio? The Investigate the three primary trigonometric ratios for right-angled MT2.01 triangles. Summarize investigations.

CGE 3b 2 What s My Ratio? The Investigate the three primary trigonometric ratios for right-angled MT2.01 triangles. Summarize investigations. Unit 2 Trigonometry Lesson Outline Grade 10 Applied BIG PICTURE Students will: investigate the relationships involved in right-angled triangles to the primary trigonometric ratios, connecting the ratios

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

5.2. Trigonometric Functions Of Real Numbers. Copyright Cengage Learning. All rights reserved.

5.2. Trigonometric Functions Of Real Numbers. Copyright Cengage Learning. All rights reserved. 5.2 Trigonometric Functions Of Real Numbers Copyright Cengage Learning. All rights reserved. Objectives The Trigonometric Functions Values of the Trigonometric Functions Fundamental Identities 2 Trigonometric

More information

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard

Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express

More information

Right Triangles Test Review

Right Triangles Test Review Class: Date: Right Triangles Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the length of the missing side. The triangle is not drawn

More information

Geometry Credit Recovery

Geometry Credit Recovery Geometry Credit Recovery COURSE DESCRIPTION: This is a comprehensive course featuring geometric terms and processes, logic, and problem solving. Topics include parallel line and planes, congruent triangles,

More information

Pre-Calculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.

Pre-Calculus II. where 1 is the radius of the circle and t is the radian measure of the central angle. Pre-Calculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

Section 8.1: The Inverse Sine, Cosine, and Tangent Functions

Section 8.1: The Inverse Sine, Cosine, and Tangent Functions Section 8.1: The Inverse Sine, Cosine, and Tangent Functions The function y = sin x doesn t pass the horizontal line test, so it doesn t have an inverse for every real number. But if we restrict the function

More information

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 2012, Brooks/Cole

More information