SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses

Size: px
Start display at page:

Download "SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY. 2.1 Use the slopes, distances, line equations to verify your guesses"

Transcription

1 CHAPTER SOLVED PROBLEMS REVIEW COORDINATE GEOMETRY For the review sessions, I will try to post some of the solved homework since I find that at this age both taking notes and proofs are still a burgeoning skill..1 Use the slopes, distances, line equations to verify your guesses It is not enough to guess your figure, or to count squares, etc. on the quad paper. You really have to write the equations of the lines, of their slopes to check your statements. The lengths of the sides (distances between the vertex points) establish if a triangle ABC/trapezoid ABCD is isosceles. d AB = (x B x A ) + (y B y A ) If a point P is on a line y = mx + n, it verifies the equation of that line : y P = mx P + n If a point P is at the intersection of two lines it verifies both equations. The slopes of all the sides can be used to check if two lines are parallel or perpendicular. Given a quadrilateral with: exactly one pair of equal slopes one pair of parallel lines trapezoid two pairs of equal slopes two pairs of parallel lines parallelogram Given a parallelogram with: one pair of adjacent sides with slopes product = 1 (i.e. negative reciprocals) the adjacent sides are perpendicular a rectangle the slopes of the diagonals are negative reciprocals (i.e. their product = 1) the diagonals are perpendicular a rhombus both the slopes of the diagonals, and one pair of adjacent sides are negative reciprocals a square 1

2 Finding the length of an altitude/perpendicular AH from a point A to a line BC Finding the equation h of a height/altitude from one point A to a line BC : Find the slope of BC m BC = y B y A x B x A Perpendicular lines have negative reciprocal slopes (i.e. their product = 1), thus the slope of the perpendicular h is 1 m BC The point A is on the perpendicular line h so it verifies its slope-intercept equation: y A = 1 m BC x A + n and we can find the y-intercept n. Finding the coordinates of the point H of intersection between the height/altitude AH and the line BC from the system of equations: { yh = m BC x H + n BC, H on the BC line y H = 1 m BC x H + n, H on the h line Given the coordinates of A(x A, y A ) and H(x H, y H ) the length of the altitude AH is given by the distance between A and H d AH = (x H x A ) + (y H y A ) Exercise 5. Consider the triangle ABC with the vertices A(, 1), B(, 0), C(, 1). 1. Find the coordinates of the midpoint of BC. Find the length of the median The coordinates of the midpoint of BC with B(x B, y B ) and C(x C, y C ) has coordinates ( xb + x C, y ) ( B + y C ( + ) =, 1 ) ( =, 1 ) the length of the median AM is given by the distance between A(, 1), and M (, ) 1 : d AM = ( ) 1 (x M x A ) + (y M y A ) = ( ( )) + ( 1) = = Exercise 6. Consider the triangle ABC with the vertices A( 3, 0), B(0, ), C(3, 0). 1. Which type of triangle is the triangle ABC. Find its area.. If we add the points E(3, ) and F ( 3, ), are the points F, B and E collinear? Why? 3. Which type of figure is ACFE? Prove it. 1. It is an isosceles triangle : d AB = d BC since the Pythagorean Theorem gives us: d AB = (x B x A ) + (y B y A ) = 3 + = 13, d BC = (x B x C ) + (y B y C ) = 13 Since BO is on Y axis and AC is on the x-axis BO AC. In this case we cannot check their parallelism using slopes. Why not? Recall that the slopes of vertical lines ( i.e. with x constant) are not defined since we cannot divide by zero. In this case we might see the length, but in a general case obtain: d OB = (x B ) + (y B ) =. A simple computation gives Area of ABC = BO AC

3 . The points E(3, ) and F ( 3, ), B(0, ) are collinear. They are all situated on the line y = with slope 0. In a general case: find the equation of the line that goes, for example, through E and B and see if the third point, F verifies its equation. 3. ACFE is a rectangle. First it is a parallelogram (i.e. a convex polygon with two pairs of parallel lines) We can prove EF AC either by observing that both are lines of constant y, which makes them both parallel with axis OX, or by using the fact that parallel lines have equal slopes. m AC = y C y A x C x A = 0 = m EF To prove AE CF we cannot use the slopes. Why not? Because both lines are vertical, with an equation with constant x, and their slopes are not defined (i.e. we cannot divide by zero in the slope definition). So, we observe AE has the equation x=3, FC has the equation x=-3, thus they are both parallel with the axis OY. By transitivity they are parallel to each other. Secondly, ACFE has a right angle, which makes it a rectangle. Again, we cannot compute the slopes to help us but we use the fact that the axes are perpendicular, and so are our lines. Exercise 9. Consider the points A(0,-), B(9,1), C(4,6), D(1,5) are the vertices of a polygon as shown on the diagram. 1. Show that the polygon ABCD is a trapezoid. Is it isosceles? [Hint: A trapezoid is a convex polygon with ONY one pair of parallel sides. Parallel lines have equal slopes.]. Find the length and midpoint of each of the parallel sides. 3. Find the height of the polygon ABCD and its area. Exercise.1: Isosceles Trapezoid 1. We can prove AB CD using the fact that parallel lines have equal slopes. m AB = y B y A = 1 ( ) = 3 x B x A = 1 3, m CD = y D y C = 5 6 x D x C 1 4 = 1 3 = 1 3 The lines AC and BD are not parallel since the slopes m BD m AC. Thus, our figure is only a trapezoid. To prove that ABCD is an isosceles trapezoid we have to compare the lengths of its non-parallel sides: AD and BC. 3

4 d AD = (x D x A ) + (y D y A ) = (1 0) + (5 ( )) = = 50 d BC = (x C x B ) + (y C y B ) = (4 9) + (6 1) = = 50 Indeed they are equal so ABCD is an isosceles trapezoid.. Finding a midpoint ( of a segment with known endpoints with endpoints (x 1, y 1 ) and (x, y ) has x1 + x coordinates, y ) 1 + y. For AB with A(0, ), B(9, 1) the midpoint M has coordinates ( x1+x ) (, y1+y = 0+9, ) +1 = (4.5, 0.5). For CD with C(4, 6), D(1, 5) the midpoint N has coordinates ( x 1+x ) (, y1+y = 4+1, ) 6+5 = (.5, 5.5). The length of the parallel sides: d AB = (x B x A ) + (y B y A ) = (9 0) + (1 ( )) = 90 = 3 10 d CD = (x D x C ) + (y D y C ) = (1 4) + (5 6) = = The area of a trapezoid The area of a trapezoid is given by the formula Area trapezoid = (b + B)h where b, B are the lengths of the two parallel sides of the trapezoid, also called bases, and h is length of the altitude (height) which is the perpendicular distance between the two bases. We have the bases lengths. What we miss is the altitude and its length. The power of coordinate geometry is that it can transform a guess into a proof very easily We saw in class the lengthy classical geometrical proof of the fact that in an isosceles trapezoid the height can be given by connecting the midpoints of the bases. In coordinate geometry we just have to check our guess using the slopes of the lines involved, and base use the previous work of a mathematician who proved for us that if two lines AB, and MN have their slopes as negative reciprocals, i.e. : m AB m CD = 1, then the lines are perpendicular on each other. Checking: m AB = y B y A = 1 ( ) = 3 x B x A = 1 3, m MN = y M y N = x M x N = 6 = 3 Indeed, m AB m CD = 1 3 ( 3) = 1 We found the altitude and now we can compute its length using our distance formula. Now, d MN = (x M x N ) + (y M y N ) = () + ( 6) = = 40 = 10 Area trapezoid = (b + B)h = (d AB + d CD ) d MN = ( ) 10 = 0units What if? Now, as a good mathematician we should ask ourselves: Was this just a lucky case, or is there something more general to discover? Would coordinate geometry be proven to be so powerful, if we missed these observations? Moreover, what if we did not have an isosceles trapezoid to start with? The answer is yes. By mixing algebraic concepts with geometric concepts, coordinate geometry will provide you with simpler solutions. However, the more observations you make, the more elegant will be your solutions. Now, let us solve the height problem in case we missed both facts: that we have isosceles trapezoid and the line connecting the midpoints of the bases is perpendicular on the bases. 4

5 (a) Exercise 11: Right Triangle 90,60,30 (b) Exercise 1: Right Triangle 90,45,45 Special Right Triangles How to find the altitude(height) of a general trapezoid, knowing the coordinates of its vertices. The definition of a height/altitude tells us that it is the perpendicular distance between the two bases. If any perpendicular is good, we can pick a convenient one, for example one drawn from a vertex we know. Let us pick D and consider the altitude (height) DH AB. If AB is not a vertical line we can use the slopes to obtain the equation of the line DH m AB m DH = 1 m DH = 1 m AB = Now in its slope intercept form the DH equation is : y = m DH x + n y = 3x + n (If AB vertical line: x=constant, DH would have been horizontal one : y=n) Now n =? In order to be able to determine n we have chosen the particular case of the height from D. We know that the coordinates of D verify the equation of the line DH. y D = 3x D + n 5 = 3 + n n = 8 Finally, DH equation in its slope intercept form is : y = 3x + 8. In order to find the length of the altitude(height) we need to find the coordinates of H. We know that H is the intersection point of the lines AB and DH. Thus, it verifies both equations. The equation of AB: y = m A B x + n AB y = x 3 + n AB Similarly, since point A verifies AB equation n AB = and the equation of AB becomes y = x 3 Point H verifies: the equation of AB: y D = 1 3 x D and the equation of DH: y D = 3 x D + 8 t 1 3 x H = 3 x H x H + 3 x = x H = 10 x H = 3 y H = 1 H(3, 1). Now : = 3 d DH = (x D x H ) + (y D y H ) = (1 3) + (5 ( 1)) = = 40 = 10 Exercise 11. Consider a right triangle with angles of 30, 60. If the size of the leg opposed to 30 -angle is a, find the length of the other leg, and of the hypotenuse. Draw a ADC so that ABC ADC. Thus, their angles are equal: BD is a line (m ABC = 90 = m ACD), and m ADB = 60 and m DAB = 30 AB is a triangle with all angles of 60. So, triangle ABD is equilateral and hence, BD BC CD = a. Using the Pythagorean theorem, a + b = c a + b = (a) = 4a. Thus, b = 3a b = a 3. Exercise 1. Consider a right triangle with an angle of 45. If the size of one leg is a, find the length of the other leg, and of the hypotenuse. Triangle ABC is isosceles. Hence, AB AC = a. Using the Pythagorean theorem, a + b = c a + a = c. Thus, c = a c = a. 5

6 . From simple geometrical proofs to construction proofs: Reduce a problem to a known one In the review package we used some simple geometrical facts. Let us recall their proofs. 1. The convex polygon ABCD is a parallelogram if and only if it has two opposite sides that are congruent and parallel. = : Suppose ABCD is a parallelogram with AB CD and AD BC. Connect two non-adjacent vertices, say B and D. BD BD (common) ABD DEB = mâbd = mĉdb alternate interior angles for AB DC, BD transversal (ASA) m DBC = m BDA alternate interior angles for BC AD, BD transversal Since corresponding parts of congruent triangles are congruent, = AB CD and AD BC. = : Suppose AB CD and AB CD. Sketch: ABD CDB(SAS). Since corresponding parts of congruent triangles are congruent, = mâdb = mĉbd, which are alternate interior for AD and BC and transversal BD = AD BC, by the converse of the postulate of parallels. (a) Parallelogram (b) Isosceles triangle and apex bisector. A triangle ABC is an isosceles triangles if and only if it has two congruent base angles. [Hint: Construct the angle bisector of the angle BAC ] 6

7 = : Suppose ABC is an isosceles triangle, with AB AC. Recall that with a protractor and a straight hedge we can construct the unique bisector of BAC (apex angle). If P is an interior point of angle BAC, then ray AP and segment BC intersect in a unique point D and D is between B and C. (This statement can be proved as well. It is known as the Crossbar Theorem). AD AD (common) ABD ACD = m BAD = mĉad (construction of bisector AD ) (SAS) AB AC (hypothesis: ABC isosceles) Since corresponding parts of congruent triangles are congruent, we obtain the result: mâcd = mâbd. = : Similar proof. 3. Given an isosceles trapezoid ABCD where AD and BC are parallel and AB equals CD, the base angles BAD and ĈDA are congruent. [Hint: Assume BC is the shorter of the two parallel lines. Construct a line BE parallel to CD.] = : Suppose ABCD isosceles trapezoid, with AB CD and BC < AD. (a) Isosceles trapezoid and parallelogram construction Idea: construct something to reduce the problem we do not know how to solve to a known one; we could thus use parallelograms and isosceles triangles. So, let us draw a ray BP parallel to CD. Since BC is the smaller base, the ray BP is going to intersect AD in a unique point E. Since now BE CD, and BC ED, we have BCDE a parallelogram, and thus BE CD. From the hypothesis, ABCD is an isosceles trapezoid with AB CD, so ABE is now isosceles (because AB BE). Thus, m BAE = m BEA. Also, m BEA = 180 m BED since E is on the line AD. Finally, 180 m BED = mĉde since they are are same-side interior angles for the parallel lines BE and CD. Therefore, m BAE = mĉde, that is m BAD = mĉda, and we are done. = : Similar proof. 7

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle. DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

More information

Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item 2) (MAT 360) Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

More information

0810ge. Geometry Regents Exam 0810

0810ge. Geometry Regents Exam 0810 0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

More information

Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.

**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:

More information

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is

More information

Geometry Regents Review

Geometry Regents Review Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

More information

Geometry Module 4 Unit 2 Practice Exam

Geometry Module 4 Unit 2 Practice Exam Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

More information

Higher Geometry Problems

Higher Geometry Problems Higher Geometry Problems ( Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

More information

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

More information

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Grade level: 10 Prerequisite knowledge: Students have studied triangle congruences, perpendicular lines,

More information

BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

More information

ABC is the triangle with vertices at points A, B and C

ABC is the triangle with vertices at points A, B and C Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

More information

Math 311 Test III, Spring 2013 (with solutions)

Math 311 Test III, Spring 2013 (with solutions) Math 311 Test III, Spring 2013 (with solutions) Dr Holmes April 25, 2013 It is extremely likely that there are mistakes in the solutions given! Please call them to my attention if you find them. This exam

More information

STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2

STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2 STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of x-axis in anticlockwise direction, then the value of tan θ is called the slope

More information

Session 6 The Pythagorean Theorem

Session 6 The Pythagorean Theorem Session 6 The Pythagorean Theorem Key Terms for This Session Previously Introduced altitude perpendicular bisector right triangle side-angle-side (SAS) congruence New in This Session converse coordinates

More information

Centroid: The point of intersection of the three medians of a triangle. Centroid

Centroid: The point of intersection of the three medians of a triangle. Centroid Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

More information

http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4

http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4 of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

Geometry: Euclidean. Through a given external point there is at most one line parallel to a

Geometry: Euclidean. Through a given external point there is at most one line parallel to a Geometry: Euclidean MATH 3120, Spring 2016 The proofs of theorems below can be proven using the SMSG postulates and the neutral geometry theorems provided in the previous section. In the SMSG axiom list,

More information

Coordinate Coplanar Distance Formula Midpoint Formula

Coordinate Coplanar Distance Formula Midpoint Formula G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the oneand two-dimensional coordinate systems to

More information

CHAPTER 8 QUADRILATERALS. 8.1 Introduction

CHAPTER 8 QUADRILATERALS. 8.1 Introduction CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is

More information

Solutions to in-class problems

Solutions to in-class problems Solutions to in-class problems College Geometry Spring 2016 Theorem 3.1.7. If l and m are two distinct, nonparallel lines, then there exists exactly one point P such that P lies on both l and m. Proof.

More information

10-4 Inscribed Angles. Find each measure. 1.

10-4 Inscribed Angles. Find each measure. 1. Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

More information

Blue Pelican Geometry Theorem Proofs

Blue Pelican Geometry Theorem Proofs Blue Pelican Geometry Theorem Proofs Copyright 2013 by Charles E. Cook; Refugio, Tx (All rights reserved) Table of contents Geometry Theorem Proofs The theorems listed here are but a few of the total in

More information

GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT!

GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! GEOMETRY 101* EVERYTHING YOU NEED TO KNOW ABOUT GEOMETRY TO PASS THE GHSGT! FINDING THE DISTANCE BETWEEN TWO POINTS DISTANCE FORMULA- (x₂-x₁)²+(y₂-y₁)² Find the distance between the points ( -3,2) and

More information

Algebra Geometry Glossary. 90 angle

Algebra Geometry Glossary. 90 angle lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

More information

Quadrilaterals GETTING READY FOR INSTRUCTION

Quadrilaterals GETTING READY FOR INSTRUCTION Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper

More information

QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results

QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of

More information

1. An isosceles trapezoid does not have perpendicular diagonals, and a rectangle and a rhombus are both parallelograms.

1. An isosceles trapezoid does not have perpendicular diagonals, and a rectangle and a rhombus are both parallelograms. Quadrilaterals - Answers 1. A 2. C 3. A 4. C 5. C 6. B 7. B 8. B 9. B 10. C 11. D 12. B 13. A 14. C 15. D Quadrilaterals - Explanations 1. An isosceles trapezoid does not have perpendicular diagonals,

More information

Quadrilaterals Unit Review

Quadrilaterals Unit Review Name: Class: Date: Quadrilaterals Unit Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. ( points) In which polygon does the sum of the measures of

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

Lecture 24: Saccheri Quadrilaterals

Lecture 24: Saccheri Quadrilaterals Lecture 24: Saccheri Quadrilaterals 24.1 Saccheri Quadrilaterals Definition In a protractor geometry, we call a quadrilateral ABCD a Saccheri quadrilateral, denoted S ABCD, if A and D are right angles

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name: GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

More information

Geometry. Unit 6. Quadrilaterals. Unit 6

Geometry. Unit 6. Quadrilaterals. Unit 6 Geometry Quadrilaterals Properties of Polygons Formed by three or more consecutive segments. The segments form the sides of the polygon. Each side intersects two other sides at its endpoints. The intersections

More information

Most popular response to

Most popular response to Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles

More information

Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors

Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors Isosceles triangles Lesson Summary: Students will investigate the properties of isosceles triangles. Angle bisectors, perpendicular bisectors, midpoints, and medians are also examined in this lesson. A

More information

Geometry Sample Problems

Geometry Sample Problems Geometry Sample Problems Sample Proofs Below are examples of some typical proofs covered in Jesuit Geometry classes. Shown first are blank proofs that can be used as sample problems, with the solutions

More information

Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

More information

Sum of the interior angles of a n-sided Polygon = (n-2) 180

Sum of the interior angles of a n-sided Polygon = (n-2) 180 5.1 Interior angles of a polygon Sides 3 4 5 6 n Number of Triangles 1 Sum of interiorangles 180 Sum of the interior angles of a n-sided Polygon = (n-2) 180 What you need to know: How to use the formula

More information

Homework 9 Solutions and Test 4 Review

Homework 9 Solutions and Test 4 Review Homework 9 Solutions and Test 4 Review Dr. Holmes May 6, 2012 1 Homework 9 Solutions This is the homework solution set followed by some test review remarks (none of which should be surprising). My proofs

More information

Geometry. Kellenberg Memorial High School

Geometry. Kellenberg Memorial High School 2015-2016 Geometry Kellenberg Memorial High School Undefined Terms and Basic Definitions 1 Click here for Chapter 1 Student Notes Section 1 Undefined Terms 1.1: Undefined Terms (we accept these as true)

More information

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 1. If, find. A rhombus is a parallelogram with all four sides congruent. So, Then, is an isosceles triangle. Therefore, If a parallelogram

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

More information

Chapter 1: Essentials of Geometry

Chapter 1: Essentials of Geometry Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

More information

Chapter 12. The Straight Line

Chapter 12. The Straight Line 302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session. Geometry, 17 March 2012 CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

Chapter Three. Parallel Lines and Planes

Chapter Three. Parallel Lines and Planes Chapter Three Parallel Lines and Planes Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately

More information

/27 Intro to Geometry Review

/27 Intro to Geometry Review /27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

More information

Solutions to Practice Problems

Solutions to Practice Problems Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

More information

39 Symmetry of Plane Figures

39 Symmetry of Plane Figures 39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

More information

Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

More information

Session 5 Dissections and Proof

Session 5 Dissections and Proof Key Terms for This Session Session 5 Dissections and Proof Previously Introduced midline parallelogram quadrilateral rectangle side-angle-side (SAS) congruence square trapezoid vertex New in This Session

More information

INDEX. Arc Addition Postulate,

INDEX. Arc Addition Postulate, # 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

More information

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points. 6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

More information

PROPERTIES OF TRIANGLES AND QUADRILATERALS

PROPERTIES OF TRIANGLES AND QUADRILATERALS Mathematics Revision Guides Properties of Triangles, Quadrilaterals and Polygons Page 1 of 21 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier PROPERTIES OF TRIANGLES AND QUADRILATERALS

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 19, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

Lesson 13: Proofs in Geometry

Lesson 13: Proofs in Geometry 211 Lesson 13: Proofs in Geometry Beginning with this lesson and continuing for the next few lessons, we will explore the role of proofs and counterexamples in geometry. To begin, recall the Pythagorean

More information

Name Geometry Exam Review #1: Constructions and Vocab

Name Geometry Exam Review #1: Constructions and Vocab Name Geometry Exam Review #1: Constructions and Vocab Copy an angle: 1. Place your compass on A, make any arc. Label the intersections of the arc and the sides of the angle B and C. 2. Compass on A, make

More information

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points. Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors

More information

C1: Coordinate geometry of straight lines

C1: Coordinate geometry of straight lines B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

More information

Geometry Unit 1. Basics of Geometry

Geometry Unit 1. Basics of Geometry Geometry Unit 1 Basics of Geometry Using inductive reasoning - Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture- an unproven statement that is based

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

TABLE OF CONTENTS. Free resource from Commercial redistribution prohibited. Understanding Geometry Table of Contents

TABLE OF CONTENTS. Free resource from  Commercial redistribution prohibited. Understanding Geometry Table of Contents Understanding Geometry Table of Contents TABLE OF CONTENTS Why Use This Book...ii Teaching Suggestions...vi About the Author...vi Student Introduction...vii Dedication...viii Chapter 1 Fundamentals of

More information

The Distance from a Point to a Line

The Distance from a Point to a Line : Student Outcomes Students are able to derive a distance formula and apply it. Lesson Notes In this lesson, students review the distance formula, the criteria for perpendicularity, and the creation of

More information

of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent.

of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent. 2901 Clint Moore Road #319, Boca Raton, FL 33496 Office: (561) 459-2058 Mobile: (949) 510-8153 Email: HappyFunMathTutor@gmail.com www.happyfunmathtutor.com GEOMETRY THEORUMS AND POSTULATES GEOMETRY POSTULATES:

More information

Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1. Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

More information

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18 Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

More information

CONJECTURES - Discovering Geometry. Chapter 2

CONJECTURES - Discovering Geometry. Chapter 2 CONJECTURES - Discovering Geometry Chapter C-1 Linear Pair Conjecture - If two angles form a linear pair, then the measures of the angles add up to 180. C- Vertical Angles Conjecture - If two angles are

More information

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 3. PROOF Write a two-column proof to prove that if ABCD is a rhombus with diagonal. 1. If, find. A rhombus is a parallelogram with all

More information

Line. A straight path that continues forever in both directions.

Line. A straight path that continues forever in both directions. Geometry Vocabulary Line A straight path that continues forever in both directions. Endpoint A point that STOPS a line from continuing forever, it is a point at the end of a line segment or ray. Ray A

More information

Honors Packet on. Polygons, Quadrilaterals, and Special Parallelograms

Honors Packet on. Polygons, Quadrilaterals, and Special Parallelograms Honors Packet on Polygons, Quadrilaterals, and Special Parallelograms Table of Contents DAY 1: (Ch. 6-1) SWBAT: Find measures of interior and exterior angles of polygons Pgs: #1 6 in packet HW: Pages 386

More information

Unit 8. Quadrilaterals. Academic Geometry Spring Name Teacher Period

Unit 8. Quadrilaterals. Academic Geometry Spring Name Teacher Period Unit 8 Quadrilaterals Academic Geometry Spring 2014 Name Teacher Period 1 2 3 Unit 8 at a glance Quadrilaterals This unit focuses on revisiting prior knowledge of polygons and extends to formulate, test,

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

More information

6-3 Tests for Parallelograms. Determine whether each quadrilateral is a parallelogram. Justify your answer.

6-3 Tests for Parallelograms. Determine whether each quadrilateral is a parallelogram. Justify your answer. 1. Determine whether each quadrilateral is a Justify your answer. 3. KITES Charmaine is building the kite shown below. She wants to be sure that the string around her frame forms a parallelogram before

More information

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE? MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of

More information

(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units 1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

More information

Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

SMT 2014 Geometry Test Solutions February 15, 2014

SMT 2014 Geometry Test Solutions February 15, 2014 SMT 014 Geometry Test Solutions February 15, 014 1. The coordinates of three vertices of a parallelogram are A(1, 1), B(, 4), and C( 5, 1). Compute the area of the parallelogram. Answer: 18 Solution: Note

More information

www.sakshieducation.com

www.sakshieducation.com LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

More information

4.1 Euclidean Parallelism, Existence of Rectangles

4.1 Euclidean Parallelism, Existence of Rectangles Chapter 4 Euclidean Geometry Based on previous 15 axioms, The parallel postulate for Euclidean geometry is added in this chapter. 4.1 Euclidean Parallelism, Existence of Rectangles Definition 4.1 Two distinct

More information

5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof 5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

More information

Winter 2016 Math 213 Final Exam. Points Possible. Subtotal 100. Total 100

Winter 2016 Math 213 Final Exam. Points Possible. Subtotal 100. Total 100 Winter 2016 Math 213 Final Exam Name Instructions: Show ALL work. Simplify wherever possible. Clearly indicate your final answer. Problem Number Points Possible Score 1 25 2 25 3 25 4 25 Subtotal 100 Extra

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

Properties of Special Parallelograms

Properties of Special Parallelograms Properties of Special Parallelograms Lab Summary: This lab consists of four activities that lead students through the construction of a parallelogram, a rectangle, a square, and a rhombus. Students then

More information

Section 2.1 Rectangular Coordinate Systems

Section 2.1 Rectangular Coordinate Systems P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is

More information

Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true) Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement

More information

12. Parallels. Then there exists a line through P parallel to l.

12. Parallels. Then there exists a line through P parallel to l. 12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails

More information

8.1 Find Angle Measures in Polygons

8.1 Find Angle Measures in Polygons 8.1 Find Angle Measures in Polygons Obj.: To find angle measures in polygons. Key Vocabulary Diagonal - A diagonal of a polygon is a segment that joins two nonconsecutive vertices. Polygon ABCDE has two

More information

Coordinate Plane Project

Coordinate Plane Project Coordinate Plane Project C. Sormani, MTTI, Lehman College, CUNY MAT631, Fall 2009, Project XI BACKGROUND: Euclidean Axioms, Half Planes, Unique Perpendicular Lines, Congruent and Similar Triangle Theorems,

More information

Geometry Handout 2 ~ Page 1

Geometry Handout 2 ~ Page 1 1. Given: a b, b c a c Guidance: Draw a line which intersects with all three lines. 2. Given: a b, c a a. c b b. Given: d b d c 3. Given: a c, b d a. α = β b. Given: e and f bisect angles α and β respectively.

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

Math 531, Exam 1 Information.

Math 531, Exam 1 Information. Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

More information