1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)


 Erik Shaw
 1 years ago
 Views:
Transcription
1 Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible 3 3 matrix, then its rows form a basis of R 3. T (2) For any matrix A, one has dim(im(a)) = dim(im(rrefa))). T We have ker(a) = ker(rref(a)), then apply the ranknullity theorem. (3) There exists a real 2 2 matrix A such that A 2 = I. T Rotation by 90. (4) If A and B are symmetric 3 3 matrices, then AB is symmetric. F A = [ ] 0 1, B = 1 0 [ ] (5) There exists an invertible 3 3 matrix, for which 7 of the 9 entries are identical. T A = (6) If T : R 2 R 2 is a linear transformation of determinant 1, and S R 2 is a line segment of length 1, then the image T(S) is a line segment of length 1 as well. F
2 This would only be true (for all segments S) if T would preserve distances, i.e. if it were orthogonal. (7) If A is an invertible 4 4 matrix, then the unique least squares solution to A x = b is A 1 b. T If so, A T is invertible, so we can multiply on the left with (A T ) 1 in A T A x = A T b. (8) There exist two invertible 2 2 matrices A and B such that det(a + B) = det(a) + det(b). T A = I and B = [ ] (9) The span of m orthonormal vectors is mdimensional. T (10) If A and B are invertible matrices, then AB and BA are similar. T AB = A(BA)A 1. (11) For any 3 3 real matrix there is a real number λ such that A+λI is not invertible.t The characteristic polynomial is of odd degree, so it has a real root a. Take λ = a. (12) Every n n matrix is diagonalizable over the complex numbers. F B = [ ] (13) The trace of a real skewsymmetric matrix is always equal to 0. T All diagonal elements are 0.
3 (14) The eigenvalues of an orthogonal matrix are always real. F No, e.g. rotation by 90. (15) For any matrix A, the product AA T is diagonalizable. T AA T is symmetric. (16) If A and B are square matrices with the same eigenbasis v 1,..., v n, then AB = BA. T (17) If the matrix A has an eigenbasis, then the matrix A 3 A 4I must also admit an eigenbasis. T The same basis works. (18) If A is invertible, then the quadratic form corresponding to A T A is positive definite. T v T A T Av = (Av) T Av = Av 2 > 0 for all v 0. (19) If A is an n n matrix with an eigenvalue λ of geometric multiplicity n, then A has to be a multiple of the identity matrix I. T (20) If A is a symmetric matrix, then its singular values coincide with its eigenvalues. F They are the absolute values of the eigenvalues.
4 In problems 2 through 9, you must justify your answers. 2. (10 points) (a) Is there a 3 3 matrix A such that im(a) = ker(a)? If yes, give an example. If not, justify your answer. (b) Is there a 6 6 matrix A such that im(a) = ker(a)? If yes, give an example. If not, justify your answer. (a) No. We have dim(im(a)) + dim(ker(a)) = 3, so the two cannot be equal. (b) Yes, for example the block matrix (with 3 3 blocks) [ ] 0 I3 A =. 0 0 Both the kernel and the image are the span of the last three standard vectors.
5 3.(10 points) (a) Find a basis for the plane in R 3 whose equation is x 1 + 2x 2 3x 3 = 0. (b) Find the matrix for reflection across the plane in part (a). (a) The columns of 1 2 A = Indeed, since the two vectors are linearly independent and the plane is two dimensional, they must form a basis. (b) The formula for orthogonal projection in that plane is A(A T A) 1 A T = Reflection is 2A(A T A) 1 A T I =
6 4.(10 points) (a) Let A = Find its rank and a basis for its image. (b) Find an orthonormal basis for ker(a). 1 (c) Find the orthogonal projection of the vector v = 0 0 onto ker(a). 0 (a) Rank two. Any two columns form a basis. (b) The kernel must be twodimensional, so to get a basis it suffices to find two linearly independent vectors in it, such as 1 2 1, 0 Then by applying GramSchmidt we get an orthonormal basis 3/10 (c) ( u 1 v) u 1 + ( u 2 v) u 2 = 4/10 1/10. 2/ / 6 u 1 = 2/ 2/ / 6, u 2 = 1/ 30 4/ /. 30
7 5. (10 points) Let A be an invertible n n matrix (with real coefficients) and adj(a) its classical adjoint. (a) Describe the relation between A 1 and adj(a). (b) Show that if adj(a) is symmetric, then A is symmetric. (c) Show that if adj(a) = I and n 2, then A = I or A = I. (a) A 1 = 1 det(a) adj(a). (b) We get (det(a) A 1 ) T = det(a)a 1. Since det(a) = det(a T ) 0, we can divide by it and get that A 1 is symmetric, which implies that so is A. (c) Let d = det(a). Then A 1 = 1 d I. Taking determinants we get d 1 = d n, so d n 1 = 1.Since n is real, we must have d = 1 or 1. We get A 1 = ±I, so A = ±I.
8 6.(10 [ points) ] Let A[ be] the 2 2 matrix with eigenvalues λ 1 = 2 and λ 2 = 1 for which 2 1 v 1 = and v 1 2 = are corresponding eigenvectors. 1 (a) Find A. (b) What are the eigenvalues of A + I? (c) Calculate (A + I) 100. (a) (b) 3 and 0, in fact A = [ ][ ][ ] 1 [ ] = [ ] [ ][ (A + I) = ] 1 (c) [ ][ ][ ] [ ] (A + I) = =
9 7.(10 points) Let A be a 3 3 matrix such that A 2 = 4A 4I. (a) What are all the possible eigenvalues of A? Justify your answer. (b) Give an example of a 3 3 matrix A 2I satisfying A 2 = 4A 4I. (a) If A v = λ v then 0 = (A 2 4A + 4) v = (λ 2 4λ + 4) v so (if v 0) λ = 2 is the only possibility (b) A =
10 8.(10 points) Consider the matrix A = Find an orthogonal matrix S and a diagonal matrix D such that D = S 1 AS. The eigenvalues are 2 and 2, the first with multiplicity two. The (+2)eigenspace is 0 1/ 2 spanned by the orthonormal vectors 1 and 0 0 1/. The ( 2)eigenspace is spanned by 2 1/ 2 the unit vector 0 1/. Thus we can take 2 0 1/ 2 1/ 2 S = / 2 1/ , D =
11 9.(10 points) For c > 0, let 0 c 0 A = c (a) Find the singular values of A. (b) Suppose we know that there exists a vector v R 3 such that v = 10 and A v = 100. What are the possible values of c? Remark: Given an ellipsoid centered at the origin with principal axes of lengths r 1 r 2 r 3, the set of possible distances from a point on the ellipsoid to the origin is the interval [r 1, r 3 ]. (a) 3, c and c + 1. (b) The image of the unit sphere is an ellipsoid with principal axes of lengths 3, c and c + 1. The vector v/10 is on the unit sphere, so A v/10 is on the ellipsoid (and has length 10). Since 10 > 3, the necessary and sufficient condition is that 10 c + 1, that is, c 9.
12 Do not write on this page. 1 out of 20 points 2 out of 10 points 3 out of 10 points 4 out of 10 points 5 out of 10 points 6 out of 10 points 7 out of 10 points 8 out of 10 points 9 out of 10 points Total out of 100 points
Chapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More informationRecall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the ndimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationOrthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
More information1 Eigenvalues and Eigenvectors
Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x
More informationNotes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
More informationSolution based on matrix technique Rewrite. ) = 8x 2 1 4x 1x 2 + 5x x1 2x 2 2x 1 + 5x 2
8.2 Quadratic Forms Example 1 Consider the function q(x 1, x 2 ) = 8x 2 1 4x 1x 2 + 5x 2 2 Determine whether q(0, 0) is the global minimum. Solution based on matrix technique Rewrite q( x1 x 2 = x1 ) =
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More information1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More informationSummary of week 8 (Lectures 22, 23 and 24)
WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationSolutions to Linear Algebra Practice Problems
Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the
More informationSolution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.
Solutions to Math 30 Takehome prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)
More informationSection 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj
Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More informationMATH 551  APPLIED MATRIX THEORY
MATH 55  APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
More informationUniversity of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
More informationMatrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.
2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Theorem 8: Let A be a square matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true
More informationINTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL
SOLUTIONS OF THEORETICAL EXERCISES selected from INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL Eighth Edition, Prentice Hall, 2005. Dr. Grigore CĂLUGĂREANU Department of Mathematics
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More information1 Orthogonal projections and the approximation
Math 1512 Fall 2010 Notes on least squares approximation Given n data points (x 1, y 1 ),..., (x n, y n ), we would like to find the line L, with an equation of the form y = mx + b, which is the best fit
More informationEigenvalues and Eigenvectors
Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More information5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES
5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES Definition 5.3. Orthogonal transformations and orthogonal matrices A linear transformation T from R n to R n is called orthogonal if it preserves
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,
More informationDeterminants. Dr. Doreen De Leon Math 152, Fall 2015
Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.
More informationApplied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
More informationSection 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =
Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and
More informationDiagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions
Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential
More informationCofactor Expansion: Cramer s Rule
Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More informationUsing row reduction to calculate the inverse and the determinant of a square matrix
Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationSimilar matrices and Jordan form
Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More informationISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
More informationAdvanced Techniques for Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz
Advanced Techniques for Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Vectors Arrays of numbers Vectors represent a point in a n dimensional
More information3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.
Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R
More informationSTUDY GUIDE LINEAR ALGEBRA. David C. Lay University of Maryland College Park AND ITS APPLICATIONS THIRD EDITION UPDATE
STUDY GUIDE LINEAR ALGEBRA AND ITS APPLICATIONS THIRD EDITION UPDATE David C. Lay University of Maryland College Park Copyright 2006 Pearson AddisonWesley. All rights reserved. Reproduced by Pearson AddisonWesley
More informationFacts About Eigenvalues
Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v
More informationApplied Linear Algebra
Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 7 Eigenvalues and Eigenvectors ChiaHui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan 7.1 DYNAMICAL
More informationSergei Silvestrov, Christopher Engström, Karl Lundengård, Johan Richter, Jonas Österberg. November 13, 2014
Sergei Silvestrov,, Karl Lundengård, Johan Richter, Jonas Österberg November 13, 2014 Analysis Todays lecture: Course overview. Repetition of matrices elementary operations. Repetition of solvability of
More informationUniversity of Ottawa
University of Ottawa Department of Mathematics and Statistics MAT 1302A: Mathematical Methods II Instructor: Alistair Savage Final Exam April 2013 Surname First Name Student # Seat # Instructions: (a)
More informationPractice Math 110 Final. Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16.
Practice Math 110 Final Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16. 1. Let A = 3 1 1 3 3 2. 6 6 5 a. Use Gauss elimination to reduce A to an upper triangular
More informationExamination paper for TMA4115 Matematikk 3
Department of Mathematical Sciences Examination paper for TMA45 Matematikk 3 Academic contact during examination: Antoine Julien a, Alexander Schmeding b, Gereon Quick c Phone: a 73 59 77 82, b 40 53 99
More informationWHICH LINEARFRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE?
WHICH LINEARFRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE? JOEL H. SHAPIRO Abstract. These notes supplement the discussion of linear fractional mappings presented in a beginning graduate course
More informationMAT 242 Test 2 SOLUTIONS, FORM T
MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationThe Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationProblems. Universidad San Pablo  CEU. Mathematical Fundaments of Biomedical Engineering 1. Author: First Year Biomedical Engineering
Universidad San Pablo  CEU Mathematical Fundaments of Biomedical Engineering 1 Problems Author: First Year Biomedical Engineering Supervisor: Carlos Oscar S. Sorzano September 15, 013 1 Chapter 3 Lay,
More informationLectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n realvalued matrix A is said to be an orthogonal
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationLinear Algebra Problems
Math 504 505 Linear Algebra Problems Jerry L. Kazdan Note: New problems are often added to this collection so the problem numbers change. If you want to refer others to these problems by number, it is
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More information1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0
Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are
More informationMA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam
MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am  :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.
More information10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES
55 CHAPTER NUMERICAL METHODS. POWER METHOD FOR APPROXIMATING EIGENVALUES In Chapter 7 we saw that the eigenvalues of an n n matrix A are obtained by solving its characteristic equation n c n n c n n...
More informationLecture 11. Shuanglin Shao. October 2nd and 7th, 2013
Lecture 11 Shuanglin Shao October 2nd and 7th, 2013 Matrix determinants: addition. Determinants: multiplication. Adjoint of a matrix. Cramer s rule to solve a linear system. Recall that from the previous
More information2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors
2.1: Determinants by Cofactor Expansion Math 214 Chapter 2 Notes and Homework Determinants The minor M ij of the entry a ij is the determinant of the submatrix obtained from deleting the i th row and the
More informationSolutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
More information10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES
58 CHAPTER NUMERICAL METHODS. POWER METHOD FOR APPROXIMATING EIGENVALUES In Chapter 7 you saw that the eigenvalues of an n n matrix A are obtained by solving its characteristic equation n c nn c nn...
More informationThe Inverse of a Matrix
The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square
More informationProblem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.
Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve
More information(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product
More information1 Spherical Kinematics
ME 115(a): Notes on Rotations 1 Spherical Kinematics Motions of a 3dimensional rigid body where one point of the body remains fixed are termed spherical motions. A spherical displacement is a rigid body
More information4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:
More informationMatrices, Determinants and Linear Systems
September 21, 2014 Matrices A matrix A m n is an array of numbers in rows and columns a 11 a 12 a 1n r 1 a 21 a 22 a 2n r 2....... a m1 a m2 a mn r m c 1 c 2 c n We say that the dimension of A is m n (we
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationOn the general equation of the second degree
On the general equation of the second degree S Kesavan The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai  600 113 email:kesh@imscresin Abstract We give a unified treatment of the
More information(January 14, 2009) End k (V ) End k (V/W )
(January 14, 29) [16.1] Let p be the smallest prime dividing the order of a finite group G. Show that a subgroup H of G of index p is necessarily normal. Let G act on cosets gh of H by left multiplication.
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationReview Jeopardy. Blue vs. Orange. Review Jeopardy
Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 03 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?
More information5. Orthogonal matrices
L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 51 Orthonormal
More informationPresentation 3: Eigenvalues and Eigenvectors of a Matrix
Colleen Kirksey, Beth Van Schoyck, Dennis Bowers MATH 280: Problem Solving November 18, 2011 Presentation 3: Eigenvalues and Eigenvectors of a Matrix Order of Presentation: 1. Definitions of Eigenvalues
More informationNOTES on LINEAR ALGEBRA 1
School of Economics, Management and Statistics University of Bologna Academic Year 205/6 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura
More informationNumerical Methods I Eigenvalue Problems
Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More information17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):
More informationBasics Inversion and related concepts Random vectors Matrix calculus. Matrix algebra. Patrick Breheny. January 20
Matrix algebra January 20 Introduction Basics The mathematics of multiple regression revolves around ordering and keeping track of large arrays of numbers and solving systems of equations The mathematical
More informationTopic 1: Matrices and Systems of Linear Equations.
Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method
More informationx + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3
Math 24 FINAL EXAM (2/9/9  SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r
More informationMATH36001 Background Material 2015
MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be
More informationMAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
More informationIterative Methods for Computing Eigenvalues and Eigenvectors
The Waterloo Mathematics Review 9 Iterative Methods for Computing Eigenvalues and Eigenvectors Maysum Panju University of Waterloo mhpanju@math.uwaterloo.ca Abstract: We examine some numerical iterative
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationMath 313 Lecture #10 2.2: The Inverse of a Matrix
Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is
More informationC 1 x(t) = e ta C = e C n. 2! A2 + t3
Matrix Exponential Fundamental Matrix Solution Objective: Solve dt A x with an n n constant coefficient matrix A x (t) Here the unknown is the vector function x(t) x n (t) General Solution Formula in Matrix
More informationThe Second Undergraduate Level Course in Linear Algebra
The Second Undergraduate Level Course in Linear Algebra University of Massachusetts Dartmouth Joint Mathematics Meetings New Orleans, January 7, 11 Outline of Talk Linear Algebra Curriculum Study Group
More informationMATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationIntroduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra  1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
More informationMath 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010
Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 SelfAdjoint and Normal Operators
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More information