Matrices, Determinants and Linear Systems


 Sabrina Whitehead
 1 years ago
 Views:
Transcription
1 September 21, 2014
2 Matrices A matrix A m n is an array of numbers in rows and columns a 11 a 12 a 1n r 1 a 21 a 22 a 2n r a m1 a m2 a mn r m c 1 c 2 c n We say that the dimension of A is m n (we also could say mbyn). If m = n, we say that A is square, otherwise we say that it is rectangular. Recommended videos to follow the class at Khan Academy (click)
3 Matrices Main diagonal. If A is a square matrix of dimension n, the elements a ii, i = 1,...,n form the main diagonal of the matrix; the sum of these elements is called the trace of the matrix. Transpose of a matrix. it is the matrix obtained when interchanging rows and columns.
4 Generalities on Matrices Special shapes: Khan Academy Row matrix, column matrix. Diagonal matrix. Identity matrix I. Null matrix O. Triangular matrices (upper, lower). Symmetric matrix, skewsymmetric matrix. Diagonal by blocks matrix.
5 Matrices Operations: Khan Academy 1. Addition. Properties: Commutative: A+B = B +A Associative: A+(B +C) = (A+B)+C Neutral element: null matrix. A+O = A Inverse element: negative of a matrix. A+( A) = O 2. Multiplication by a number. Properties: λ (A+B) = λ A+λ B, (λ+µ) A = λ A+µ A λ (µ A) = (λ µ) A 1 A = A.
6 Matrices Operations: Khan Academy 3. Multiplication of two matrices. Properties: Not commutative, in general. i.e. A B B A. Associative: A (B C) = (A B) C Neutral element for square matrices: identity matrix. A I = I A = A Inverse element for certain square matrices: inverse matrix. (A B) T = B T A T. Obs: The matrices A and B are said to commute if A B = B A. A is said regular, invertible if it has inverse, otherwise is said singular.
7 Matrices Inverse of a matrix: given an square matrix A, A 1 (its inverse) is the matrix, if it exists, fulfilling A A 1 = A 1 A = I A 1 does not always exist. A characterization of its existence can be achieved by using determinants, or the notion of rank. (A 1 ) T = (A T ) 1. (A B) 1 = B 1 A 1 Two ways for computing it: determinants or GaussJordan method (see later).
8 Determinants Given a square matrix A, the determinant of A, denoted by A, or det(a), is a number associated with A. A is defined first for 2 2 matrices Khan Academy. For matrices of higher order, in principle it can be computed by expanding along any row/column. For example, if A is 3 3, then we can expand along the first row (we might also choose any other row or column) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 A 11 +a 12 A 12 +a 13 A 13 where A ij denotes the cofactor of the entry a ij (i.e. the signed minor of a ij ). Also, for 3 3 matrices, Sarrus rule may be useful.
9 Determinants Basic properties: 1. A = A t 2. If A and B are square matrices of the same order, then A B = A B. 3. If all the elements in a row (or column) admit a same factor, then that number can be taken out of the determinant. 4. If we interchange two rows (or columns), the determinant changes sign.
10 Determinants Basic properties: 5. If A has a row or a column of 0 s, then det(a) = If A has two rows (or columns) which are either equal or proportional, then det(a) = 0. The value is also 0 if there is some row (column) which is a linear combination of others. 7. The value of the determinant does not change if we add to a row (or column) other rows (or columns) multiplied by numbers. This property is essential for efficiently computing determinants. Efficient computation of determinants: Khan Academy
11 Determinants Computation of the inverse of an square matrix A. The inverse A 1 exists if and only if A = 0. A 1 = 1 A AdjT (A) = 1 A Adj(AT ), where Adj(A) is the cofactor matrix, i.e. for each i, j, the corresponding element is the cofactor of a ij. Alternative: Gauss method. Khan Academy
12 Rank of a Matrix We say that a certain row r (similarly for columns) is a linear combination of the rows r i1,...,r is if r can be obtained from these rows by means of an expression like α 1 r i1 + +α s r is for certain numbers α 1,...,α s, which are called the coefficients of the linear combination. We say that certain rows (similarly for columns) are linearly independent, if none of them can be obtained as a linear combination of the rest. Otherwise, we say that they are linearly dependent. Question: When are two rows (resp. two columns) linearly dependent?
13 Rank of a Matrix Definition The rank of a matrix A, rank(a), is the maximum number of rows (or columns) which are linearly independent. An equivalent definition of rank, in terms of determinants. A minor, in a matrix A, is any determinant that you can get by eliminating some rows and/or columns. Then one may see that rank(a) is the maximum order of the nonzero minors of A. (explanation: Khan Academy)
14 Rank of a Matrix Some observations/properties: We say that a square matrix of orden n has full rank (or is regular), if rank(a) = n. It can be proven that this happens if and only if the determinant of A is different from 0 (therefore, if and only if A is invertible). If A is square and has not full rank, it is called singular; such a matrix has no inverse. The rank by rows coincides with the rank by columns. rank(a) = rank(a T ). If the dimension of A is m n, then rank(a) min(m,n). When we compute the rank, we find rows/columns which are linearly independent!
15 Rank of a Matrix Some rules for computing rank(a): A matrix has rank 0 if and only if all its elements are 0, i.e., A = O. A row/column of 0 s does not count for determining the rank of A. Similarly, a row/colum which is clearly a multiple of another row/colum, or a linear combination of rows/columns, does not count, either. The rank does not change if we perform elementary operations on A (swapping rows/columns, multiplying a row/column by a number, add a linear combination of rows/column to another row/colum). From a practical point of view, the computation of the rank can be done either using determinants or by means of Gauss method. Khan Academy
16 Linear Systems: Definitions A System of Linear Equations is a set of equations of the type a 11 x 1 +a 12 x 2 + a 1n x n = b 1 a 21 x 1 +a 22 x 2 + a 2n x n = b 2. a m1 x 1 +a m2 x 2 + a mn x n.. = b m x i s: unknowns a ij s: coefficients b j s: constant terms
17 Linear Systems: Definitions The system can be written in matrix form in the following way: a 11 a 12 a 1n x 1 b 1 a 21 a 22 a 2n x = b 2. a m1 a m2 a mn x n b m Abbreviately, A x = b A: Coefficients matrix. x: vector of unknowns b: vector of constant terms. Question: why is the above equality true?
18 Classification of Linear Systems Classification of Linear Systems: linear systems can be 1 Inconsistent, if it has no solution. 2 Consistent, if it has some solution (i.e. it is solvable). In this case, it can have A Unique solution, or Infinitely many solutions.
19 Classification of Linear Systems In order to classify a given linear system, we use the augmented matrix, and RoucheFröbenius Theorem. The augmented matrix, that we denote by B, is a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 B = a m1 a m2 a mn b m
20 Classification of Linear Systems Theorem (RoucheFröbenius Theorem) Let A x = b be a linear system of m equations with n unknowns, and let B denote the augmented matrix of the system. Then the system is consistent if and only if rank(a) = rank(b); furthermore, the system has a unique solution if rank(a) = rank(b) = n, and infinitely many solutions if rank(a) = rank(b) < n. When rank(a) = rank(b) = n, the difference n rank(a) is in fact the number of degrees of freedom of the system, i.e. the number of parameters the solutions depend on.
21 Solving Linear Systems Two possibilities: 1 Cramer s Method: uses determinants and must be applied on a Cramer s system (i.e. a system where the coefficients matrix has full rank). It is not efficient for big systems. 2 Gauss and GaussJordan Method: does not require to compute determinants, but just simple operations with rows/columns. Efficient for big systems. In both cases, Khan Academy
22 Homogeneous Linear Systems These are those linear systems where the constant terms are all 0: a 11 x 1 +a 12 x 2 + a 1n x n = 0 a 21 x 1 +a 22 x 2 + a 2n x n = 0... a m1 x 1 +a m2 x 2 + a mn x n = 0 Always consistent (why?) The interesting question is whether it has other solutions, up to the trivial one (in such a case it has infinitely many!) This happens only if rank(a) < n. If A is square, this is equivalent to A = 0.
1. Linear systems of equations. Chapters 78: Linear Algebra. Solution(s) of a linear system of equations. Row operations.
A linear system of equations of the form Sections 75 78 & 8 a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m can be written in matrix form as AX = B where a a a n x
More informationTopic 1: Matrices and Systems of Linear Equations.
Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method
More informationAPPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the cofactor matrix [A ij ] of A.
APPLICATIONS OF MATRICES ADJOINT: Let A = [a ij ] be a square matrix of order n. Let Aij be the cofactor of a ij. Then the n th order matrix [A ij ] T is called the adjoint of A. It is denoted by adj
More information(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product
More informationChapters 78: Linear Algebra
Sections 75, 78 & 81 Solutions 1 A linear system of equations of the form a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationLecture 5: Matrix Algebra
Lecture 5: Matrix Algebra In Song Kim September 7, 2011 1 Matrix Algebra 11 Definition Matrix: A matrix is an array of mn real numbers arranged in m rows by n columns a 11 a 12 a 1n a 21 a 22 a 2n A =
More informationMatrix generalities. Summary. 1. Particular matrices. Matrix of dimension ; A a. Zero matrix: All its elements a 0
Matrix generalities Summary 1. Particular matrices... 1 2. Matrix operations... 2 Scalar multiplication:... 2 Sum of two matrices of the same dimension () and... 2 Multiplication of two matrices and of
More informationPOL502: Linear Algebra
POL502: Linear Algebra Kosuke Imai Department of Politics, Princeton University December 12, 2005 1 Matrix and System of Linear Equations Definition 1 A m n matrix A is a rectangular array of numbers with
More information1.5 Elementary Matrices and a Method for Finding the Inverse
.5 Elementary Matrices and a Method for Finding the Inverse Definition A n n matrix is called an elementary matrix if it can be obtained from I n by performing a single elementary row operation Reminder:
More informationUNIT 2 MATRICES  I 2.0 INTRODUCTION. Structure
UNIT 2 MATRICES  I Matrices  I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress
More informationLinear algebra vectors, matrices, determinants
Linear algebra vectors, matrices, determinants Mathematics FRDIS MENDELU Simona Fišnarová Brno 2012 Vectors in R n Definition (Vectors in R n ) By R n we denote the set of all ordered ntuples of real
More informationChapter 2 Review. Solution of Linear Systems by the Echelon Method
Chapter 2 Review Solution of Linear Systems by the Echelon Method A firstdegree equation in n unknowns is any equation of the form a 1 x 1 + a 2 x 2 + + a n x n = k, where a 1, a 2,..., a n and k are
More information1 Determinants. Definition 1
Determinants The determinant of a square matrix is a value in R assigned to the matrix, it characterizes matrices which are invertible (det 0) and is related to the volume of a parallelpiped described
More information2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors
2.1: Determinants by Cofactor Expansion Math 214 Chapter 2 Notes and Homework Determinants The minor M ij of the entry a ij is the determinant of the submatrix obtained from deleting the i th row and the
More informationMatrix Inverses. Since the linear system. can be written as. where. ,, and,
Matrix Inverses Consider the ordinary algebraic equation and its solution shown below: Since the linear system can be written as where,, and, (A = coefficient matrix, x = variable vector, b = constant
More information1 Systems Of Linear Equations and Matrices
1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a
More informationMathematics Notes for Class 12 chapter 3. Matrices
1 P a g e Mathematics Notes for Class 12 chapter 3. Matrices A matrix is a rectangular arrangement of numbers (real or complex) which may be represented as matrix is enclosed by [ ] or ( ) or Compact form
More informationCofactor Expansion: Cramer s Rule
Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating
More informationMatrices Gaussian elimination Determinants. Graphics 2011/2012, 4th quarter. Lecture 4: matrices, determinants
Lecture 4 Matrices, determinants m n matrices Matrices Definitions Addition and subtraction Multiplication Transpose and inverse a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn is called an m n
More informationUnit 19 Properties of Determinants
Unit 9 Properties of Determinants Theorem 9.. Suppose A and B are identical n n matrices with the exception that one row (or column) of B is obtained by multiplying the corresponding row (or column) of
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More information( % . This matrix consists of $ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&
Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important
More informationMAT Solving Linear Systems Using Matrices and Row Operations
MAT 171 8.5 Solving Linear Systems Using Matrices and Row Operations A. Introduction to Matrices Identifying the Size and Entries of a Matrix B. The Augmented Matrix of a System of Equations Forming Augmented
More informationMATH 2030: ASSIGNMENT 3 SOLUTIONS
MATH : ASSIGNMENT SOLUTIONS Matrix Operations Q.: pg 9, q. Write the system of linear equations as a matrix equation of the form Ax = b. x + x =, x x =, x + x = A.. x x =. x Q.: pg 9, q. Compute AB by
More informationChapters 2 & 3: Matrices, Systems of Linear Equations, and Determinants
Chapters 2 & 3: Matrices, Systems of Linear Equations, and Determinants Philip Gressman University of Pennsylvania Philip Gressman Math 240 002 2014C: Chapter 2 1 / 36 Matrices: Definitions, Notation,
More informationLinear Algebra A Summary
Linear Algebra A Summary Definition: A real vector space is a set V that is provided with an addition and a multiplication such that (a) u V and v V u + v V, (1) u + v = v + u for all u V en v V, (2) u
More informationAdvanced Techniques for Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz
Advanced Techniques for Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Vectors Arrays of numbers Vectors represent a point in a n dimensional
More informationSergei Silvestrov, Christopher Engström, Karl Lundengård, Johan Richter, Jonas Österberg. November 13, 2014
Sergei Silvestrov,, Karl Lundengård, Johan Richter, Jonas Österberg November 13, 2014 Analysis Todays lecture: Course overview. Repetition of matrices elementary operations. Repetition of solvability of
More informationNOTES on LINEAR ALGEBRA 1
School of Economics, Management and Statistics University of Bologna Academic Year 205/6 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura
More informationIntroduction to Linear Algebra III
Introduction to Linear Algebra III Jack Xin (Lecture) and J. Ernie Esser (Lab) Abstract Linear system, matrix and matrix operations, row echelon form, rank. 1 Linear System and Matrix A linear system:
More information10.1 Systems of Linear Equations: Substitution and Elimination
10.1 Systems of Linear Equations: Substitution and Elimination What does it mean to be a solution to a system of equations?  It is the set of all ordered pairs (x, y) that satisfy the two equations. You
More informationIntroduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello
Introduction to Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Vectors Arrays of numbers Vectors represent a point in a n dimensional
More informationBasic Linear Algebra. 2.1 Matrices and Vectors. Matrices. For example,, 1 2 3
Basic Linear Algebra In this chapter, we study the topics in linear algebra that will be needed in the rest of the book. We begin by discussing the building blocks of linear algebra: matrices and vectors.
More informationPreliminaries of linear algebra
Preliminaries of linear algebra (for the Automatic Control course) Matteo Rubagotti March 3, 2011 This note sums up the preliminary definitions and concepts of linear algebra needed for the resolution
More information2.5 Elementary Row Operations and the Determinant
2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)
More informationMatrix Inverse and Determinants
DM554 Linear and Integer Programming Lecture 5 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1 2 3 4 and Cramer s rule 2 Outline 1 2 3 4 and
More informationSection 1: Linear Algebra
Section 1: Linear Algebra ECO4112F 2011 Linear (matrix) algebra is a very useful tool in mathematical modelling as it allows us to deal with (among other things) large systems of equations, with relative
More informationSolving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
More informationDeterminants. Dr. Doreen De Leon Math 152, Fall 2015
Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.
More informationMethods for Finding Bases
Methods for Finding Bases Bases for the subspaces of a matrix Rowreduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,
More information= [a ij ] 2 3. Square matrix A square matrix is one that has equal number of rows and columns, that is n = m. Some examples of square matrices are
This document deals with the fundamentals of matrix algebra and is adapted from B.C. Kuo, Linear Networks and Systems, McGraw Hill, 1967. It is presented here for educational purposes. 1 Introduction In
More informationUnit 17 The Theory of Linear Systems
Unit 17 The Theory of Linear Systems In this section, we look at characteristics of systems of linear equations and also of their solution sets. Theorem 17.1. For any system of linear equations A x = b,
More informationIntroduction to Matrix Algebra I
Appendix A Introduction to Matrix Algebra I Today we will begin the course with a discussion of matrix algebra. Why are we studying this? We will use matrix algebra to derive the linear regression model
More information4.2: Systems of Linear Equations and Augmented Matrices 4.3: GaussJordan Elimination
4.2: Systems of Linear Equations and Augmented Matrices 4.3: GaussJordan Elimination 4.2/3.1 We have discussed using the substitution and elimination methods of solving a system of linear equations in
More informationPhysics 116A Solving linear equations by Gaussian Elimination (Row Reduction)
Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Peter Young (Dated: February 12, 2014) I. INTRODUCTION The general problem is to solve m linear equations in n variables. In
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationLecture 11: Solving Systems of Linear Equations by Gaussian Elimination
Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University February 3, 2016 Review: The coefficient matrix Consider a system of m linear equations in n variables.
More informationChapter 4: Systems of Equations and Ineq. Lecture notes Math 1010
Section 4.1: Systems of Equations Systems of equations A system of equations consists of two or more equations involving two or more variables { ax + by = c dx + ey = f A solution of such a system is an
More information1 Systems Of Linear Equations and Matrices
1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationLinear Algebra: Matrices
Linear Algebra: Matrices 1. Matrix Algebra 1 An m n matrix is a rectangular array of numbers a ij ; i = 1; 2; :::; m; j = 1; 2; :::; n: 0 1 a 11 a 12 a 1n A mn = (a ij ) = B a 21 a 22 a 2n C @...... A
More informationUsing row reduction to calculate the inverse and the determinant of a square matrix
Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible
More informationThis MUST hold matrix multiplication satisfies the distributive property.
The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients
More informationSolutions of Systems of Linear Equations in a Finite Field Nick Rimes
Solutions of Systems of Linear Equations in a Finite Field Nick Rimes Abstract: In this paper, the solutions for the system of linear equations of the form Av x is analyzed In particular, this paper focuses
More informationChapter 1  Matrices & Determinants
Chapter 1  Matrices & Determinants Arthur Cayley (August 16, 1821  January 26, 1895) was a British Mathematician and Founder of the Modern British School of Pure Mathematics. As a child, Cayley enjoyed
More informationDeterminant of a Matrix
Goals We will define determinant of SQUARE matrices, inductively, using the definition of Minors and cofactors. We will see that determinant of triangular matrices is the product of its diagonal elements.
More information9 Matrices, determinants, inverse matrix, Cramer s Rule
AAC  Business Mathematics I Lecture #9, December 15, 2007 Katarína Kálovcová 9 Matrices, determinants, inverse matrix, Cramer s Rule Basic properties of matrices: Example: Addition properties: Associative:
More informationProperties of Transpose
Properties of Transpose Transpose has higher precedence than multiplication and addition, so AB T = A B T and A + B T = A + B T As opposed to the bracketed expressions AB T and A + B T Example 1 1 2 1
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More informationSystems of Linear Equations
Systems of Linear Equations Systems of Linear Equations. We consider the problem of solving linear systems of equations, such as x 1 2x 2 = 8 3x 1 + x 2 = 3 In general, we write a system of m equations
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More informationMATH36001 Background Material 2015
MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be
More informationMatrices A = n n
Chapter 3 Matrices 3.1 Overview 3.1.1 A matrix is an ordered rectangular array of numbers (or functions). For example, A x 4 3 4 3 x 3 x 4 The numbers (or functions) are called the elements or the entries
More informationMath 240: Linear Systems and Rank of a Matrix
Math 240: Linear Systems and Rank of a Matrix Ryan Blair University of Pennsylvania Thursday January 20, 2011 Ryan Blair (U Penn) Math 240: Linear Systems and Rank of a Matrix Thursday January 20, 2011
More information7.1. Introduction to Matrices. Introduction. Prerequisites. Learning Outcomes. Learning Style
Introduction to Matrices 7.1 Introduction When we wish to solve large systems of simultaneous linear equations, which arise for example in the problem of finding the forces on members of a large framed
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More informationLinear Equations in Linear Algebra
1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a, is an where
More informationAlgebra is generous; she often gives more than is asked of her. (Jean D Alembert)
Chapter 8 Linear Algebra Algebra is generous; she often gives more than is asked of her. (Jean D Alembert) This chapter is called linear algebra, but what we will really see is the definition of a matrix,
More informationMATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.
MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An mbyn matrix is a rectangular array of numbers that has m rows and n columns: a 11
More informationPRACTICING PROOFS. For your convenience, we begin by recalling some preliminary definitions and theorems that can be used to solve the problems below.
PRACTICING PROOFS This file contains two sets of problems to practice your ability with proofs. Solutions to the first set of problems are provided. The solutions to the second set of problems are intentionally
More informationAPPENDIX F: MATRICES, DETERMINANTS, AND SYSTEMS OF EQUATIONS
APPENDIX F: MATRICES, DETERMINANTS, AND SYSTEMS OF EQUATIONS F1 MATRIX DEFINITIONS AND NOTATIONS MATRIX An m n matrix is a rectangular or square array of elements with m rows and n columns An example of
More informationName: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
More informationThe Inverse of a Matrix
The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square
More informationLecture # 2  Matrix Algebra
Lecture #  Matrix Algebra Consider our simple macro model Y = C + I + G C = a + by Y C = I + G by + C = a This is an example of system of linear equations and variables In general, a system of x: a 11
More informationcx + dy = f, de bf x = ad bc. Unique Solution of a 2 2 System The 2 2 system ax + by = e, (1)
Determinant Theory Unique Solution of Ax = b College Algebra Definition of Determinant Diagram for Sarrus 3 3 Rule Transpose Rule How to Compute the Value of any Determinant Four Rules to Compute any Determinant
More informationPhysics 116A Solving linear equations by Gaussian Elimination (Row Reduction)
Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Peter Young (Dated: February 22, 2013) I. INTRODUCTION The general problem is to solve m linear equations in n variables. In
More information1.3 Matrices and Matrix Operations
0 CHAPTER. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. Matrices and Matrix Operations.. De nitions and Notation Matrices are yet another mathematical object. Learning about matrices means learning what they
More informationDeterminants and Solutions of Linear Systems of Equations
Determinants and Solutions of Linear Systems of Equations Megan Zwolinski February 4, 2004 Contents 1 Introduction 1 2 Determinants 1 3 An nxn Matrix 1 4 Properties of Determinants 2 5 Rules for Determinants
More informationChapter 4: Binary Operations and Relations
c Dr Oksana Shatalov, Fall 2014 1 Chapter 4: Binary Operations and Relations 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition, subtraction,
More informationLecture 6. Inverse of Matrix
Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that
More informationRank. Rank. Definition. The set of all linear combination of the row vectors of a matrix A is called the row space of A and is denoted by Row A
Rank Rank he rank of a matrix is the maximum number of independent rows (or the maximum number of independent columns) Definition he set of all linear combination of the row vectors of a matrix A is called
More information1 Gaussian Elimination
Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 GaussJordan reduction and the Reduced
More informationLecture 12: Solving Systems of Linear Equations by Gaussian Elimination
Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 23, 2015 Review: The coefficient matrix Consider a system of m linear equations in n variables.
More informationLecture 2 The rank of a matrix
Lecture 2 Eivind Eriksen BI Norwegian School of Management Department of Economics September 3, 200 Eivind Eriksen (BI Dept of Economics) Lecture 2 September 3, 200 / 24 Linear dependence Linear dependence
More information2.6 The Inverse of a Square Matrix
200/2/6 page 62 62 CHAPTER 2 Matrices and Systems of Linear Equations 0 0 2 + i i 2i 5 A = 0 9 0 54 A = i i 4 + i 2 0 60 i + i + 5i 26 The Inverse of a Square Matrix In this section we investigate the
More informationCramer s Rule and Gauss Elimination
Outlines September 28, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Cramer s Rule Introduction Matrix Version
More informationMatrices provide a compact notation for expressing systems of equations or variables. For instance, a linear function might be written as: x n.
X. LINEAR ALGEBRA: THE BASICS OF MATRICES Matrices provide a compact notation for expressing systems of equations or variables. For instance, a linear function might be written as: y = a 1 + a 2 + a 3
More informationEP2.2/H3.1. HigherOrder Determinants The 1 1 matrix [a] [ is ] invertible exactly when a 0. The 2 2 matrix is invertible exactly when ad bc 0.
EP22/H31 HigherOrder Determinants The 1 1 matrix [a] [ is ] invertible exactly when a 0 a b The 2 2 matrix is invertible exactly when c d ad bc 0 What about a 3 3 matrix? Is there some short of expression
More informationElements of Matrix Theory
Elements of Matrix Theory M.T. Nair (I.I.T. Madras) March 27 Introduction Notations and Preliminaries Consider the following simultaneous equations  three equations in three unknowns: a x + a 2 x 2 +
More informationMathematics for Economics (Part I) Note 1: Linear Algebra
Natalia Lazzati Mathematics for Economics (Part I) Note : Linear Algebra Note is based on Searle and Willett () and Simon and Blume (994, Ch. 6, 7, 8, 9,, 6 and 7). Although most of the models economists
More informationMath 1313 Section 3.2. Section 3.2: Solving Systems of Linear Equations Using Matrices
Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying
More informationArithmetic and Algebra of Matrices
Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational
More informationMATH 304 Linear Algebra Lecture 9: Properties of determinants.
MATH 304 Linear Algebra Lecture 9: Properties of determinants. Determinants Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij ) 1 i,j n is denoted
More information, we define the determinant of a 21 a 22 A, (also denoted by deta,) to be the scalar. det A = a 11 a 22 a 12 a 21.
70 Chapter 4 DETERMINANTS [ ] a11 a DEFINITION 401 If A 12, we define the determinant of a 21 a 22 A, (also denoted by deta,) to be the scalar The notation a 11 a 12 a 21 a 22 det A a 11 a 22 a 12 a 21
More informationChapter 3. Determinants. 3.1 The determinant of a matrix. Homework: [Textbook, 3.1 Ex. 15, 17, 27, 33, 47, 55, 57; page 131].
Chapter 3 Determinants 3.1 The determinant of a matrix Homework: [Textbook, 3.1 Ex. 15, 17, 27, 33, 47, 55, 57; page 131]. The main point in this section is the following: 1. Define determinant of a matrix.
More informationSolving Systems of Linear Equations Using Matrices
Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.
More information