The Matrix Exponential


 Samson Wilkins
 1 years ago
 Views:
Transcription
1 Th Matrix Exponntial (with xrciss) Linar Algbra II  Spring 2006 by D. Klain prliminary vrsion Corrctions and commnts ar wlcom! Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k! A2 + 3! A3 + () k0 It is not difficult to show that this sum convrgs for all complx matrics A of any finit dimnsion. But w will not prov this hr. If A is a matrix t, thn A t, by th Maclaurin sris formula for th function y t. Mor gnrally, if D is a diagonal matrix having diagonal ntris d, d 2,..., d n, thn w hav D I + D + D2 + d 0 0 d d 2 0 d d n d d dn 0 0 Th situation is mor complicatd for matrics that ar not diagonal. Howvr, if a matrix A happns to b diagonalizabl, thr is a simpl algorithm for computing A, a consqunc of th following lmma. Lmma Lt A and P b complx n n matrics, and suppos that P is invrtibl. Thn P AP P A P Proof: Rcall that, for all intgrs m 0, w hav (P AP ) m P A m P. Th dfinition () thn yilds P AP I + P AP + (P AP ) 2 + I + P A2 AP + P P + P (I + A + A2 + )P P A P d 2
2 If a matrix A is diagonalizabl, thn thr xists an invrtibl P so that A P DP, whr D is a diagonal matrix of ignvalus of A, and P is a matrix having ignvctors of A as its columns. In this cas, A P D P. Exampl: Lt A dnot th matrix A Th radr can asily vrify that 4 and 3 ar ignvalus of A, with corrsponding ignvctors w and w 2. It follows that 2 A P DP so that A Th dfinition () immdiatly rvals many othr familiar proprtis. Th following proposition is asy to prov from th dfinition () and is lft as an xrcis. Proposition 2 Lt A b a complx squar n n matrix.. If 0 dnots th zro matrix, thn 0 I, th idntity matrix. 2. A m A A A m for all intgrs m. 3. ( A ) T (AT ) 4. If AB BA thn A B B A and A B B A. Unfortunatly not all familiar proprtis of th scalar xponntial function y t carry ovr to th matrix xponntial. For xampl, w know from calculus that s+t s t whn s and t ar numbrs. Howvr this is oftn not tru for xponntials of matrics. In othr words, it is possibl to hav n n matrics A and B such that A+B A B. S, for xampl, Exrcis 0 at th nd of this sction. Exactly whn w hav quality, A+B A B, dpnds on spcific proprtis of th matrics A and B that will b xplord latr on. Manwhil, w can at last vrify th following limitd cas: Proposition 3 Lt A b a complx squar matrix, and lt s, t C. Thn A(s+t) As At. 2
3 Proof: From th dfinition () w hav As At ( I + As + A2 s 2 ) ( + I + At + A2 t 2 A j s j ( A k t k ) j! k! j0 k0 + ) A j+k s j t k j0 k0 j!k! ( ) Lt n j + k, so that j n k. It now follows from ( ) and th binomial thorm that As At n0 k0 A n s n k t k (n k)!k! n0 A n n! k0 n! (n k)!k! sn k t k A n (s + t) n n0 n! A(s+t) Stting s and t in Proposition 3, w find that A A A(+()) 0 I. In othr words, rgardlss of th matrix A, th xponntial matrix A is always invrtibl, and has invrs A. W can now prov a fundamntal thorm about matrix xponntials. Both th statmnt of this thorm and th mthod of its proof will b important for th study of diffrntial quations in th nxt sction. Thorm 4 Lt A b a complx squar matrix, and lt t b a ral scalar variabl. f(t) ta. Thn f (t) A ta. Lt Proof: Applying Proposition 3 to th limit dfinition of drivativ yilds f (t) lim h 0 A(t+h) At h Applying th dfinition () to Ah I thn givs us At (lim h 0 Ah ) I h f (t) (lim At Ah + A2 h 2 ) + At A A At. h 0 h Thorm 4 is th fundamntal tool for proving important facts about th matrix xponntial and its uss. Rcall, for xampl, that thr xist n n matrics A and B such that A B A+B. Th following thorm provids a condition for whn this idntity dos hold. 3
4 Thorm 5 Lt A, B b n n complx matrics. If AB BA thn A+B A B. Proof: If AB BA, it follows from th formula () that A Bt Bt A, and similarly for othr combinations of A, B, A + B, and thir xponntials. Lt g(t) (A+B)t Bt At, whr t is a ral (scalar) variabl. By Thorm 4, and th product rul for drivativs, g (t) (A + B) (A+B)t Bt At + (A+B)t ( B) Bt At + (A+B)t Bt ( A) At (A + B)g(t) Bg(t) Ag(t) 0. Hr 0 dnots th n n zro matrix. Not that it was only possibl to factor ( A) and ( B) out of th trms abov bcaus w ar assuming that AB BA. Sinc g (t) 0 for all t, it follows that g(t) is an n n matrix of constants, so g(t) C for som constant matrix C. In particular, stting t 0, w hav C g(0). But th dfinition of g(t) thn givs C g(0) (A+B)0 B0 A I, th idntity matrix. Hnc, I C g(t) (A+B)t Bt At for all t. Aftr multiplying by At Bt on both sids w hav At Bt (A+B)t. Exrciss:. If A 2 0, th zro matrix, prov that A I + A. 2. Us th dfinition () of th matrix xponntial to prov th basic proprtis listd in Proposition 2. (Do not us any of th thorms of th sction! Your proofs should us only th dfinition () and lmntary matrix algbra.) 3. Show that ci+a c A, for all numbrs c and all squar matrics A. 4. Suppos that A is a ral n n matrix and that A T A. Prov that A is an orthogonal matrix. 5. If A 2 A thn find a nic simpl formula for A, similar to th formula in th first xrcis abov. 6. Comput A for ach of th following xampls: 0 (a) A (b) A (c) A a b 0 a 4
5 7. Comput A for ach of th following xampls: a b (a) A 0 0 (b) A a 0 b 0. If A 2 I, show that 2 A ( + ) ( I + ) A. 9. Suppos λ C and X C n is a nonzro vctor such that AX λx. Show that A X λ X. 0. Lt A and B dnot th matrics 0 A 0 0 B Show by dirct computation that A+B A B.. Show that, if A is diagonalizabl, thn dt( A ) trac(a). Not: Latr it will b sn that this is tru for all squar matrics. 5
6 Slctd Answrs and Solutions 4. Sinc ( A ) T AT, whn A T A w hav ( A ) T A AT A A A A A 0 I 5. If A 2 A thn A I + ( )A. 6. (a) A 0 (b) A 0 (c) A a a b 0 a 7. (a) A a b a (a ) 0 (Rplac b a (a ) by in ach cas if a 0.) (b) A a 0 b a (a ) 6
7 Linar Systms of Ordinary Diffrntial Equations Suppos that y f(x) is a diffrntiabl function of a ral (scalar) variabl x, and that y ky, whr k is a (scalar) constant. In calculus this diffrntial quation is solvd by sparation of variabls: y y y k y dx k dx so that ln y kx + c, and y c kx, for som constant c R. Stting x 0 w find that y 0 f(0) c, and conclud that y y 0 kx. (2) Instad, lt us solv th sam diffrntial quation y ky in a slightly diffrnt way. Lt F (x) kx y. Diffrntiating both sids, w hav F (x) k kx y + kx y k kx y + kx ky 0, whr th scond idntity uss th assumption that y ky. Sinc F (x) 0 for all x, th function F (x) must b a constant, F (x) a, for som a R. Stting x 0, w find that a F (0) k0 y(0) y 0, whr w again lt y 0 dnot y(0). W conclud that y kx y 0 as bfor. Morovr, this mthod provs that (2) dscribs all solutions to y ky. Th scond point of viw will prov valuabl for solving a mor complicatd linar systm of ordinary diffrntial quations (ODEs). For xampl, suppos Y (t) is a diffrntiabl vctorvalud function: y (t) Y y 2 (t) satisfying th diffrntial quations y 5y + y 2 y 2 2y + 2y 2 3 and initial condition Y 0 Y (0). In othr words, whr A dnots th matrix Y (t) Y AY, To solv this systm of ODEs, st F (t) At Y, whr At is dfind using th matrix xponntial formula () of th prvious sction. Diffrntiating (using th product rul) and applying Thorm 4 thn yilds F (t) A At Y + At Y A At Y + At AY 0, 7
8 whr th scond idntity uss th assumption that Y AY. Sinc F (t) 0 (th zro vctor), for all t, th function F must b qual to a constant vctor v; that is, F (t) v for all t. Evaluating at t 0 givs v F (0) A0 Y (0) Y 0, whr w dnot th valu Y (0) by th symbol Y 0. In othr words, Y 0 v F (t) At Y, for all valus of t. Hnc, Y At Y 0 At 3, and th diffrntial quation is solvd! Assuming, of cours, that w hav a formula for At. 5 In th prvious sction w obsrvd that th ignvalus of th matrix A ar and 3, with corrsponding ignvctors w and w 2. Thrfor, for 2 all scalar valus t, so that It follows that so that Y (t) At P DtP At P Dt P Y (t) At Y 0 At 3 y (t) y 2 (t) 2 4t 5 3t 2 4t + 0 3t t 4t 0 0 3t 4t 0 0 3t 2 2 4t 0 0 3t + 3t t. 3, 5 3t 2 Mor gnrally, if Y (t) AY (t), is a linar systm of ordinary diffrntial quations, thn th argumnts abov imply that Y At Y 0 If, in addition, w can diagonaliz A, so that λ 0 0 A P DP 0 λ 2 0 P λ n P
9 thn λ t 0 0 At P Dt P 0 λ 2t 0 P.... P λnt and Y (t) P Dt P Y 0. If th columns of P ar th ignvctors v,..., v n of A, whr ach Av i λ i v i, thn λ t 0 0 c Y (t) P Dt P 0 λ 2t 0 c 2 Y 0 v v 2 v n λnt whr Hnc, c c 2. P Y 0. (3) c n c Y (t) λt v λ2t v 2 λnt c 2 v n. c n Ths argumnts ar summarizd as follows. c λ t v + c 2 λ 2t v c n λnt v n. Thorm 6 Suppos that Y (t) : R R n (or C n ) is a diffrntiabl function of t such that Y (t) AY (t), and initial valu Y (0) Y 0. whr A is a diagonalizabl matrix, having ignvalus λ,..., λ n and corrsponding ignvctors v,..., v n. Thn Y (t) c λ t v + c 2 λ 2t v c n λnt v n. (4) If P is th matrix having columns v,..., v n thn th constants c i ar givn by th idntity (3). If on is givn a diffrnt initial valu of Y, say Y (t 0 ) at tim t 0, thn th quation (4) still holds, whr c c 2. Dt 0 P Y (t 0 ). c n For xrciss on diffrntial quations, plas consult th txtbook. c n 9
AP Calculus AB 2008 Scoring Guidelines
AP Calculus AB 8 Scoring Guidlins Th Collg Board: Conncting Studnts to Collg Succss Th Collg Board is a notforprofit mmbrship association whos mission is to connct studnts to collg succss and opportunity.
More informationME 612 Metal Forming and Theory of Plasticity. 6. Strain
Mtal Forming and Thory of Plasticity mail: azsnalp@gyt.du.tr Makin Mühndisliği Bölümü Gbz Yüksk Tknoloji Enstitüsü 6.1. Uniaxial Strain Figur 6.1 Dfinition of th uniaxial strain (a) Tnsil and (b) Comprssiv.
More informationEcon 371: Answer Key for Problem Set 1 (Chapter 1213)
con 37: Answr Ky for Problm St (Chaptr 23) Instructor: Kanda Naknoi Sptmbr 4, 2005. (2 points) Is it possibl for a country to hav a currnt account dficit at th sam tim and has a surplus in its balanc
More informationUpper Bounding the Price of Anarchy in Atomic Splittable Selfish Routing
Uppr Bounding th Pric of Anarchy in Atomic Splittabl Slfish Routing Kamyar Khodamoradi 1, Mhrdad Mahdavi, and Mohammad Ghodsi 3 1 Sharif Univrsity of Tchnology, Thran, Iran, khodamoradi@c.sharif.du Sharif
More informationAdverse Selection and Moral Hazard in a Model With 2 States of the World
Advrs Slction and Moral Hazard in a Modl With 2 Stats of th World A modl of a risky situation with two discrt stats of th world has th advantag that it can b natly rprsntd using indiffrnc curv diagrams,
More informationConstraintBased Analysis of Gene Deletion in a Metabolic Network
ConstraintBasd Analysis of Gn Dltion in a Mtabolic Ntwork Abdlhalim Larhlimi and Alxandr Bockmayr DFGRsarch Cntr Mathon, FB Mathmatik und Informatik, Fri Univrsität Brlin, Arnimall, 3, 14195 Brlin, Grmany
More informationMAXIMAL CHAINS IN THE TURING DEGREES
MAXIMAL CHAINS IN THE TURING DEGREES C. T. CHONG AND LIANG YU Abstract. W study th problm of xistnc of maximal chains in th Turing dgrs. W show that:. ZF + DC+ Thr xists no maximal chain in th Turing dgrs
More informationCPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.
Elmntary Rndring Elmntary rastr algorithms for fast rndring Gomtric Primitivs Lin procssing Polygon procssing Managing OpnGL Stat OpnGL uffrs OpnGL Gomtric Primitivs ll gomtric primitivs ar spcifid by
More informationIn the previous two chapters, we clarified what it means for a problem to be decidable or undecidable.
Chaptr 7 Computational Complxity 7.1 Th Class P In th prvious two chaptrs, w clarifid what it mans for a problm to b dcidabl or undcidabl. In principl, if a problm is dcidabl, thn thr is an algorithm (i..,
More informationSPREAD OPTION VALUATION AND THE FAST FOURIER TRANSFORM
RESEARCH PAPERS IN MANAGEMENT STUDIES SPREAD OPTION VALUATION AND THE FAST FOURIER TRANSFORM M.A.H. Dmpstr & S.S.G. Hong WP 26/2000 Th Judg Institut of Managmnt Trumpington Strt Cambridg CB2 1AG Ths paprs
More informationQuantum Graphs I. Some Basic Structures
Quantum Graphs I. Som Basic Structurs Ptr Kuchmnt Dpartmnt of Mathmatics Txas A& M Univrsity Collg Station, TX, USA 1 Introduction W us th nam quantum graph for a graph considrd as a ondimnsional singular
More informationSharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means
Qian t al. Journal of Inqualitis and Applications (015) 015:1 DOI 10.1186/s166001507411 R E S E A R C H Opn Accss Sharp bounds for Sándor man in trms of arithmtic, gomtric and harmonic mans WiMao Qian
More informationVector Network Analyzer
Cours on Microwav Masurmnts Vctor Ntwork Analyzr Prof. Luca Prrgrini Dpt. of Elctrical, Computr and Biomdical Enginring Univrsity of Pavia mail: luca.prrgrini@unipv.it wb: microwav.unipv.it Microwav Masurmnts
More informationC H A P T E R 1 Writing Reports with SAS
C H A P T E R 1 Writing Rports with SAS Prsnting information in a way that s undrstood by th audinc is fundamntally important to anyon s job. Onc you collct your data and undrstand its structur, you nd
More informationThe Constrained SkiRental Problem and its Application to Online Cloud Cost Optimization
3 Procdings IEEE INFOCOM Th Constraind SkiRntal Problm and its Application to Onlin Cloud Cost Optimization Ali Khanafr, Murali Kodialam, and Krishna P. N. Puttaswam Coordinatd Scinc Laborator, Univrsit
More informationEFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS
25 Vol. 3 () JanuaryMarch, pp.375/tripathi EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS *Shilpa Tripathi Dpartmnt of Chmical Enginring, Indor Institut
More informationProjections  3D Viewing. Overview Lecture 4. Projection  3D viewing. Projections. Projections Parallel Perspective
Ovrviw Lctur 4 Projctions  3D Viwing Projctions Paralll Prspctiv 3D Viw Volum 3D Viwing Transformation Camra Modl  Assignmnt 2 OFF fils 3D mor compl than 2D On mor dimnsion Displa dvic still 2D Analog
More informationProblem Set 6 Solutions
6.04/18.06J Mathmatics for Computr Scic March 15, 005 Srii Dvadas ad Eric Lhma Problm St 6 Solutios Du: Moday, March 8 at 9 PM Problm 1. Sammy th Shar is a fiacial srvic providr who offrs loas o th followig
More informationParallel and Distributed Programming. Performance Metrics
Paralll and Distributd Programming Prformanc! wo main goals to b achivd with th dsign of aralll alications ar:! Prformanc: th caacity to rduc th tim to solv th roblm whn th comuting rsourcs incras;! Scalability:
More informationEntityRelationship Model
EntityRlationship Modl Kuanghua Chn Dpartmnt of Library and Information Scinc National Taiwan Univrsity A Company Databas Kps track of a company s mploys, dpartmnts and projcts Aftr th rquirmnts collction
More informationCategory 7: Employee Commuting
7 Catgory 7: Employ Commuting Catgory dscription This catgory includs missions from th transportation of mploys 4 btwn thir homs and thir worksits. Emissions from mploy commuting may aris from: Automobil
More informationA Theoretical Model of Public Response to the Homeland Security Advisory System
A Thortical Modl of Public Rspons to th Homland Scurity Advisory Systm Amy (Wnxuan) Ding Dpartmnt of Information and Dcision Scincs Univrsity of Illinois Chicago, IL 60607 wxding@uicdu Using a diffrntial
More informationContinuity Cloud Virtual Firewall Guide
Cloud Virtual Firwall Guid uh6 Vrsion 1.0 Octobr 2015 Foldr BDR Guid for Vam Pag 1 of 36 Cloud Virtual Firwall Guid CONTENTS INTRODUCTION... 3 ACCESSING THE VIRTUAL FIREWALL... 4 HYPERV/VIRTUALBOX CONTINUITY
More informationEstablishing Wireless Conference Calls Under Delay Constraints
Establishing Wirlss Confrnc Calls Undr Dlay Constraints Aotz BarNoy aotz@sci.brooklyn.cuny.du Grzgorz Malwicz grg@cs.ua.du Novbr 17, 2003 Abstract A prvailing fatur of obil tlphony systs is that th cll
More informationThe price of liquidity in constant leverage strategies. Marcos Escobar, Andreas Kiechle, Luis Seco and Rudi Zagst
RACSAM Rv. R. Acad. Cin. Sri A. Mat. VO. 103 2, 2009, pp. 373 385 Matmática Aplicada / Applid Mathmatics Th pric of liquidity in constant lvrag stratgis Marcos Escobar, Andras Kichl, uis Sco and Rudi Zagst
More informationUse a highlevel conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects
Chaptr 3: Entity Rlationship Modl Databas Dsign Procss Us a highlvl concptual data modl (ER Modl). Idntify objcts of intrst (ntitis) and rlationships btwn ths objcts Idntify constraints (conditions) End
More informationIntermediate Macroeconomic Theory / Macroeconomic Analysis (ECON 3560/5040) Final Exam (Answers)
Intrmdiat Macroconomic Thory / Macroconomic Analysis (ECON 3560/5040) Final Exam (Answrs) Part A (5 points) Stat whthr you think ach of th following qustions is tru (T), fals (F), or uncrtain (U) and brifly
More informationIncomplete 2Port Vector Network Analyzer Calibration Methods
Incomplt Port Vctor Ntwork nalyzr Calibration Mthods. Hnz, N. Tmpon, G. Monastrios, H. ilva 4 RF Mtrology Laboratory Instituto Nacional d Tcnología Industrial (INTI) Bunos irs, rgntina ahnz@inti.gov.ar
More informationJune 2012. Enprise Rent. Enprise 1.1.6. Author: Document Version: Product: Product Version: SAP Version: 8.81.100 8.8
Jun 22 Enpris Rnt Author: Documnt Vrsion: Product: Product Vrsion: SAP Vrsion: Enpris Enpris Rnt 88 88 Enpris Rnt 22 Enpris Solutions All rights rsrvd No parts of this work may b rproducd in any form or
More informationProduction Costing (Chapter 8 of W&W)
Production Costing (Chaptr 8 of W&W).0 Introduction Production costs rfr to th oprational costs associatd with producing lctric nrgy. Th most significant componnt of production costs ar th ful costs ncssary
More informationCurrent and Resistance
Chaptr 6 Currnt and Rsistanc 6.1 Elctric Currnt...66.1.1 Currnt Dnsity...66. Ohm s Law...64 6.3 Elctrical Enrgy and Powr...67 6.4 Summary...68 6.5 Solvd Problms...69 6.5.1 Rsistivity of a Cabl...69
More informationNoise Power Ratio (NPR) A 65Year Old Telephone System Specification Finds New Life in Modern Wireless Applications.
TUTORIL ois Powr Ratio (PR) 65Yar Old Tlphon Systm Spcification Finds w Lif in Modrn Wirlss pplications ITRODUTIO by Walt Kstr Th concpt of ois Powr Ratio (PR) has bn around sinc th arly days of frquncy
More informationThe fitness value of information
Oikos 119: 219230, 2010 doi: 10.1111/j.16000706.2009.17781.x, # 2009 Th Authors. Journal compilation # 2009 Oikos Subjct Editor: Knnth Schmidt. Accptd 1 Sptmbr 2009 Th fitnss valu of information Matina
More informationSTATEMENT OF INSOLVENCY PRACTICE 3.2
STATEMENT OF INSOLVENCY PRACTICE 3.2 COMPANY VOLUNTARY ARRANGEMENTS INTRODUCTION 1 A Company Voluntary Arrangmnt (CVA) is a statutory contract twn a company and its crditors undr which an insolvncy practitionr
More informationElectronic Commerce. and. Competitive FirstDegree Price Discrimination
Elctronic Commrc and Comptitiv FirstDgr Pric Discrimination David Ulph* and Nir Vulkan ** Fbruary 000 * ESRC Cntr for Economic arning and Social Evolution (ESE), Dpartmnt of Economics, Univrsity Collg
More informationFraud, Investments and Liability Regimes in Payment. Platforms
Fraud, Invstmnts and Liability Rgims in Paymnt Platforms Anna Crti and Mariann Vrdir y ptmbr 25, 2011 Abstract In this papr, w discuss how fraud liability rgims impact th pric structur that is chosn by
More informationJournal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi
Journal of Enginring and Natural Scincs Mühndisli v Fn Bilimlri Drgisi Sigma 4/ Invitd Rviw Par OPTIMAL DESIGN OF NONLINEAR MAGNETIC SYSTEMS USING FINITE ELEMENTS Lvnt OVACIK * Istanbul Tchnical Univrsity,
More informationRemember you can apply online. It s quick and easy. Go to www.gov.uk/advancedlearningloans. Title. Forename(s) Surname. Sex. Male Date of birth D
24+ Advancd Larning Loan Application form Rmmbr you can apply onlin. It s quick and asy. Go to www.gov.uk/advancdlarningloans About this form Complt this form if: you r studying an ligibl cours at an approvd
More informationGold versus stock investment: An econometric analysis
Intrnational Journal of Dvlopmnt and Sustainability Onlin ISSN: 2688662 www.isdsnt.com/ijds Volum Numbr, Jun 202, Pag 7 ISDS Articl ID: IJDS20300 Gold vrsus stock invstmnt: An conomtric analysis Martin
More informationEigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
More informationFACULTY SALARIES FALL 2004. NKU CUPA Data Compared To Published National Data
FACULTY SALARIES FALL 2004 NKU CUPA Data Compard To Publishd National Data May 2005 Fall 2004 NKU Faculty Salaris Compard To Fall 2004 Publishd CUPA Data In th fall 2004 Northrn Kntucky Univrsity was among
More informationPersonal Identity Verification (PIV) Enablement Solutions
Prsonal Idntity Vrification (PIV) Enablmnt Solutions pivclass Govrnmnt Solutions Affordabl Prsonal Idntity Vrification (PIV) Enablmnt Solutions from a Singl, Trustd Supplir Complt Solution for PIV Enablmnt
More informationUserPerceived Quality of Service in Hybrid Broadcast and Telecommunication Networks
UsrPrcivd Quality of Srvic in Hybrid Broadcast and Tlcommunication Ntworks Michal Galtzka Fraunhofr Institut for Intgratd Circuits Branch Lab Dsign Automation, Drsdn, Grmany Michal.Galtzka@as.iis.fhg.d
More informationOnline Load Balancing and Correlated Randomness
Onln Load Balancng and Corrlatd Randomnss Sharayu Moharr, Sujay Sanghav Wrlss Ntworng and Communcatons Group (WNCG) Dpartmnt of Elctrcal & Computr Engnrng Th Unvrsty of Txas at Austn Austn, TX 787, USA
More informationThe international Internet site of the geoviticulture MCC system Le site Internet international du système CCM géoviticole
Th intrnational Intrnt sit of th goviticultur MCC systm L sit Intrnt intrnational du systèm CCM géoviticol Flávio BELLO FIALHO 1 and Jorg TONIETTO 1 1 Rsarchr, Embrapa Uva Vinho, Caixa Postal 130, 95700000
More informationTaylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
More informationImportant result on the first passage time and its integral functional for a certain diffusion process
Lcturs Mtmátics Volumn 22 (21), págins 5 9 Importnt rsult on th first pssg tim nd its intgrl functionl for crtin diffusion procss Yousf ALZlzlh nd Bsl M. ALEidh Kuwit Univrsity, Kuwit Abstrct. In this
More informationTransistor is a semiconductor device with fast respond and accuracy. There are two types
Tranitor Amplifir Prpard y: Poa Xuan Yap Thory: Tranitor i a miondutor dvi with fat rpond and auray. Thr ar two typ of tranitor, a Bipolar Juntion Tranitor and a Fild Efft Tranitor. Hr, w will looking
More informationEstimating Powers with Base Close to Unity and Large Exponents
Divulgacions Mamáicas Vol. 3 No. 2005), pp. 2 34 Esimaing Powrs wih Bas Clos o Uniy and Larg Exponns Esimacón d Poncias con Bas Crcana a la Unidad y Grands Exponns Vio Lampr Vio.Lampr@fgg.unilj.si) FGG,
More informationAuthenticated Encryption. Jeremy, Paul, Ken, and Mike
uthntcatd Encrypton Jrmy Paul Kn and M Objctvs Examn thr mthods of authntcatd ncrypton and dtrmn th bst soluton consdrng prformanc and scurty Basc Componnts Mssag uthntcaton Cod + Symmtrc Encrypton Both
More informationWhy An Event App... Before You Start... Try A Few Apps... Event Management Features... Generate Revenue... Vendors & Questions to Ask...
Mo b i l E v ntap pgui d : Ho wt op ur c ha t hb te v ntap p f o ry o ura o c i a t i o n T he nt i a l Gui d t oe v ntap p E v nt nt i a l b y Tabl of Contnt Why An Evnt App......... o Whr to Start With
More informationCaution laser! Avoid direct eye contact with the laser beam!
Manual ontnt 1. aturs 3 2. Spcifications 3 3. Packag contnts 3 4. Th mous at a glanc 4 5. onncting to th P 5 6. Installing th softwar 5 7. Th ditor 6 7.1 Starting th ditor 6 7.2 Main ontrol window 6 7.3
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationIMES DISCUSSION PAPER SERIES
IMES DISCUSSIN PAPER SERIES Th Choic of Invoic Currncy in Intrnational Trad: Implications for th Intrnationalization of th Yn Hiroyuki I, Akira TANI, and Toyoichirou SHIRTA Discussion Papr No. 003E13
More informationCloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman
Cloud and Big Data Summr Scool, Stockolm, Aug., 2015 Jffry D. Ullman Givn a st of points, wit a notion of distanc btwn points, group t points into som numbr of clustrs, so tat mmbrs of a clustr ar clos
More informationCostVolumeProfit Analysis
ch03.qxd 9/7/04 4:06 PM Pag 86 CHAPTER CostVolumProfit Analysis In Brif Managrs nd to stimat futur rvnus, costs, and profits to hlp thm plan and monitor oprations. Thy us costvolumprofit (CVP) analysis
More informationCONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
More informationWaves and Vibration in Civil Engineering
Wavs and Vibration An ntrodction to Wavs and Vibration in ivil Enginring ntrodction to spctral lmnts and soilstrctr intraction Matthias Baitsch Vitnams Grman Univrsity Ho hi Min ity Yvona olová lova Tchnical
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationTIME MANAGEMENT. 1 The Process for Effective Time Management 2 Barriers to Time Management 3 SMART Goals 4 The POWER Model e. Section 1.
Prsonal Dvlopmnt Track Sction 1 TIME MANAGEMENT Ky Points 1 Th Procss for Effctiv Tim Managmnt 2 Barrirs to Tim Managmnt 3 SMART Goals 4 Th POWER Modl In th Army, w spak of rsourcs in trms of th thr M
More informationOptimization design of structures subjected to transient loads using first and second derivatives of dynamic displacement and stress
Shock and Vibration 9 (202) 445 46 445 DOI 0.3233/SAV2020685 IOS Prss Optimization dsign of structurs subjctd to transint loads using first and scond drivativs of dynamic displacmnt and strss Qimao Liu
More informationInternational Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)
Intrnational Association of Scintific Innovation and Rsarch (IASIR) (An Association Unifing th Scincs, Enginring, and Applid Rsarch) ISSN (Print): 79000 ISSN (Onlin): 79009 Intrnational Journal of Enginring,
More informationAn IAC Approach for Detecting Profile Cloning in Online Social Networks
An IAC Approach for Dtcting Profil Cloning in Onlin Social Ntworks MortzaYousfi Kharaji 1 and FatmhSalhi Rizi 2 1 Dptartmnt of Computr and Information Tchnology Enginring,Mazandaran of Scinc and Tchnology,Babol,
More informationCombinatorial Analysis of Network Security
Combinatorial Analysis of Ntwork Scurity Stvn Nol a, Brian O Brry a, Charls Hutchinson a, Sushil Jajodia a, Lynn Kuthan b, and Andy Nguyn b a Gorg Mason Univrsity Cntr for Scur Information Systms b Dfns
More informationApproximate Counters for Flash Memory
Approximat Coutrs for Flash Mmory Jack Cichoń ad Wojcich Macya Istitut of Mathmatics ad Computr Scic Wrocław Uivrsity of Tchology, Polad Abstract Flash mmory bcoms th a vry popular storag dvic Du to its
More informationAC Circuits ThreePhase Circuits
AC Circuits ThrPhs Circuits Contnts Wht is ThrPhs Circuit? Blnc ThrPhs oltgs Blnc ThrPhs Connction Powr in Blncd Systm Unblncd ThrPhs Systms Aliction Rsidntil Wiring Sinusoidl voltg sourcs A siml
More informationSaving Through Trailer Tracking
SEE WHAT S HAPPENING. CUT RENTAL COSTS. Losing track of rntal trailrs is on of th worst things that can happn to you, lading to unncssary and costly rntal chargs. A Brkshir Hathaway Copany A Brkshir Hathaway
More informationMandatory Standards and Organizational Information Security
Mandatory Standard and Organizational Information Scurity ull Papr ubmittd to WISE 2012. Word count: 9,846 Chul Ho L, Xianjun Gng, Srinivaan Raghunathan Th Univrity of Txa at Dalla {irontigr, gng, raghu}@utdalla.du
More informationNimble Storage Exchange 2010 40,000Mailbox Resiliency Storage Solution
Nimbl Storag Exchang 2010 40,0Mailbox Rsilincy Storag Solution Tstd with: ESRP Storag Vrsion 3.0 Tst dat: July 10, 2012 Ovrviw This documnt provids information on Nimbl Storag's storag solution for Microsoft
More informationWORKERS' COMPENSATION ANALYST, 1774 SENIOR WORKERS' COMPENSATION ANALYST, 1769
081685 WORKERS' COMPENSATION ANALYST, 1774 SENIOR WORKERS' COMPENSATION ANALYST, 1769 Summary of Dutis : Dtrmins City accptanc of workrs' compnsation cass for injurd mploys; authorizs appropriat tratmnt
More informationCUTTING METHODS AND CARTESIAN ROBOTS KESME YÖNTEMLERİ VE KARTEZYEN ROBOTLAR
ournal of Naval Scinc and Enginring 2009, Vol. 5, No.2, pp. 3542 CUTTING METHODS AND CARTESIAN ROBOTS Asst. Prof. Ugur SIMSIR, Lt.Cdr. Turkish Naval Acady Mchanical Enginring Dpartnt Tuzla, Istanbul,Turkiy
More informationCryptographic Protocol Analysis of AN.ON
Cryptographic Protocol Analysis of AN.ON Bndikt Wstrmann 1, Rolf Wndolsky 2, Lxi Pimnidis 3, and Dogan Ksdogan 1,4 1 Q2S, NTNU, 7491 Trondhim, Norway 2 JonDos GmbH, 93055 Rgnsburg, Grmany 3 idv GmbH, 50672
More informationCalOHI Content Management System Review
CalOHI Contnt Systm Rviw Tabl of Contnts Documnt Ovrviw... 3 DotNtNuk... 4 Ovrviw... 4 Installation / Maintnanc... 4 Documntation... 5 Usability... 5 Dvlopmnt... 5 Ovrall... 6 CMS Mad Simpl... 6 Ovrviw...
More informationChapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6
Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a
More informationSection 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More informationData warehouse on Manpower Employment for Decision Support System
Data warhous on Manpowr Employmnt for Dcision Support Systm Amro F. ALASTA, and Muftah A. Enaba Abstract Sinc th us of computrs in businss world, data collction has bcom on of th most important issus du
More informationCategory 11: Use of Sold Products
11 Catgory 11: Us of Sold Products Catgory dscription T his catgory includs missions from th us of goods and srvics sold by th rporting company in th rporting yar. A rporting company s scop 3 missions
More informationHardware Modules of the RSA Algorithm
SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 11, No. 1, Fbruary 2014, 121131 UDC: 004.3`142:621.394.14 DOI: 10.2298/SJEE140114011S Hardwar Moduls of th RSA Algorithm Vlibor Škobić 1, Branko Dokić 1,
More informationSci.Int.(Lahore),26(1),131138,2014 ISSN 10135316; CODEN: SINTE 8 131
Sci.Int.(Lahor),26(1),131138,214 ISSN 1135316; CODEN: SINTE 8 131 REQUIREMENT CHANGE MANAGEMENT IN AGILE OFFSHORE DEVELOPMENT (RCMAOD) 1 Suhail Kazi, 2 Muhammad Salman Bashir, 3 Muhammad Munwar Iqbal,
More informationTaiwan Stock Forecasting with the Genetic Programming
Procings of th 2011 Confrnc on Tchnologis an Applications of Artificial Intllignc (TAAI 2011) Taiwan Stock Forcasting with th Gntic Programming SiaoMing Jhou, ChangBiau Yang an HungHsin Chn Dpartmnt
More informationEstimating Aboveground Tree Biomass on Forest Land in the Pacific Northwest: A Comparison of Approaches
Unitd Stats Dpartmnt of Agricultur Forst Srvic Pacific Southwst Rsarch Station Rsarch Papr PNWRP584 Novmbr 2009 Estimating Abovground Tr Biomass on Forst Land in th Pacific Northwst: A Comparison of
More informationFactorization Theorems
Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization
More informationthe socalled KOBOS system. 1 with the exception of a very small group of the most active stocks which also trade continuously through
Liquidity and InformationBasd Trading on th Ordr Drivn Capital Markt: Th Cas of th Pragu tock Exchang Libor 1ÀPH³HN Cntr for Economic Rsarch and Graduat Education, Charls Univrsity and Th Economic Institut
More informationCategory 1: Purchased Goods and Services
1 Catgory 1: Purchasd Goods and Srvics Catgory dscription T his catgory includs all upstram (i.., cradltogat) missions from th production of products purchasd or acquird by th rporting company in th
More informationAbstract. Introduction. Statistical Approach for Analyzing Cell Phone Handoff Behavior. Volume 3, Issue 1, 2009
Volum 3, Issu 1, 29 Statistical Approach for Analyzing Cll Phon Handoff Bhavior Shalini Saxna, Florida Atlantic Univrsity, Boca Raton, FL, shalinisaxna1@gmail.com Sad A. Rajput, Farquhar Collg of Arts
More informationHEAT TRANSFER ANALYSIS OF LNG TRANSFER LINE
Scintific Jounal of Impact Facto(SJIF): 3.34 Intnational Jounal of Advanc Engining and sach Dvlopmnt Volum,Issu, Fbuay 05 HEAT TANSFE ANALYSIS OF LNG TANSFE LINE J.D. Jani ISSN(O): 3484470 pissn(p):
More informationOptics Communications
Optics Communications 84 () 43 436 Contnts lists availabl at ScincDirct Optics Communications journal hompag: www.lsvir.com/locat/optcom Scattring forcs in th focal volum of high numrical aprtur microscop
More informationEntry Voice Mail for HiPath Systems. User Manual for Your Telephone
Entry Voic Mail for HiPath Systms Usr Manual for Your Tlphon About This Usr Manual About This Usr Manual This usr manual is intndd for Entry Voic Mail usrs and traind oprators who ar rsponsibl for confiurin
More informationAn Adaptive Clustering MAP Algorithm to Filter Speckle in Multilook SAR Images
An Adaptiv Clustring MAP Algorithm to Filtr Spckl in Multilook SAR Imags FÁTIMA N. S. MEDEIROS 1,3 NELSON D. A. MASCARENHAS LUCIANO DA F. COSTA 1 1 Cybrntic Vision Group IFSC Univrsity of São Paulo Caia
More informationKeywords Cloud Computing, Service level agreement, cloud provider, business level policies, performance objectives.
Volum 3, Issu 6, Jun 2013 ISSN: 2277 128X Intrnational Journal of Advancd Rsarch in Computr Scinc and Softwar Enginring Rsarch Papr Availabl onlin at: wwwijarcsscom Dynamic Ranking and Slction of Cloud
More informationCase Study: the Use of Agile on Mortgage Application: Evidence from Thailand
Cas Study: th Us of Agil on Mortgag Application: Evidnc from Thailand Krcha Puphaiboon Faculty of Computr and Information Tchnology Kasm Bundit Univrsity Bangkok, Thailand Abstract This papr prsnts a cas
More informationWho uses our services? We have a growing customer base. with institutions all around the globe.
not taking xpr Srvic Guid 2013 / 2014 NTE i an affordabl option for audio to txt convrion. Our rvic includ not or dirct trancription rvic from prviouly rcordd audio fil. Our rvic appal pcially to tudnt
More informationAn International Journal of the Polish Statistical Association
STATISTICS IN TRANSITION nw sris An Intrnational Journal of th Polish Statistical Association CONTENTS From th Editor... Submission information for authors... 5 Sampling mthods and stimation CIEPIELA P.,
More informationEfficiency Losses from Overlapping Economic Instruments in European Carbon Emissions Regulation
iscussion Papr No. 06018 Efficincy Losss from Ovrlapping Economic Instrumnts in Europan Carbon Emissions Rgulation Christoph Böhringr, Hnrik Koschl and Ulf Moslnr iscussion Papr No. 06018 Efficincy Losss
More information606 EDUCATIONAL LEADERSHIP
606 EDUCATONAL LEADERSHP jl VCTOR W. DOHERTY AND LNDA B. PETERS O f th many aspcts of school systm planning and valua tion, prhaps th most critical and lusiv is that of goals and objc tivs. Until th aims
More informationFactoring Special Polynomials
6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These
More informationFactoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai
Factoring Guidelines Greatest Common Factor Two Terms Three Terms Four Terms 008 Shirley Radai Greatest Common Factor 008 Shirley Radai Factoring by Finding the Greatest Common Factor Always check for
More informationCRITO PLATO KRITWN PLATWN
CRITO KRITWN PLATO PLATWN CRITO KRITWN PLATO PLATWN Translat y Cathal Woos an Ryan Pak 20072012 This work is lins unr th Crativ Commons AttriutionNonommrialNo Drivativ Works 3.0 Lins. To viw a opy of
More information1754 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, MAY 2007
1754 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, MAY 007 On th Fasibility of Distributd Bamforming in Wirlss Ntworks R. Mudumbai, Studnt Mmbr, IEEE, G. Barriac, Mmbr, IEEE, and U. Madhow,
More information