Section 5-5 Inverse of a Square Matrix

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Section 5-5 Inverse of a Square Matrix"

Transcription

1 - Invrs of a Squar Matrix 9 (D) Rank th playrs from strongst to wakst. Explain th rasoning hind your ranking. 68. Dominan Rlation. Eah mmr of a hss tam plays on math with vry othr playr. Th rsults ar givn in th tal. Playr Dfatd. Ann Dian. Bridgt Ann, Carol, Dian. Carol Ann. Dian Carol, Erln. Erln Ann, Bridgt, Carol (A) Exprss th outoms as an inidn matrix A y plaing a in th ith row and jth olumn of A if playr i dfatd playr j and a othrwis (s Prolm 6). (B) Comput th matrix B A A. (C) Disuss matrix multipliation mthods that an usd to find th sum of th rows in B. Stat th matris that an usd and prform th nssary oprations. (D) Rank th playrs from strongst to wakst. Explain th rasoning hind your ranking. Stion - Invrs of a Squar Matrix Idntity Matrix for Multipliation Invrs of a Squar Matrix Appliation: Cryptography In this stion w introdu th idntity matrix and th invrs of a squar matrix. Ths matrix forms, along with matrix multipliation, ar thn usd to solv som systms of quations writtn in matrix form in Stion -6. Idntity Matrix for Multipliation W know that for any ral numr a ()a a() a Th numr is alld th idntity for ral numr multipliation. Dos th st of all matris of a givn dimnsion hav an idntity lmnt for multipliation? That is, if M is an aritrary m n matrix, dos M hav an idntity lmnt I suh that IM MI M? Th answr in gnral is no. Howvr, th st of all squar matris of ordr n (matris with n rows and n olumns) dos hav an idntity. DEFINITION IDENTITY MATRIX Th idntity matrix for multipliation for th st of all squar matris of ordr n is th squar matrix of ordr n, dnotd y I, with s along th prinipal diagonal (from uppr lft ornr to lowr right ornr) and s lswhr.

2 9 SYSTEMS; MATRICES FIGURE Idntity matris. For xampl, and ar th idntity matris for all squar matris of ordr and, rsptivly. Most graphing utilitis hav a uilt-in ommand for gnrating th idntity matrix of a givn ordr (s Fig. ). EXAMPLE MATCHED PROBLEM Idntity Matrix Multipliation (A) (B) (C) (D) a d g a d Multiply: (A) (B) h a d 6 a d g f i f h f i a d g a d f a d g a d 6 and h h f 7 8 and 6 f i f i f In gnral, w an show that if M is a squar matrix of ordr n and I is th idntity matrix of ordr n, thn IM MI M If M is an m n matrix that is not squar (m n), thn it is still possil to multiply M on th lft and on th right y an idntity matrix, ut not with th sam-siz idntity matrix (s Exampl, parts C and D). To avoid th ompliations involvd with assoiating two diffrnt idntity matris with ah nonsquar matrix, w rstrit our attntion in this stion to squar matris.

3 - Invrs of a Squar Matrix 9 Explor/Disuss Th only ral numr solutions to th quation x ar x and x. (A) Show that A satisfis A I, whr I is th idntity. (B) Show that B satisfis B I. (C) Find a matrix with all lmnts nonzro whos squar is th idntity matrix. Invrs of a Squar Matrix In th st of ral numrs, w know that for ah ral numr a, xpt, thr xists a ral numr a suh that a a Th numr a is alld th invrs of th numr a rlativ to multipliation, or th multipliativ invrs of a. For xampl, is th multipliativ invrs of, sin (). W us this ida to dfin th invrs of a squar matrix. DEFINITION INVERSE OF A SQUARE MATRIX If M is a squar matrix of ordr n and if thr xists a matrix M (rad M invrs ) suh that M M MM I thn M is alld th multipliativ invrs of M or, mor simply, th invrs of M. Th multipliativ invrs of a nonzro ral numr a also an writtn as /a. This notation is not usd for matrix invrss. Lt s us Dfinition to find M, if it xists, for W ar looking for suh that M M a d MM M M I

4 9 SYSTEMS; MATRICES Thus, w writ M M I a and try to find a,,, and d so that th produt of M and M is th idntity matrix I. Multiplying M and M on th lft sid, w otain (a ) (a ) d whih is tru only if ( d) ( d) a d a d Solving ths two systms, w find that a,,, and d. Thus, M as is asily hkd: M M I M M Unlik nonzro ral numrs, invrss do not always xist for nonzro squar matris. For xampl, if N thn, proding as for, w ar ld to th systms a d a d Ths systms ar oth inonsistnt and hav no solution. Hn, N dos not xist. Bing al to find invrss, whn thy xist, lads to dirt and simpl solutions to many pratial prolms. In th nxt stion, for xampl, w will show how invrss an usd to solv systms of linar quations. Th mthod outlind aov for finding th invrs, if it xists, gts vry involvd for matris of ordr largr than. Now that w know what w ar looking for, w an us augmntd matris, as in Stion -, to mak th pross mor ffiint. Dtails ar illustratd in Exampl.

5 - Invrs of a Squar Matrix 9 EXAMPLE Solution Finding an Invrs Find th invrs, if it xists, of M W start as for and writ This is tru only if M M I a d f g h i a d f g h i f h i a d g h Now w writ augmntd matris for ah of th thr systms: First Sond Third Sin ah matrix to th lft of th vrtial ar is th sam, xatly th sam row oprations an usd on ah augmntd matrix to transform it into a rdud form. W an spd up th pross sustantially y omining all thr augmntd matris into th singl augmntd matrix form M I () W now try to prform row oprations on matrix () until w otain a row-quivalnt matrix that looks lik matrix (): I a B d f g h i I B If this an don, thn th nw matrix to th right of th vrtial ar is M! Now lt s try to transform matrix () into a form lik that of matrix (). W follow ()

6 96 SYSTEMS; MATRICES th sam squn of stps as in th solution of linar systms y Gauss Jordan limination (s Stion -): M I ()R R R R R R R R ()R R R R R ( ) R R R R R R Convrting ak to systms of quations quivalnt to our thr original systms (w won t hav to do this stp in prati), w hav a d g h f i And ths ar just th lmnts of M that w ar looking for! Hn, M I B Not that this is th matrix to th right of th vrtial lin in th last augmntd matrix. Chk Sin th dfinition of matrix invrs rquirs that M M I and MM I () it appars that w must omput oth M M and MM to hk our work. Howvr, it an shown that if on of th quations in () is satisfid, thn th othr

7 - Invrs of a Squar Matrix 97 MATCHED PROBLEM is also satisfid. Thus, for hking purposs it is suffiint to omput ithr M M or MM w don t nd to do oth. M M Lt M (A) Form th augmntd matrix M I. (B) Us row oprations to transform M I into I B. (C) Vrify y multipliation that B M. I Th produr usd in Exampl an usd to find th invrs of any squar matrix, if th invrs xists, and will also indiat whn th invrs dos not xist. Ths idas ar summarizd in Thorm. THEOREM INVERSE OF A SQUARE MATRIX M If M I is transformd y row oprations into I B, thn th rsulting matrix B is M. If, howvr, w otain all s in on or mor rows to th lft of th vrtial lin, thn M dos not xist. Explor/Disuss (A) Suppos that th squar matrix M has a row of all zros. Explain why M has no invrs. (B) Suppos that th squar matrix M has a olumn of all zros. Explain why M has no invrs. EXAMPLE Finding a Matrix Invrs Find M, givn M 6 Solution R R 6 6 6R R R R R

8 98 SYSTEMS; MATRICES Thus, R R R M Chk y showing M M I. MATCHED PROBLEM Find M, givn M 6 EXAMPLE Solution Finding an Invrs Find M, if it xists, givn M W hav all s in th sond row to th lft of th vrtial lin. Thrfor, M dos not xist. MATCHED PROBLEM Find M, if it xists, givn M 6 Most graphing utilitis an omput matrix invrss and an idntify thos matris that do not hav invrss. A matrix that dos not hav an invrs is oftn rfrrd to as a singular matrix. Figur illustrats th produr on a graphing utility. Not that th invrs opration is prformd y prssing th x ky. Entring [A]^() rsults in an rror mssag. FIGURE Finding matrix invrss on a graphing utility. (a) Exampl () Exampl

9 Appliation: Cryptography - Invrs of a Squar Matrix 99 Matrix invrss an usd to provid a simpl and fftiv produr for noding and doding mssags. To gin, w assign th numrs to 6 to th lttrs in th alphat, as shown low. W also assign th numr 7 to a lank to provid for spa twn words. (A mor sophistiatd od ould inlud oth uppras and lowras lttrs and puntuation symols.) A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Blank Thus, th mssag I LOVE MATH orrsponds to th squn Any matrix whos lmnts ar positiv intgrs and whos invrs xists an usd as an noding matrix. For xampl, to us th matrix A to nod th aov mssag, first w divid th numrs in th squn into groups of and us ths groups as th olumns of a matrix B with two rows: B Prod down th olumns, not aross th rows. (Noti that w addd an xtra lank at th nd of th mssag to mak th olumns om out vn.) Thn w multiply this matrix on th lft y A: AB Th odd mssag is This mssag an dodd simply y putting it ak into matrix form and multiplying on th lft y th doding matrix A. Sin A is asily dtrmind if A is known, th noding matrix A is th only ky ndd to dod mssags nodd in this mannr. Although simpl in onpt, ods of this typ an vry diffiult to rak.

10 SYSTEMS; MATRICES EXAMPLE Cryptography Th mssag Solution was nodd with th matrix A shown low. Dod this mssag. A W gin y ntring th noding matrix A (Fig. ). Thn w ntr th odd mssag in th olumns of a matrix C with thr rows (Fig. ). If B is th matrix ontaining th unodd mssag, thn B and C ar rlatd y C AB. To find B, w multiply oth sids of th quation C AB y A (Fig. ). FIGURE FIGURE Writing th numrs in th olumns of this matrix in squn and using th orrspondn twn numrs and lttrs notd arlir produs th dodd mssag: W H O I S C A R L G A U S S Th answr to this qustion an found arlir in this haptr. MATCHED PROBLEM Th mssag was nodd with th matrix A shown low. Dod this mssag. A

11 - Invrs of a Squar Matrix Answrs to Mathd Prolms. (A) (B) (A) (B) (C).. Dos not xist. WHO IS WILHELM JORDAN EXERCISE - A Prform th indiatd oprations in Prolms In Prolms 9 8, xamin th produt of th two matris to dtrmin if ah is th invrs of th othr. 9.. ;.. ; ; ; 7 ; ; B Givn M in Prolms 9 8, find M, and show that M M I ; ; ; ; Find th invrs of ah matrix in Prolms 9, if it xists

12 SYSTEMS; MATRICES.. C Find th invrs of ah matrix in Prolms 8, if it xists Disuss th xistn of M for diagonal matris of th form. Disuss th xistn of M for uppr triangular matris of th form. Find A and A for ah of th following matris. (A) (B) A A. Basd on your osrvations in Prolm, if A A for a squar matrix A, what is A? Giv a mathmatial argumnt to support your onlusion.. Find (A ) for ah of th following matris. (A) M a M a A (B). Basd on your osrvations in Prolm, if A xists for a squar matrix A, what is (A )? Giv a mathmatial argumnt to support your onlusion.. Find (AB), A B, and B A for ah of th following pairs of matris. (A) A (B) A d d A and B and B Basd on your osrvations in Prolm, whih of th following is a tru statmnt? Giv a mathmatial argumnt to support your onlusion. (A) (AB) A B (B) (AB) B A APPLICATIONS Prolms 7 rfr to th noding matrix 7. Cryptography. Enod th mssag CAT IN THE HAT with th matrix A givn aov. 8. Cryptography. Enod th mssag FOX IN SOCKS with th matrix A givn aov. 9. Cryptography. Th following mssag was nodd with th matrix A givn aov. Dod this mssag Cryptography. Th following mssag was nodd with th matrix A givn aov. Dod this mssag Prolms rfr to th noding matrix A B. Cryptography. Enod th mssag DWIGHT DAVID EISENHOWER with th matrix B givn aov.. Cryptography. Enod th mssag JOHN FITZGER- ALD KENNEDY with th matrix B givn aov.. Cryptography. Th following mssag was nodd with th matrix B givn aov. Dod this mssag Cryptography. Th following mssag was nodd with th matrix B givn aov. Dod this mssag

SECTION 9-2 Inverse of a Square Matrix

SECTION 9-2 Inverse of a Square Matrix 7 9 Matris and Dtrminants Cral A /oz M /oz /oz N Mix X 5 oz 5 oz Cral B /oz /oz /oz Mix Y oz oz Mix Z 5 oz 5 oz Protin Caroydrat Fat Cral A Cral B (A) Find t amount of protin in mix X. (B) Find t amount

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) 92.222 - Linar Algbra II - Spring 2006 by D. Klain prliminary vrsion Corrctions and commnts ar wlcom! Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial

More information

Non-Homogeneous Systems, Euler s Method, and Exponential Matrix

Non-Homogeneous Systems, Euler s Method, and Exponential Matrix Non-Homognous Systms, Eulr s Mthod, and Exponntial Matrix W carry on nonhomognous first-ordr linar systm of diffrntial quations. W will show how Eulr s mthod gnralizs to systms, giving us a numrical approach

More information

Module 7: Discrete State Space Models Lecture Note 3

Module 7: Discrete State Space Models Lecture Note 3 Modul 7: Discrt Stat Spac Modls Lctur Not 3 1 Charactristic Equation, ignvalus and ign vctors For a discrt stat spac modl, th charactristic quation is dfind as zi A 0 Th roots of th charactristic quation

More information

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions CPS 22 Thory of Computation REGULAR LANGUAGES Rgular xprssions Lik mathmatical xprssion (5+3) * 4. Rgular xprssion ar built using rgular oprations. (By th way, rgular xprssions show up in various languags:

More information

Question 3: How do you find the relative extrema of a function?

Question 3: How do you find the relative extrema of a function? ustion 3: How do you find th rlativ trma of a function? Th stratgy for tracking th sign of th drivativ is usful for mor than dtrmining whr a function is incrasing or dcrasing. It is also usful for locating

More information

14.3 Area Between Curves

14.3 Area Between Curves 14. Ara Btwn Curvs Qustion 1: How is th ara btwn two functions calculatd? Qustion : What ar consumrs and producrs surplus? Earlir in this chaptr, w usd dfinit intgrals to find th ara undr a function and

More information

Exponential Growth and Decay; Modeling Data

Exponential Growth and Decay; Modeling Data Exponntial Growth and Dcay; Modling Data In this sction, w will study som of th applications of xponntial and logarithmic functions. Logarithms wr invntd by John Napir. Originally, thy wr usd to liminat

More information

QUANTITATIVE METHODS CLASSES WEEK SEVEN

QUANTITATIVE METHODS CLASSES WEEK SEVEN QUANTITATIVE METHODS CLASSES WEEK SEVEN Th rgrssion modls studid in prvious classs assum that th rspons variabl is quantitativ. Oftn, howvr, w wish to study social procsss that lad to two diffrnt outcoms.

More information

Singleton Theorem Using Models

Singleton Theorem Using Models Singlton Thorm Using Modls Srivathsan B, Igor Walukiwicz LaBRI Paris, March 2010 Srivathsan B, Igor Walukiwicz (LaBRI) Singlton Thorm Using Modls Paris, March 2010 1 / 17 Introduction Singlton Thorm [Statman

More information

Modelling and Solving Two-Step Equations: ax + b = c

Modelling and Solving Two-Step Equations: ax + b = c Modlling and Solving To-Stp Equations: a + b c Focus on Aftr this lsson, you ill b abl to φ modl problms φ ith to-stp linar quations solv to-stp linar quations and sho ho you ord out th ansr Cali borrod

More information

The Normal Distribution: A derivation from basic principles

The Normal Distribution: A derivation from basic principles Th Normal Distribution: A drivation from basic principls Introduction Dan Tagu Th North Carolina School of Scinc and Mathmatics Studnts in lmntary calculus, statistics, and finit mathmatics classs oftn

More information

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book. Rsourc Allocation Abstract This is a small toy xampl which is wll-suitd as a first introduction to Cnts. Th CN modl is dscribd in grat dtail, xplaining th basic concpts of C-nts. Hnc, it can b rad by popl

More information

Differential Equations (MTH401) Lecture That a non-homogeneous linear differential equation of order n is an equation of the form n

Differential Equations (MTH401) Lecture That a non-homogeneous linear differential equation of order n is an equation of the form n Diffrntial Equations (MTH40) Ltur 7 Mthod of Undtrmind Coffiints-Surosition Aroah Rall. That a non-homognous linar diffrntial quation of ordr n is an quation of th form n n d d d an + a a a0 g( ) n n +

More information

New Basis Functions. Section 8. Complex Fourier Series

New Basis Functions. Section 8. Complex Fourier Series Nw Basis Functions Sction 8 Complx Fourir Sris Th complx Fourir sris is prsntd first with priod 2, thn with gnral priod. Th connction with th ral-valud Fourir sris is xplaind and formula ar givn for convrting

More information

HOMEWORK FOR UNIT 5-1: FORCE AND MOTION

HOMEWORK FOR UNIT 5-1: FORCE AND MOTION Nam Dat Partnrs HOMEWORK FOR UNIT 51: FORCE AND MOTION 1. You ar givn tn idntial springs. Dsrib how you would dvlop a sal of for (i., a mans of produing rpatabl fors of a varity of sizs) using ths springs.

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 hsn uknt Highr Mathmatics UNIT Mathmatics HSN000 This documnt was producd spcially for th HSNuknt wbsit, and w rquir that any copis or drivativ works attribut th work to Highr Still Nots For mor dtails

More information

A Note on Approximating. the Normal Distribution Function

A Note on Approximating. the Normal Distribution Function Applid Mathmatical Scincs, Vol, 00, no 9, 45-49 A Not on Approimating th Normal Distribution Function K M Aludaat and M T Alodat Dpartmnt of Statistics Yarmouk Univrsity, Jordan Aludaatkm@hotmailcom and

More information

5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power

5 2 index. e e. Prime numbers. Prime factors and factor trees. Powers. worked example 10. base. power Prim numbrs W giv spcial nams to numbrs dpnding on how many factors thy hav. A prim numbr has xactly two factors: itslf and 1. A composit numbr has mor than two factors. 1 is a spcial numbr nithr prim

More information

by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia

by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia Studnt Nots Cost Volum Profit Analysis by John Donald, Lcturr, School of Accounting, Economics and Financ, Dakin Univrsity, Australia As mntiond in th last st of Studnt Nots, th ability to catgoris costs

More information

Chapter 10 Function of a Matrix

Chapter 10 Function of a Matrix EE448/58 Vrsion. John Stnsby Chatr Function of a atrix t f(z) b a comlx-valud function of a comlx variabl z. t A b an n n comlxvalud matrix. In this chatr, w giv a dfinition for th n n matrix f(a). Also,

More information

Lecture 3: Diffusion: Fick s first law

Lecture 3: Diffusion: Fick s first law Lctur 3: Diffusion: Fick s first law Today s topics What is diffusion? What drivs diffusion to occur? Undrstand why diffusion can surprisingly occur against th concntration gradint? Larn how to dduc th

More information

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13) con 37: Answr Ky for Problm St (Chaptr 2-3) Instructor: Kanda Naknoi Sptmbr 4, 2005. (2 points) Is it possibl for a country to hav a currnt account dficit at th sam tim and has a surplus in its balanc

More information

Transistor is a semiconductor device with fast respond and accuracy. There are two types

Transistor is a semiconductor device with fast respond and accuracy. There are two types Tranitor Amplifir Prpard y: Poa Xuan Yap Thory: Tranitor i a miondutor dvi with fat rpond and auray. Thr ar two typ of tranitor, a Bipolar Juntion Tranitor and a Fild Efft Tranitor. Hr, w will looking

More information

A Derivation of Bill James Pythagorean Won-Loss Formula

A Derivation of Bill James Pythagorean Won-Loss Formula A Drivation of Bill Jams Pythagoran Won-Loss Formula Ths nots wr compild by John Paul Cook from a papr by Dr. Stphn J. Millr, an Assistant Profssor of Mathmatics at Williams Collg, for a talk givn to th

More information

Factorials! Stirling s formula

Factorials! Stirling s formula Author s not: This articl may us idas you havn t larnd yt, and might sm ovrly complicatd. It is not. Undrstanding Stirling s formula is not for th faint of hart, and rquirs concntrating on a sustaind mathmatical

More information

Lecture 20: Emitter Follower and Differential Amplifiers

Lecture 20: Emitter Follower and Differential Amplifiers Whits, EE 3 Lctur 0 Pag of 8 Lctur 0: Emittr Followr and Diffrntial Amplifirs Th nxt two amplifir circuits w will discuss ar ry important to lctrical nginring in gnral, and to th NorCal 40A spcifically.

More information

e = C / electron Q = Ne

e = C / electron Q = Ne Physics 0 Modul 01 Homwork 1. A glass rod that has bn chargd to +15.0 nc touchs a mtal sphr. Aftrword, th rod's charg is +8.00 nc. What kind of chargd particl was transfrrd btwn th rod and th sphr, and

More information

SPECIAL VOWEL SOUNDS

SPECIAL VOWEL SOUNDS SPECIAL VOWEL SOUNDS Plas consult th appropriat supplmnt for th corrsponding computr softwar lsson. Rfr to th 42 Sounds Postr for ach of th Spcial Vowl Sounds. TEACHER INFORMATION: Spcial Vowl Sounds (SVS)

More information

ME 612 Metal Forming and Theory of Plasticity. 6. Strain

ME 612 Metal Forming and Theory of Plasticity. 6. Strain Mtal Forming and Thory of Plasticity -mail: azsnalp@gyt.du.tr Makin Mühndisliği Bölümü Gbz Yüksk Tknoloji Enstitüsü 6.1. Uniaxial Strain Figur 6.1 Dfinition of th uniaxial strain (a) Tnsil and (b) Comprssiv.

More information

Functions. A is called domain of f, and B is called codomain of f. If f maps element a A to element b B, we write f (a) = b

Functions. A is called domain of f, and B is called codomain of f. If f maps element a A to element b B, we write f (a) = b Funtions CS311H: Disrt Mthmtis Funtions Instrutor: Işıl Dilli untion rom st to st ssins h lmnt o to xtly on lmnt o. is ll omin o, n is ll oomin o. I mps lmnt to lmnt, w writ () = I () =, is ll im o ; is

More information

Lecture 7: Minimum Spanning Trees and Prim s Algorithm

Lecture 7: Minimum Spanning Trees and Prim s Algorithm Ltur : Minimum Spnning Trs n Prim s Algorithm CLRS Chptr 3 Outlin o this Ltur Spnning trs n minimum spnning trs. Th minimum spnning tr (MST) prolm. Th gnri lgorithm or MST prolm. Prim s lgorithm or th

More information

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST: .4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This

More information

Adverse Selection and Moral Hazard in a Model With 2 States of the World

Adverse Selection and Moral Hazard in a Model With 2 States of the World Advrs Slction and Moral Hazard in a Modl With 2 Stats of th World A modl of a risky situation with two discrt stats of th world has th advantag that it can b natly rprsntd using indiffrnc curv diagrams,

More information

Sigmoid Functions and Their Usage in Artificial Neural Networks

Sigmoid Functions and Their Usage in Artificial Neural Networks Sigmoid Functions and Thir Usag in Artificial Nural Ntworks Taskin Kocak School of Elctrical Enginring and Computr Scinc Applications of Calculus II: Invrs Functions Eampl problm Calculus Topic: Invrs

More information

Principles of Humidity Dalton s law

Principles of Humidity Dalton s law Principls of Humidity Dalton s law Air is a mixtur of diffrnt gass. Th main gas componnts ar: Gas componnt volum [%] wight [%] Nitrogn N 2 78,03 75,47 Oxygn O 2 20,99 23,20 Argon Ar 0,93 1,28 Carbon dioxid

More information

Graph Theory Definitions

Graph Theory Definitions Grph Thory Dfinitions A grph is pir of sts (V, E) whr V is finit st ll th st of vrtis n E is st of 2-lmnt susts of V, ll th st of gs. W viw th gs s st of onntions twn th nos. Hr is n xmpl of grph G: G

More information

SAMPLE QUESTION PAPER MATHEMATICS (041) CLASS XII

SAMPLE QUESTION PAPER MATHEMATICS (041) CLASS XII SAMPLE QUESTION PAPER MATHEMATICS (4) CLASS XII 6-7 Tim allowd : 3 hours Maimum Marks : Gnral Instructions: (i) All qustions ar compulsor. (ii) This qustion papr contains 9 qustions. (iii) Qustion - 4

More information

Genetic Drift and Gene Flow Illustration

Genetic Drift and Gene Flow Illustration Gntic Drift and Gn Flow Illustration This is a mor dtaild dscription of Activity Ida 4, Chaptr 3, If Not Rac, How do W Explain Biological Diffrncs? in: How Ral is Rac? A Sourcbook on Rac, Cultur, and Biology.

More information

CHAPTER EIGHT. Making use of the limit formula developed in Chapter 1, it can be shown that

CHAPTER EIGHT. Making use of the limit formula developed in Chapter 1, it can be shown that CONTINUOUS COMPOUNDING CHAPTER EIGHT In prvious stions, th as of m ompoundings pr yar was disussd In th as of ontinuous ompounding, m is allowd to tnd to infinity Th mathmatial rlationships ar fairly asy

More information

Ground Fault Current Distribution on Overhead Transmission Lines

Ground Fault Current Distribution on Overhead Transmission Lines FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 19, April 2006, 71-84 Ground Fault Currnt Distribution on Ovrhad Transmission Lins Maria Vintan and Adrian Buta Abstract: Whn a ground fault occurs on

More information

NUMERICAL COMPUTATION OF THE EFFECTIVENESS-NUMBER OF TRANSFER UNITS FOR SEVERAL CROSS-FLOW HEAT EXCHANGERS WITH DIFFERENT FLOW ARRANGEMENTS

NUMERICAL COMPUTATION OF THE EFFECTIVENESS-NUMBER OF TRANSFER UNITS FOR SEVERAL CROSS-FLOW HEAT EXCHANGERS WITH DIFFERENT FLOW ARRANGEMENTS Prodings of COBEM 2009 20th Intrnational Congrss of Mhanial Enginring Novmbr 15-20, 2009, Gramado, RS, Brazil NUMERICAL COMPUTATION OF THE EFFECTIVENESS-NUMBER OF TRANSFER UNITS FOR SEVERAL CROSS-FLOW

More information

AP Calculus AB 2008 Scoring Guidelines

AP Calculus AB 2008 Scoring Guidelines AP Calculus AB 8 Scoring Guidlins Th Collg Board: Conncting Studnts to Collg Succss Th Collg Board is a not-for-profit mmbrship association whos mission is to connct studnts to collg succss and opportunity.

More information

Section 7.4: Exponential Growth and Decay

Section 7.4: Exponential Growth and Decay 1 Sction 7.4: Exponntial Growth and Dcay Practic HW from Stwart Txtbook (not to hand in) p. 532 # 1-17 odd In th nxt two ction, w xamin how population growth can b modld uing diffrntial quation. W tart

More information

Pythagoras Theorem. Mathletics Instant Workbooks. Copyright

Pythagoras Theorem. Mathletics Instant Workbooks. Copyright Pythagoras Thorm Stunt ook - Sris I- y r Mathltis Instant Workooks opyright Stunt ook - Sris I ontnts Topis Topi - Hypotnus o th right angl triangl Topi 2 - Naming th sis o a right angl triangl Topi -

More information

Examples. Epipoles. Epipolar geometry and the fundamental matrix

Examples. Epipoles. Epipolar geometry and the fundamental matrix Epipoar gomtry and th fundamnta matrix Epipoar ins Lt b a point in P 3. Lt x and x b its mapping in two imags through th camra cntrs C and C. Th point, th camra cntrs C and C and th (3D points corrspon

More information

Deer: Predation or Starvation

Deer: Predation or Starvation : Prdation or Starvation National Scinc Contnt Standards: Lif Scinc: s and cosystms Rgulation and Bhavior Scinc in Prsonal and Social Prspctiv s, rsourcs and nvironmnts Unifying Concpts and Procsss Systms,

More information

Simulated Radioactive Decay Using Dice Nuclei

Simulated Radioactive Decay Using Dice Nuclei Purpos: In a radioactiv sourc containing a vry larg numbr of radioactiv nucli, it is not possibl to prdict whn any on of th nucli will dcay. Although th dcay tim for any on particular nuclus cannot b prdictd,

More information

Variance Components (VARCOMP)

Variance Components (VARCOMP) Varianc Componnts (VARCOP) Notation Th Varianc Componnts procdur provids stimats for variancs of random ffcts undr a gnral linar modl framwor. Four typs of stimation mthods ar availabl in this procdur.

More information

http://www.wwnorton.com/chemistry/tutorials/ch14.htm Repulsive Force

http://www.wwnorton.com/chemistry/tutorials/ch14.htm Repulsive Force ctivation nrgis http://www.wwnorton.com/chmistry/tutorials/ch14.htm (back to collision thory...) Potntial and Kintic nrgy during a collision + + ngativly chargd lctron cloud Rpulsiv Forc ngativly chargd

More information

June 2012. Enprise Rent. Enprise 1.1.6. Author: Document Version: Product: Product Version: SAP Version: 8.81.100 8.8

June 2012. Enprise Rent. Enprise 1.1.6. Author: Document Version: Product: Product Version: SAP Version: 8.81.100 8.8 Jun 22 Enpris Rnt Author: Documnt Vrsion: Product: Product Vrsion: SAP Vrsion: Enpris Enpris Rnt 88 88 Enpris Rnt 22 Enpris Solutions All rights rsrvd No parts of this work may b rproducd in any form or

More information

Foreign Exchange Markets and Exchange Rates

Foreign Exchange Markets and Exchange Rates Microconomics Topic 1: Explain why xchang rats indicat th pric of intrnational currncis and how xchang rats ar dtrmind by supply and dmand for currncis in intrnational markts. Rfrnc: Grgory Mankiw s Principls

More information

Systems of Equations and Inequalities

Systems of Equations and Inequalities CHAPTER CONNECTIONS Systms of Equations and Inqualitis CHAPTER OUTLINE.1 Linar Systms in Two Variabls with Applications 04. Linar Systms in Thr Variabls with Applications 16.3 Nonlinar Systms of Equations

More information

Automatic Modeling of Musical Style

Automatic Modeling of Musical Style Automati Modling of Musial Styl O. Lartillot 1, S. Dubnov 2, G. Assayag 1, G. Bjrano 3 1 Iram (Institut d Rhrh t Coordination Aoustiqu/Musiqu), Paris, Fran 2 Bn Gurion Univrsity, Isral 3 Institut of Computr

More information

(Analytic Formula for the European Normal Black Scholes Formula)

(Analytic Formula for the European Normal Black Scholes Formula) (Analytic Formula for th Europan Normal Black Schols Formula) by Kazuhiro Iwasawa Dcmbr 2, 2001 In this short summary papr, a brif summary of Black Schols typ formula for Normal modl will b givn. Usually

More information

SUBATOMIC PARTICLES AND ANTIPARTICLES AS DIFFERENT STATES OF THE SAME MICROCOSM OBJECT. Eduard N. Klenov* Rostov-on-Don. Russia

SUBATOMIC PARTICLES AND ANTIPARTICLES AS DIFFERENT STATES OF THE SAME MICROCOSM OBJECT. Eduard N. Klenov* Rostov-on-Don. Russia SUBATOMIC PARTICLES AND ANTIPARTICLES AS DIFFERENT STATES OF THE SAME MICROCOSM OBJECT Eduard N. Klnov* Rostov-on-Don. Russia Th distribution law for th valus of pairs of th consrvd additiv quantum numbrs

More information

Solutions to Homework 8 chem 344 Sp 2014

Solutions to Homework 8 chem 344 Sp 2014 1. Solutions to Homwork 8 chm 44 Sp 14 .. 4. All diffrnt orbitals mans thy could all b paralll spins 5. Sinc lctrons ar in diffrnt orbitals any combination is possibl paird or unpaird spins 6. Equivalnt

More information

II. Equipment. Magnetic compass, magnetic dip compass, Helmholtz coils, HP 6212 A power supply, Keithley model 169 multimeter

II. Equipment. Magnetic compass, magnetic dip compass, Helmholtz coils, HP 6212 A power supply, Keithley model 169 multimeter Magntic fild of th arth I. Objctiv: Masur th magntic fild of th arth II. Equipmnt. Magntic compass, magntic dip compass, Hlmholtz s, HP 6212 A powr supply, Kithly modl 169 multimtr III Introduction. IIIa.

More information

EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS

EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS 25 Vol. 3 () January-March, pp.37-5/tripathi EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS *Shilpa Tripathi Dpartmnt of Chmical Enginring, Indor Institut

More information

Incomplete 2-Port Vector Network Analyzer Calibration Methods

Incomplete 2-Port Vector Network Analyzer Calibration Methods Incomplt -Port Vctor Ntwork nalyzr Calibration Mthods. Hnz, N. Tmpon, G. Monastrios, H. ilva 4 RF Mtrology Laboratory Instituto Nacional d Tcnología Industrial (INTI) Bunos irs, rgntina ahnz@inti.gov.ar

More information

CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.

CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List. Elmntary Rndring Elmntary rastr algorithms for fast rndring Gomtric Primitivs Lin procssing Polygon procssing Managing OpnGL Stat OpnGL uffrs OpnGL Gomtric Primitivs ll gomtric primitivs ar spcifid by

More information

Projections - 3D Viewing. Overview Lecture 4. Projection - 3D viewing. Projections. Projections Parallel Perspective

Projections - 3D Viewing. Overview Lecture 4. Projection - 3D viewing. Projections. Projections Parallel Perspective Ovrviw Lctur 4 Projctions - 3D Viwing Projctions Paralll Prspctiv 3D Viw Volum 3D Viwing Transformation Camra Modl - Assignmnt 2 OFF fils 3D mor compl than 2D On mor dimnsion Displa dvic still 2D Analog

More information

Renewable Energy Sources. Solar Cells SJSU-E10 S John Athanasiou

Renewable Energy Sources. Solar Cells SJSU-E10 S John Athanasiou Rnwabl Enrgy Sourcs. Solar Clls SJSU-E10 S-2008 John Athanasiou 1 Rnwabl Enrgy Sourcs Rnwabl: Thy can last indfinitly 1. Wind Turbin: Convrting th wind nrgy into lctricity Wind, Propllr, Elctric Gnrator,

More information

MAXIMAL CHAINS IN THE TURING DEGREES

MAXIMAL CHAINS IN THE TURING DEGREES MAXIMAL CHAINS IN THE TURING DEGREES C. T. CHONG AND LIANG YU Abstract. W study th problm of xistnc of maximal chains in th Turing dgrs. W show that:. ZF + DC+ Thr xists no maximal chain in th Turing dgrs

More information

Optical Modulation Amplitude (OMA) and Extinction Ratio

Optical Modulation Amplitude (OMA) and Extinction Ratio Application Not: HFAN-.. Rv; 4/8 Optical Modulation Amplitud (OMA) and Extinction Ratio AVAILABLE Optical Modulation Amplitud (OMA) and Extinction Ratio Introduction Th optical modulation amplitud (OMA)

More information

intro Imagine that someone asked you to describe church using only the bible. What would you say to them?

intro Imagine that someone asked you to describe church using only the bible. What would you say to them? intro Imagin that somon askd you to dscrib church using only th bibl. What would you say to thm? So many of th things w'v mad church to b arn't ssntial in scriptur. W'r on a journy of r-imagining what

More information

Improving Managerial Accounting and Calculation of Labor Costs in the Context of Using Standard Cost

Improving Managerial Accounting and Calculation of Labor Costs in the Context of Using Standard Cost Economy Transdisciplinarity Cognition www.ugb.ro/tc Vol. 16, Issu 1/2013 50-54 Improving Managrial Accounting and Calculation of Labor Costs in th Contxt of Using Standard Cost Lucian OCNEANU, Constantin

More information

Category 7: Employee Commuting

Category 7: Employee Commuting 7 Catgory 7: Employ Commuting Catgory dscription This catgory includs missions from th transportation of mploys 4 btwn thir homs and thir worksits. Emissions from mploy commuting may aris from: Automobil

More information

Some Useful Integrals of Exponential Functions

Some Useful Integrals of Exponential Functions prvious indx nxt Som Usful Intgrls of Exponntil Functions Michl Fowlr W v shown tht diffrntiting th xponntil function just multiplis it by th constnt in th xponnt, tht is to sy, d x x Intgrting th xponntil

More information

Inference by Variable Elimination

Inference by Variable Elimination Chaptr 5 Infrnc by Variabl Elimination Our purpos in this chaptr is to prsnt on of th simplst mthods for gnral infrnc in Baysian ntworks, known as th mthod of Variabl Elimination. 5.1 Introduction Considr

More information

7 Timetable test 1 The Combing Chart

7 Timetable test 1 The Combing Chart 7 Timtabl tst 1 Th Combing Chart 7.1 Introduction 7.2 Tachr tams two workd xampls 7.3 Th Principl of Compatibility 7.4 Choosing tachr tams workd xampl 7.5 Ruls for drawing a Combing Chart 7.6 Th Combing

More information

14.02 Principles of Macroeconomics Problem Set 4 Solutions Fall 2004

14.02 Principles of Macroeconomics Problem Set 4 Solutions Fall 2004 art I. Tru/Fals/Uncrtain Justify your answr with a short argumnt. 4.02 rincipls of Macroconomics roblm St 4 Solutions Fall 2004. High unmploymnt implis that th labor markt is sclrotic. Uncrtain. Th unmploymnt

More information

Noble gas configuration. Atoms of other elements seek to attain a noble gas electron configuration. Electron configuration of ions

Noble gas configuration. Atoms of other elements seek to attain a noble gas electron configuration. Electron configuration of ions Valnc lctron configuration dtrmins th charactristics of lmnts in a group Nobl gas configuration Th nobl gass (last column in th priodic tabl) ar charactrizd by compltly filld s and p orbitals this is a

More information

Analyzing the Economic Efficiency of ebaylike Online Reputation Reporting Mechanisms

Analyzing the Economic Efficiency of ebaylike Online Reputation Reporting Mechanisms A rsarch and ducation initiativ at th MIT Sloan School of Managmnt Analyzing th Economic Efficincy of Baylik Onlin Rputation Rporting Mchanisms Papr Chrysanthos Dllarocas July For mor information, plas

More information

Version 1.0. General Certificate of Education (A-level) January 2012. Mathematics MPC3. (Specification 6360) Pure Core 3. Final.

Version 1.0. General Certificate of Education (A-level) January 2012. Mathematics MPC3. (Specification 6360) Pure Core 3. Final. Vrsion.0 Gnral Crtificat of Education (A-lvl) January 0 Mathmatics MPC (Spcification 660) Pur Cor Final Mark Schm Mark schms ar prpard by th Principal Eaminr and considrd, togthr with th rlvant qustions,

More information

Use a high-level conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects

Use a high-level conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects Chaptr 3: Entity Rlationship Modl Databas Dsign Procss Us a high-lvl concptual data modl (ER Modl). Idntify objcts of intrst (ntitis) and rlationships btwn ths objcts Idntify constraints (conditions) End

More information

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

More information

Batch Printing. Creating New Batch Print Jobs

Batch Printing. Creating New Batch Print Jobs Bth Printing Bth printing llows you to print svrl rports t on. You n print rports to printr or to PDF or PRN fil. First, though, you must st up th th print jo, n thn you must xut it. Follow th instrutions

More information

Fundamentals: NATURE OF HEAT, TEMPERATURE, AND ENERGY

Fundamentals: NATURE OF HEAT, TEMPERATURE, AND ENERGY Fundamntals: NATURE OF HEAT, TEMPERATURE, AND ENERGY DEFINITIONS: Quantum Mchanics study of individual intractions within atoms and molculs of particl associatd with occupid quantum stat of a singl particl

More information

Epipolar Geometry and the Fundamental Matrix

Epipolar Geometry and the Fundamental Matrix 9 Epipolar Gomtry and th Fundamntal Matrix Th pipolar gomtry is th intrinsic projctiv gomtry btwn two viws. It is indpndnt of scn structur, and only dpnds on th camras intrnal paramtrs and rlativ pos.

More information

In the previous two chapters, we clarified what it means for a problem to be decidable or undecidable.

In the previous two chapters, we clarified what it means for a problem to be decidable or undecidable. Chaptr 7 Computational Complxity 7.1 Th Class P In th prvious two chaptrs, w clarifid what it mans for a problm to b dcidabl or undcidabl. In principl, if a problm is dcidabl, thn thr is an algorithm (i..,

More information

Constraint-Based Analysis of Gene Deletion in a Metabolic Network

Constraint-Based Analysis of Gene Deletion in a Metabolic Network Constraint-Basd Analysis of Gn Dltion in a Mtabolic Ntwork Abdlhalim Larhlimi and Alxandr Bockmayr DFG-Rsarch Cntr Mathon, FB Mathmatik und Informatik, Fri Univrsität Brlin, Arnimall, 3, 14195 Brlin, Grmany

More information

Financial Mathematics

Financial Mathematics Financial Mathatics A ractical Guid for Actuaris and othr Businss rofssionals B Chris Ruckan, FSA & Jo Francis, FSA, CFA ublishd b B rofssional Education Solutions to practic qustions Chaptr 7 Solution

More information

Fundamentals of Tensor Analysis

Fundamentals of Tensor Analysis MCEN 503/ASEN 50 Chptr Fundmntls of Tnsor Anlysis Fll, 006 Fundmntls of Tnsor Anlysis Concpts of Sclr, Vctor, nd Tnsor Sclr α Vctor A physicl quntity tht cn compltly dscrid y rl numr. Exmpl: Tmprtur; Mss;

More information

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means Qian t al. Journal of Inqualitis and Applications (015) 015:1 DOI 10.1186/s1660-015-0741-1 R E S E A R C H Opn Accss Sharp bounds for Sándor man in trms of arithmtic, gomtric and harmonic mans Wi-Mao Qian

More information

3. Yes. You can put 20 of the 6-V lights in series, or you can put several of the 6-V lights in series with a large resistance.

3. Yes. You can put 20 of the 6-V lights in series, or you can put several of the 6-V lights in series with a large resistance. CHAPTE 6: DC Circuits sponss to Qustions. Evn though th bird s ft ar at high potntial with rspct to th ground, thr is vry littl potntial diffrnc btwn thm, bcaus thy ar clos togthr on th wir. Th rsistanc

More information

CHAPTER 4c. ROOTS OF EQUATIONS

CHAPTER 4c. ROOTS OF EQUATIONS CHAPTER c. ROOTS OF EQUATIONS A. J. Clark School o Enginring Dpartmnt o Civil and Environmntal Enginring by Dr. Ibrahim A. Aakka Spring 00 ENCE 03 - Computation Mthod in Civil Enginring II Dpartmnt o Civil

More information

STATEMENT OF INSOLVENCY PRACTICE 3.2

STATEMENT OF INSOLVENCY PRACTICE 3.2 STATEMENT OF INSOLVENCY PRACTICE 3.2 COMPANY VOLUNTARY ARRANGEMENTS INTRODUCTION 1 A Company Voluntary Arrangmnt (CVA) is a statutory contract twn a company and its crditors undr which an insolvncy practitionr

More information

Cayley s Formula. Graphs - II The number of labeled trees on n nodes is n n-2. Planar Graphs. Is K 5 planar? Outline. K 5 can be embedded on the torus

Cayley s Formula. Graphs - II The number of labeled trees on n nodes is n n-2. Planar Graphs. Is K 5 planar? Outline. K 5 can be embedded on the torus Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Crngi Mllon Univrsity Cyly s Formul Grphs - II Th numr of ll trs on n nos is n n-2 Put nothr wy, it ounts th numr of spnning trs of omplt grph K n. 4

More information

C H A P T E R 1 Writing Reports with SAS

C H A P T E R 1 Writing Reports with SAS C H A P T E R 1 Writing Rports with SAS Prsnting information in a way that s undrstood by th audinc is fundamntally important to anyon s job. Onc you collct your data and undrstand its structur, you nd

More information

10/06/08 1. Aside: The following is an on-line analytical system that portrays the thermodynamic properties of water vapor and many other gases.

10/06/08 1. Aside: The following is an on-line analytical system that portrays the thermodynamic properties of water vapor and many other gases. 10/06/08 1 5. Th watr-air htrognous systm Asid: Th following is an on-lin analytical systm that portrays th thrmodynamic proprtis of watr vapor and many othr gass. http://wbbook.nist.gov/chmistry/fluid/

More information

Fetch. Decode. Execute. Memory. PC update

Fetch. Decode. Execute. Memory. PC update nwpc PC Nw PC valm Mmory Mm. control rad writ Data mmory data out rmmovl ra, D(rB) Excut Bch CC ALU A vale ALU Addr ALU B Data vala ALU fun. valb dste dstm srca srcb dste dstm srca srcb Ftch Dcod Excut

More information

Spiral Physics. Modern Physics ... Nuclear Physics

Spiral Physics. Modern Physics ... Nuclear Physics .......... Spiral Physis Modrn Physis.......... Nular Physis Copyright 003 Paul D Alssandris Spiral Physis Rohstr, NY 1463 All rights rsrvd. No part of this book may b rprodud or transmittd in any form

More information

AP Calculus Multiple-Choice Question Collection 1969 1998. connect to college success www.collegeboard.com

AP Calculus Multiple-Choice Question Collection 1969 1998. connect to college success www.collegeboard.com AP Calculus Multipl-Choic Qustion Collction 969 998 connct to collg succss www.collgboard.com Th Collg Board: Conncting Studnts to Collg Succss Th Collg Board is a not-for-profit mmbrship association whos

More information

CHAPTER 17: PHYSICS OF HEARING

CHAPTER 17: PHYSICS OF HEARING Collg Physics Studnt s Manual Chaptr 7 CHPTER 7: PHYSCS OF HERNG 7. SPEED OF SOUND, FREQUENCY, ND WVELENGTH. Whn pokd y a spar, an opratic soprano lts out a - Hz shrik. What is its alngth i th spd o sound

More information

MEASUREMENT AND ASSESSMENT OF IMPACT SOUND IN THE SAME ROOM. Hans G. Jonasson

MEASUREMENT AND ASSESSMENT OF IMPACT SOUND IN THE SAME ROOM. Hans G. Jonasson MEASUREMENT AND ASSESSMENT OF IMPACT SOUND IN THE SAME ROOM Hans G. Jonasson SP Tchnical Rsarch Institut of Swdn Box 857, SE-501 15 Borås, Swdn hans.jonasson@sp.s ABSTRACT Drum sound, that is th walking

More information

Upper Bounding the Price of Anarchy in Atomic Splittable Selfish Routing

Upper Bounding the Price of Anarchy in Atomic Splittable Selfish Routing Uppr Bounding th Pric of Anarchy in Atomic Splittabl Slfish Routing Kamyar Khodamoradi 1, Mhrdad Mahdavi, and Mohammad Ghodsi 3 1 Sharif Univrsity of Tchnology, Thran, Iran, khodamoradi@c.sharif.du Sharif

More information

Remember you can apply online. It s quick and easy. Go to www.gov.uk/advancedlearningloans. Title. Forename(s) Surname. Sex. Male Date of birth D

Remember you can apply online. It s quick and easy. Go to www.gov.uk/advancedlearningloans. Title. Forename(s) Surname. Sex. Male Date of birth D 24+ Advancd Larning Loan Application form Rmmbr you can apply onlin. It s quick and asy. Go to www.gov.uk/advancdlarningloans About this form Complt this form if: you r studying an ligibl cours at an approvd

More information

STERLING POND AND JOSH AMES STRUCTURE ECOLOGICAL RESTORATION PROJECT

STERLING POND AND JOSH AMES STRUCTURE ECOLOGICAL RESTORATION PROJECT POND AND JOSH AMS STRUTUR OLOGI PROJT VIINITY MAP SHT INDX AUG 213 PROJT ARA 1 OVR SHT 2 GNR NOTS 3 SHT INDX 4 GRADING PLAN -1 5 GRADING PLAN-2 6 GRADING PLAN-3 7 HRAS ROSS STIONS-1 8 HRAS ROSS STIONS-2

More information

Graph Theory. 1 Graphs and Subgraphs

Graph Theory. 1 Graphs and Subgraphs 1 Graphs and Subgraphs Graph Thory Dfinition 1.1. A multigraph or just graph is an ordrd pair G = (V, E) consisting of a nonmpty vrtx st V of vrtics and an dg st E of dgs such that ach dg E is assignd

More information