Thermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself

Size: px
Start display at page:

Download "Thermochemistry. Thermochemistry 1/25/2010. Reading: Chapter 5 (omit 5.8) As you read ask yourself"

Transcription

1 Thermochemistry Reading: Chapter 5 (omit 5.8) As you read ask yourself What is meant by the terms system and surroundings? How are they related to each other? How does energy get transferred between them? What makes up the internal energy of matter? What kind of work do chemical system do? What impact does heat and work transfer have on the internal energy of a system? Does how we effect the transfer of heat and work matter to the value of the internal energy change? Why or why not? How can we measure heat flow? How is temperature change related to the transfer of heat? Does the composition of the substance that undergoes a change in temperature matter, if so why? Is the same thermodynamic quantity measured in all calorimetry experiments? Why or why not? Since we can t measure every reactions enthalpy directly, what methods can we use to figure out the enthalpy of any given reaction? What fundamental property of enthalpy makes Hess s Law work? Why don t we have a value for the heat of formation of O 2 (g) and C(graphite)? Chem Thermochemistry Why do chemical reactions occur? stability! products are more stable than reactants energy is an important factor in determining stability less stable Nature of energy: capacity to do work or transfer heat energy reaction more stable energy when a force causes a mass to move energy to cause an increase in temperature objects possess energy work and heat are ways to transfer energy Chem

2 Energy can be classified as either kinetic or potential energy kinetic energy energy of motion E K = ½ m v 2 thermal energy energy associated with temperature of object thermal energy depends on T and quantity potential energy stored energy arises from position or composition chemical energy energy associated with electrons and nuclei electrostatic energy interaction between charges is the force Chem Units Joules 1 Joule = 1 kg m 2 s -2 e.g. a 4 kg mass moving at 1 m/s E K = ½ m v 2 = ½ (4 kg) (1 m s -1 ) 2 = 2 kg m 2 s -2 = 2 Joules Calories defined as 1 cal = J exactly old definition: energy required to raise temp. of 1 g of water from 14.5 to 15.5 C Nutritional calorie Calorie = 1000 cal = 1 kcal Kilowatt-hour SI unit of power (rate of energy conversion) 1 watt = 1 J s watt incandescent bulb uses 100 J s -1 = 0.1 kw h 1 kw h = 3.6 x 10 6 J CFL 23 watts kw h Chem

3 First Law of Thermodynamics: energy is neither created or destroyed therefore the total energy of the universe is constant (energy is conserved). energy can be converted from one form to another energy can be transferred Chem System and surroundings to understand energy transfers and transformations we have to define the part of the universe we are studying system: part of universe chosen for study surroundings: part of universe outside of the system with which the system interacts isolated Chem

4 most observations are made in the surroundings example: chemical reaction Zn(s) = HCl(aq) Zn 2+ (aq) + H 2 (g) + 2Cl - (aq) once Zn is added system is closed mass is moved so work is done = w heat is given off = q energy is transferred Chem change in temperature energy transferred from hot to cold until equilibrium (both at same T) move an object against a force w = F x d size of force and distance moved determine quantity of work Chem

5 Internal energy, E internal energy is the sum of all the kinetic and potential energy of all components of the system hard to obtain absolute value of E normally determine the change in internal energy ΔE = E final E initial for a chemical reaction: ΔE = E products E reactants Chem Chem

6 How is ΔE changed? depends on heat transfer (q) and work (w) heat added to or liberated by system work done by or done on system ΔE = q + w the magnitude of ΔE depends on the size of q and w and their relative signs note that the values of ΔE, q and w refer to the SYSTEM Chem system loses heat, ΔE so q is negative system uses its energy & does work, ΔE so work is negative in this case E final < E initial, ΔE is < 0 system gains heat, ΔE so q is + work done on system, ΔE so w is + in this case E final > E initial, ΔE is > 0 endothermic exothermic Chem

7 example: A balloon is heated by adding 900 J of heat, it expands and does 422 J of work. What is the change in internal energy? If balloon is heated by adding 1500J it expands and does 800J of work. Suppose the balloon is then cooled by removing 520 J of heat and compressed by doing 298 J of work on the balloon Chem how the energy transfer is divided between work and heat depends on the process the total energy transferred does not depend on the pathway in the example: analogy to altitude: Chem

8 internal energy is a state function A function or property whose value depends only on the present state or condition of the system, not on the path used to arrive at that state a state function Examples of state functions: Chem ΔE in chemical reactions Most chemical changes occur at constant atmospheric pressure Heat and work are exchanged with surroundings Work is typically mechanical (change in volume of gases) or electrical expansion Chem

9 Expansion work (P-V work) work the force that moves an object through a distance pressure = force / area sign convention, when ΔV is positive, work is negative Units: w = pressure x volume = atm x L from Data Sheet: 1 J = L atm Chem Example: If mol of N 2 at constant T is compressed by 15.1 L at P = atm, what is the work involved? What does this mean for our definition of internal energy? Substitute PV work into expression for ΔE If reaction takes place in a sealed container, ΔV = 0 then no PV work is done What if external pressure is zero (expansion against a vacuum)? Chem

10 chemical changes typically take place at constant pressure define a new thermodynamic quantity for the heat change at constant pressure, enthalpy H defined as H = E + PV because E, P and V are state functions Chem Example. ΔE = kj/mol, what is sign of PΔV? What is sign and approximate magnitude of ΔH? Assume that T is constant. Chem

11 Enthalpy and chemical reactions ΔH = H final H initial so in chemical reactions 1 (ΔH is often written chemical reaction and ΔH together are thermochemical equation provides relationship between amounts of chemicals and heat involved in reaction 2H 2H 2 O 2 (l) 2H 2 O(l) + O 2 (g) ΔH = 196 kj 2 O 2 (l) kj +196 kj 2H 2 O 2 (l) 2H 2 O(g) + O 2 (g) ΔH = 108 kj 2H Chem O(l) + O 2 (g) 21 Example: Sulfuric acid is produced by reacting sulfur trioxide with water according to the equation: SO 3 (g) + H 2 O (l) H 2 SO 4 (l) ΔH = kj/mol How much heat is evolved when 75.0 g of SO 3 reacts with a stoichiometric amount of H 2 O(l)? Chem

12 Heat transfer define system and surroundings Effectiveness of heat transfer depends on nature of substances Chem Heat capacity and specific heat how much the temperature changes per amount of heat added depends on the nature of the substance Heat capacity amount of heat required to raise the temperature of an object by 1 K (or 1 C) heat capacity is proportionality constant, C heat capacity depends on Chem

13 Heat capacity for pure substances intrinsic property of substance Specific heat capacity defined for 1 gram of substance and a temperature increase of 1 C or 1 degree Kelvin amount of heat transferred specific heat = (grams of substance)(change in temperature) Molar heat capacity defined for 1 mole of substance and a temperature increase of 1 C or 1 degree Kelvin Chem Specific heat capacity (molar heat capacity) depends on bonding complexity physical state Chem

14 determining i specific heat: in step (a)the lead dis heated dto 100 C, then added to water in step(b) and the final temperature is measured in step(c) Chem Measuring heat transfer calorimetry: measure the magnitude of the temperature change as heat flows main idea: heat change in water in device heat change in the reaction measure change in T calorimeter Chem

15 Constant pressure calorimetry usually reactions are in solution what is the system? what are the surroundings? When 10.0 ml of a 1.00 M AgNO 3 solution is added to 10.0 ml of 1.00 M NaCl solution at 25.0 C in a constant pressure calorimeter, a white precipitate of AgCl is formed and the temperature of the aqueous mixture increases to 32.6 C. Assuming that the specific heat of the aqueous mixture it is 418J 4.18 g -1 C -1, that t the density of the mixture is 1.00 g ml -1, and that the calorimeter absorbs no heat, calculate ΔH in kj for the reaction. Ag + (aq) + Cl (aq) AgCl(s) Chem Constant volume calorimetry device often used for combustion reactions e.g. C 6 H 6 (l) + 15 / 2 O 2 (g) 6 CO 2 (g) + 3 H 2 O(g) heat flows out of reaction chamber into water and heats calorimeter what is the system? what are the surroundings? q rxn = ΔE why? Chem

16 Example: Combustion of a liquid rocket fuel, methylhydrazine CH 6 N 2 (s), produces CO 2 (g), N 2 (g) and H 2 O(l). When 4.00g of methyhydrazine is burned in a bomb calorimeter, the temperature increased from 25.0 to 39.5 C. The heat capacity of the calorimeter is kj/ C. What is the heat of reaction for combustion of 1.0 mole of CH 6 N 2 in the calorimeter? Chem Reaction enthalpies the enthalpy change for every reaction can not be easily measured Enthalpy is a state function, so can use known enthalpies for stepwise processes that have the initial and final states of interest N 2 (g) + 3H 2 (g) 2 NH 3 (g) ΔH rxn =? N 2 (g) + 3H 2 (g) N 2 H 4 (g) ΔH = 95.4 kj N 2 H 4 (g) + H 2 (g) 2 NH 3 (g) ΔH = kj Chem

17 Hess s Law The enthalpy change of an overall process is the sum of the enthalpy changes of its individual steps Procedure: combine the individual id reactions so their sums give the desired reaction Arrange reactions so all reactants appear on the left and all products appear on the right All intermediates must occur on both the right and the left so they cancel Any reaction that is reversed must have the sign of its H changed A reaction can be multiplied by a coefficient as necessary, but H for that reaction must be multiplied by the same coefficient. Chem Example: Calculate ΔH for the reaction S(s) + 3 / 2 O 2 (g) SO 3 (g) From the data: S(s) + O 2 (g) SO 2 (g) ΔH 1 = kj 2 SO 2 (g) + O 2 (g) 2 SO 3 (g) ΔH 2 = kj Chem

18 Hess s law requires tabulated data about the enthalpy change of a reaction many types of physical and chemical changes are tabulated enthalpy of vapourization, ΔH vap &, enthalpy of fusion, ΔH fus enthalpy of combustion, ΔH comb enthalpy of formation, ΔH f Must define the physical state, temperature and pressure to use tabulated values Chem Thermodynamic Standard state pure substance in its most stable form 1 atm pressure 25 C (chosen as reference state) 1 M concentration for all substances in solution Standard Enthalpy change, ΔH a standard enthalpy of a reaction is the enthalpy change for a reaction with reactants and products in their standard states Chem

19 Standard enthalpy of formation: the enthalpy change ΔH f for the (hypothetical) formation of 1 mol of substance in its standard state from its constituent elements in their standard states example: for ethanol: C 2 H 5 OH(l) by definition, ΔH f = 0 for The ΔH f values can be used in Hess s law Chem Example: What is the enthalpy change for this rxn? NaHCO 3 (s) Na 2 CO 3 (s) + CO 2 (g) + H 2 O(l) Chem

20 Hess s law using standard heats of formation can be generalized for the example: The value of the ΔH f for a substance can be determined in a calorimeter by measuring the heat evolved in a combustion experiment and using the known ΔH f for CO 2 and H 2 O Chem Example: Combustion of 1 gram of 2,3,4-trimethylpentane (C 8 H 18, mol. mass = 114 g/mol) in a bomb calorimeter raises the temperature of the calorimeter plus contents by 3.8 C. The calorimeter s total heat capacity is kj/ C. What is the heat of formation of 2,3,4-trimethylpentane? Chem

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry. Example 4. Energy and Enthalpy Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

More information

Thermochemical equations allow stoichiometric calculations.

Thermochemical equations allow stoichiometric calculations. CHEM 1105 THERMOCHEMISTRY 1. Change in Enthalpy ( H) Heat is evolved or absorbed in all chemical reactions. Exothermic reaction: heat evolved - heat flows from reaction mixture to surroundings; products

More information

Energy and Chemical Reactions. Characterizing Energy:

Energy and Chemical Reactions. Characterizing Energy: Energy and Chemical Reactions Energy: Critical for virtually all aspects of chemistry Defined as: We focus on energy transfer. We observe energy changes in: Heat Transfer: How much energy can a material

More information

ENTHALPY CHANGES FOR A CHEMICAL REACTION scaling a rxn up or down (proportionality) quantity 1 from rxn heat 1 from Δ r H. = 32.

ENTHALPY CHANGES FOR A CHEMICAL REACTION scaling a rxn up or down (proportionality) quantity 1 from rxn heat 1 from Δ r H. = 32. CHEMISTRY 103 Help Sheet #10 Chapter 4 (Part II); Sections 4.6-4.10 Do the topics appropriate for your lecture Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc (Resource page) Nuggets: Enthalpy

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K 1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

Chapter 6 Chemical Calculations

Chapter 6 Chemical Calculations Chapter 6 Chemical Calculations 1 Submicroscopic Macroscopic 2 Chapter Outline 1. Formula Masses (Ch 6.1) 2. Percent Composition (supplemental material) 3. The Mole & Avogadro s Number (Ch 6.2) 4. Molar

More information

11 Thermodynamics and Thermochemistry

11 Thermodynamics and Thermochemistry Copyright ç 1996 Richard Hochstim. All rights reserved. Terms of use.» 37 11 Thermodynamics and Thermochemistry Thermodynamics is the study of heat, and how heat can be interconverted into other energy

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

UNIT 1 THERMOCHEMISTRY

UNIT 1 THERMOCHEMISTRY UNIT 1 THERMOCHEMISTRY THERMOCHEMISTRY LEARNING OUTCOMES Students will be expected to: THERMOCHEMISTRY STSE analyse why scientific and technological activities take place in a variety individual and group

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions: SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY ANSWER SCHEME UPS 2004/2005 SK027 1 (a) Use the data in the table below to answer the following questions: Enthalpy change ΔH (kj/mol) Atomization energy

More information

Thermodynamics. Thermodynamics 1

Thermodynamics. Thermodynamics 1 Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 5 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The internal energy of a system is always increased by. A) adding

More information

Mr. Bracken. Multiple Choice Review: Thermochemistry

Mr. Bracken. Multiple Choice Review: Thermochemistry Mr. Bracken AP Chemistry Name Period Multiple Choice Review: Thermochemistry 1. If this has a negative value for a process, then the process occurs spontaneously. 2. This is a measure of how the disorder

More information

thermometer as simple as a styrofoam cup and a thermometer. In a calorimeter the reactants are placed into the

thermometer as simple as a styrofoam cup and a thermometer. In a calorimeter the reactants are placed into the Thermochemistry Readin assinment: Chan, Chemistry 10 th edition, pp. 249-258. Goals We will become familiar with the principles of calorimetry in order to determine the heats of reaction for endothermic

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions

Chapter 5 Principles of Chemical Reactivity: Energy and Chemical Reactions PRACTICING SKILLS Energy Chapter 5 Principles of Chemical Reactivity: 1. To move the lever, one uses mechanical energy. The energy resulting is manifest in electrical energy (which produces light); thermal

More information

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to

More information

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics Chem 105 Fri 10-23-09 1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics 10/23/2009 1 Please PICK UP your graded EXAM in front.

More information

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants

More information

Introductory Chemistry, 3 rd Edition Nivaldo Tro. Roy Kennedy Massachusetts Bay Community College Wellesley Hills, Maqqwertd ygoijpk[l

Introductory Chemistry, 3 rd Edition Nivaldo Tro. Roy Kennedy Massachusetts Bay Community College Wellesley Hills, Maqqwertd ygoijpk[l Introductory Chemistry, 3 rd Edition Nivaldo Tro Quantities in Car an octane and oxygen molecules and carbon dioxide and water Chemical Reactions Roy Kennedy Massachusetts Bay Community College Wellesley

More information

Chem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations

Chem 31 Fall 2002. Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Writing and Balancing Chemical Equations Chem 31 Fall 2002 Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Writing and Balancing Chemical Equations 1. Write Equation in Words -you cannot write an equation unless you

More information

Transfer of heat energy often occurs during chemical reactions. A reaction

Transfer of heat energy often occurs during chemical reactions. A reaction Chemistry 111 Lab: Thermochemistry Page I-3 THERMOCHEMISTRY Heats of Reaction The Enthalpy of Formation of Magnesium Oxide Transfer of heat energy often occurs during chemical reactions. A reaction may

More information

Chapter 6 Thermodynamics: The First Law

Chapter 6 Thermodynamics: The First Law Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,

More information

FORMA is EXAM I, VERSION 1 (v1) Name

FORMA is EXAM I, VERSION 1 (v1) Name FORMA is EXAM I, VERSION 1 (v1) Name 1. DO NOT TURN THIS PAGE UNTIL DIRECTED TO DO SO. 2. These tests are machine graded; therefore, be sure to use a No. 1 or 2 pencil for marking the answer sheets. 3.

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X HOMEWORK 5A Barometer; Boyle s Law 1. The pressure of the first two gases below is determined with a manometer that is filled with mercury (density = 13.6 g/ml). The pressure of the last two gases below

More information

1 Exercise 2.19a pg 86

1 Exercise 2.19a pg 86 In this solution set, an underline is used to show the last significant digit of numbers. For instance in x = 2.51693 the 2,5,1, and 6 are all significant. Digits to the right of the underlined digit,

More information

Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102.

Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Thermodynamics 2: Gibbs Free Energy and Equilibrium Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Key Concepts and skills: definitions

More information

Chapter 18 Homework Answers

Chapter 18 Homework Answers Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

More information

Unit 19 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 19 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 19 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The first law of thermodynamics can be given as. A) E = q + w B) =

More information

Enthalpy of Reaction and Calorimetry worksheet

Enthalpy of Reaction and Calorimetry worksheet Enthalpy of Reaction and Calorimetry worksheet 1. Calcium carbonate decomposes at high temperature to form carbon dioxide and calcium oxide, calculate the enthalpy of reaction. CaCO 3 CO 2 + CaO 2. Carbon

More information

Thermodynamics Worksheet I also highly recommend Worksheets 13 and 14 in the Lab Manual

Thermodynamics Worksheet I also highly recommend Worksheets 13 and 14 in the Lab Manual Thermodynamics Worksheet I also highly recommend Worksheets 13 and 14 in the Lab Manual 1. Predict the sign of entropy change in the following processes a) The process of carbonating water to make a soda

More information

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

More information

Thermochemistry: Calorimetry and Hess s Law

Thermochemistry: Calorimetry and Hess s Law Thermochemistry: Calorimetry and Hess s Law Some chemical reactions are endothermic and proceed with absorption of heat while others are exothermic and proceed with an evolution of heat. The magnitude

More information

Experiment 6 Coffee-cup Calorimetry

Experiment 6 Coffee-cup Calorimetry 6-1 Experiment 6 Coffee-cup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined

More information

Chemistry 110 Lecture Unit 5 Chapter 11-GASES

Chemistry 110 Lecture Unit 5 Chapter 11-GASES Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all

More information

CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

More information

HEAT OF FORMATION OF AMMONIUM NITRATE

HEAT OF FORMATION OF AMMONIUM NITRATE 303 HEAT OF FORMATION OF AMMONIUM NITRATE OBJECTIVES FOR THE EXPERIMENT The student will be able to do the following: 1. Calculate the change in enthalpy (heat of reaction) using the Law of Hess. 2. Find

More information

Final Exam CHM 3410, Dr. Mebel, Fall 2005

Final Exam CHM 3410, Dr. Mebel, Fall 2005 Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture

More information

Problem Solving. Stoichiometry of Gases

Problem Solving. Stoichiometry of Gases Skills Worksheet Problem Solving Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations.

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

Thermochemistry I: Endothermic & Exothermic Reactions

Thermochemistry I: Endothermic & Exothermic Reactions THERMOCHEMISTRY I 77 Thermochemistry I: Endothermic & Exothermic Reactions OBJECTIVES: Learn elementary concepts of calorimetry and thermochemistry Practice techniques of careful temperature, mass, and

More information

Bomb Calorimetry. Electrical leads. Stirrer

Bomb Calorimetry. Electrical leads. Stirrer Bomb Calorimetry Stirrer Electrical leads Oxygen inlet valve Bomb Fuse Calorimeter Outer jacket Not shown: heating and cooling system for outer jacket, and controls that keep the outer jacket at the same

More information

Chemical Equations & Stoichiometry

Chemical Equations & Stoichiometry Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term

More information

Sample Problem: STOICHIOMETRY and percent yield calculations. How much H 2 O will be formed if 454 g of. decomposes? NH 4 NO 3 N 2 O + 2 H 2 O

Sample Problem: STOICHIOMETRY and percent yield calculations. How much H 2 O will be formed if 454 g of. decomposes? NH 4 NO 3 N 2 O + 2 H 2 O STOICHIOMETRY and percent yield calculations 1 Steps for solving Stoichiometric Problems 2 Step 1 Write the balanced equation for the reaction. Step 2 Identify your known and unknown quantities. Step 3

More information

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams?

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams? Name: Tuesday, May 20, 2008 1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams? 2 5 1. P2O 5 3. P10O4 2. P5O 2 4. P4O10 2. Which substance

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

Spring 2009. kj mol 125 0-229 -92. H f. H rxn = Σ H f (products) - Σ H f (reactants)

Spring 2009. kj mol 125 0-229 -92. H f. H rxn = Σ H f (products) - Σ H f (reactants) Spring 2009 2. The reaction of an elemental halogen with an alkane is a very common reaction. The reaction between chlorine and butane is provided below. (NOTE: Questions a d and f pertain to this reaction.)

More information

stoichiometry = the numerical relationships between chemical amounts in a reaction.

stoichiometry = the numerical relationships between chemical amounts in a reaction. 1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

More information

Appendix D. Reaction Stoichiometry D.1 INTRODUCTION

Appendix D. Reaction Stoichiometry D.1 INTRODUCTION Appendix D Reaction Stoichiometry D.1 INTRODUCTION In Appendix A, the stoichiometry of elements and compounds was presented. There, the relationships among grams, moles and number of atoms and molecules

More information

How To Calculate Mass In Chemical Reactions

How To Calculate Mass In Chemical Reactions We have used the mole concept to calculate mass relationships in chemical formulas Molar mass of ethanol (C 2 H 5 OH)? Molar mass = 2 x 12.011 + 6 x 1.008 + 1 x15.999 = 46.069 g/mol Mass percentage of

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

Test Review # 9. Chemistry R: Form TR9.13A

Test Review # 9. Chemistry R: Form TR9.13A Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Determination of the enthalpy of combustion using a bomb calorimeter TEC

Determination of the enthalpy of combustion using a bomb calorimeter TEC Determination of the enthalpy of TEC Related concepts First law of thermodynamics, Hess s law of constant heat summation, enthalpy of combustion, enthalpy of formation, heat capacity. Principle The bomb

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

AP CHEMISTRY 2007 SCORING GUIDELINES. Question 2

AP CHEMISTRY 2007 SCORING GUIDELINES. Question 2 AP CHEMISTRY 2007 SCORING GUIDELINES Question 2 N 2 (g) + 3 F 2 (g) 2 NF 3 (g) ΔH 298 = 264 kj mol 1 ; ΔS 298 = 278 J K 1 mol 1 The following questions relate to the synthesis reaction represented by the

More information

Problem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003

Problem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003 LEVEL 1 PROBLEMS Problem Set 1 3.0 MIT Professor Gerbrand Ceder Fall 003 Problem 1.1 The internal energy per kg for a certain gas is given by U = 0. 17 T + C where U is in kj/kg, T is in Kelvin, and C

More information

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass

More information

Chapter 8 - Chemical Equations and Reactions

Chapter 8 - Chemical Equations and Reactions Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from

More information

2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant.

2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant. UNIT 6 stoichiometry practice test True/False Indicate whether the statement is true or false. moles F 1. The mole ratio is a comparison of how many grams of one substance are required to participate in

More information

Chapter 5 Chemical Quantities and Reactions. Collection Terms. 5.1 The Mole. A Mole of a Compound. A Mole of Atoms.

Chapter 5 Chemical Quantities and Reactions. Collection Terms. 5.1 The Mole. A Mole of a Compound. A Mole of Atoms. Chapter 5 Chemical Quantities and Reactions 5.1 The Mole Collection Terms A collection term states a specific number of items. 1 dozen donuts = 12 donuts 1 ream of paper = 500 sheets 1 case = 24 cans 1

More information

4. Using the data from Handout 5, what is the standard enthalpy of formation of BaO (s)? What does this mean?

4. Using the data from Handout 5, what is the standard enthalpy of formation of BaO (s)? What does this mean? HOMEWORK 3A 1. In each of the following pairs, tell which has the higher entropy. (a) One mole of liquid water or one mole of water vapor (b) One mole of dry ice or one mole of carbon dioxide at 1 atm

More information

Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu

Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu Calculations and Chemical Equations Atomic mass: Mass of an atom of an element, expressed in atomic mass units Atomic mass unit (amu): 1.661 x 10-24 g Atomic weight: Average mass of all isotopes of a given

More information

CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES

CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES The meaning of stoichiometric coefficients: 2 H 2 (g) + O 2 (g) 2 H 2 O(l) number of reacting particles 2 molecules of hydrogen react with 1 molecule

More information

Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase.

Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase. Skills Worksheet Concept Review Section: Calculating Quantities in Reactions Complete each statement below by writing the correct term or phrase. 1. All stoichiometric calculations involving equations

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Sample Exercise 3.1 Interpreting and Balancing Chemical Equations

Sample Exercise 3.1 Interpreting and Balancing Chemical Equations Sample Exercise 3.1 Interpreting and Balancing Chemical Equations The following diagram represents a chemical reaction in which the red spheres are oxygen atoms and the blue spheres are nitrogen atoms.

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

THE MOLE / COUNTING IN CHEMISTRY

THE MOLE / COUNTING IN CHEMISTRY 1 THE MOLE / COUNTING IN CHEMISTRY ***A mole is 6.0 x 10 items.*** 1 mole = 6.0 x 10 items 1 mole = 60, 00, 000, 000, 000, 000, 000, 000 items Analogy #1 1 dozen = 1 items 18 eggs = 1.5 dz. - to convert

More information

Chemistry 11 Some Study Materials for the Final Exam

Chemistry 11 Some Study Materials for the Final Exam Chemistry 11 Some Study Materials for the Final Exam Prefix Abbreviation Exponent giga G 10 9 mega M 10 6 kilo k 10 3 hecto h 10 2 deca da 10 1 deci d 10-1 centi c 10-2 milli m 10-3 micro µ 10-6 nano n

More information

Enthalpy of Combustion via Calorimetry

Enthalpy of Combustion via Calorimetry Enthalpy of Combustion via Calorimetry Introduction This experiment measures the enthalpy change when a system consisting of a known amount of a substance in the presence of excess oxygen is quantitatively

More information

Chemistry 151 Final Exam

Chemistry 151 Final Exam Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Chapter 3 Calculations with Chemical Formulas and Equations Concept Check 3.1 You have 1.5 moles of tricycles. a. How many moles of seats do you have? b. How many moles of tires do you have? c. How could

More information

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Moles Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Micro World atoms & molecules Macro World grams Atomic mass is the mass of an

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

www.chemsheets.co.uk 17-Jul-12 Chemsheets A2 033 1

www.chemsheets.co.uk 17-Jul-12 Chemsheets A2 033 1 www.chemsheets.co.uk 17-Jul-12 Chemsheets A2 033 1 AS THERMODYNAMICS REVISION What is enthalpy? It is a measure of the heat content of a substance Enthalpy change ( H) = Change in heat content at constant

More information

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

More information

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1 Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

More information

Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction

Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction Introduction Chapter 5 Chemical Reactions and Equations Chemical reactions occur all around us. How do we make sense of these changes? What patterns can we find? 1 2 Copyright The McGraw-Hill Companies,

More information

Chapter 3 Mass Relationships in Chemical Reactions

Chapter 3 Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative

More information

General Chemistry II Chapter 20

General Chemistry II Chapter 20 1 General Chemistry II Chapter 0 Ionic Equilibria: Principle There are many compounds that appear to be insoluble in aqueous solution (nonelectrolytes). That is, when we add a certain compound to water

More information

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

More information

Unit 2: Quantities in Chemistry

Unit 2: Quantities in Chemistry Mass, Moles, & Molar Mass Relative quantities of isotopes in a natural occurring element (%) E.g. Carbon has 2 isotopes C-12 and C-13. Of Carbon s two isotopes, there is 98.9% C-12 and 11.1% C-13. Find

More information

48 Practice Problems for Ch. 17 - Chem 1C - Joseph

48 Practice Problems for Ch. 17 - Chem 1C - Joseph 48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality

More information

Chapter 5, Calculations and the Chemical Equation

Chapter 5, Calculations and the Chemical Equation 1. How many iron atoms are present in one mole of iron? Ans. 6.02 1023 atoms 2. How many grams of sulfur are found in 0.150 mol of sulfur? [Use atomic weight: S, 32.06 amu] Ans. 4.81 g 3. How many moles

More information

Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS :

Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS : Chem. I Notes Ch. 12, part 2 Using Moles NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles (representative particles

More information

Worksheet #17. 2. How much heat is released when 143 g of ice is cooled from 14 C to 75 C, if the specific heat capacity of ice is 2.087 J/(g C).

Worksheet #17. 2. How much heat is released when 143 g of ice is cooled from 14 C to 75 C, if the specific heat capacity of ice is 2.087 J/(g C). Worksheet #17 Calculating Heat 1. How much heat is needed to bring 12.0 g of water from 28.3 C to 43.87 C, if the specific heat capacity of water is 4.184 /(g? 2. How much heat is released when 143 g of

More information

Gibbs Free Energy and Chemical Potential. NC State University

Gibbs Free Energy and Chemical Potential. NC State University Chemistry 433 Lecture 14 Gibbs Free Energy and Chemical Potential NC State University The internal energy expressed in terms of its natural variables We can use the combination of the first and second

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

Chemistry: Chemical Equations

Chemistry: Chemical Equations Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,

More information

Equilibria Involving Acids & Bases

Equilibria Involving Acids & Bases Week 9 Equilibria Involving Acids & Bases Acidic and basic solutions Self-ionisation of water Through reaction with itself: The concentration of water in aqueous solutions is virtually constant at about

More information