Calorimetry and particle identification

Size: px
Start display at page:

Download "Calorimetry and particle identification"

Transcription

1 Calorimetry and particle identification Summary of two selected HCPSS 2012 courses R. Märki EPFL - LPHE 8 October /47 R. Märki Calorimetry and particle identification

2 Outline I attended the 7th Annual Fermilab-CERN HCPSS in August 2012 and I summarize two selected topics in this presentation. Calorimetry Advantages Calorimeter types Calibration Examples Particle identification Principle Strategy and complete example of CMS More techniques Efficiency and purity 2/47 R. Märki Calorimetry and particle identification

3 Calorimetry advantages Who do calorimetry?! Pros: Cons: Measure neutrals as well as charged particles Resolution improves with particle energy If hermetic, can be used to measure missing particles (eg. neutrinos) Fast trigger Non-linear response Must be BIG (hence expensive) Needs non-trivial engineering for design, construction and signal extraction 3/47 R. Märki Calorimetry and particle identification

4 Calorimetry advantages Combined with tracking, the energy resolution is highly improved Example of CMS: 4/47 R. Märki Calorimetry and particle identification

5 Material interactions Particles interact in matter and deposit energy Bethe-bloch for charged particles Mean free path (or radiation length) important for calorimeter design 5/47 R. Märki Calorimetry and particle identification

6 Shower developpement Example here: electrons Longitudinal shower: several radiation lengths are needed to completely stop a particle. Lateral shower: the so called Moliere radius R M X 0 (21MeV /E c ) contains 90% of the electromagnetic cascade, though there are long tails. longitudinal lateral 6/47 R. Märki Calorimetry and particle identification

7 Sampling calorimeters Only part of the deposited energy de/dx is measured The sampling fraction is defined as (de/dx)active medium / (de/dx) absorber The energy measurement is linear for an infinite detector E particle = k (de/dx) absorber /(de/dx) active medium P (de/dx) active medium Number of particles in the shower is statistical but scales like: N shower E particle /E critical Energy deposition in the shower is a statistical process σ E 1/ N shower σ E 1/ E particle 7/47 R. Märki Calorimetry and particle identification

8 Homogeneous calorimeters Commonly Scintillator (solid and liquid) Liquid Argon Less commonly Gas proportional tubes Silicon Example: CMS Lead-Tungstate Calorimeter - response to high energy electrons 8/47 R. Märki Calorimetry and particle identification

9 Electromagnetic calorimeters Both sampling and homogeneous are frequently used Need fine granularity to distinguish photons from π 0 for instance, discussed more in PID part Usually preshower with even finer granularity over 1-2 first radiation lengths In a sampling electromagnetic calorimeter, the sampling fraction changes in the shower 9/47 R. Märki Calorimetry and particle identification

10 Hadronic calorimeters Hadronic calorimeters are usually sampling calorimeters Hadron showers have a complex composition: EM energy (eg π 0 γγ) : O(50%) Visible non-em energy (eg de/dx) : O(25%) Invisible non-em energy (eg nuclear breakup) :O(25%) Escaped energy (eg ν) :O(1%) Therefore the simulation is complicated as well 10/47 R. Märki Calorimetry and particle identification

11 Example of calorimeters - CDF The sampling calorimeter of CDF Lead absorber with sheets of plastic scintillator The left picture was taken by myself this summer! 11/47 R. Märki Calorimetry and particle identification

12 Example of calorimeters - D0 Homogeneous calorimeter at D0 Uranium metal bathed in liquefied argon 12/47 R. Märki Calorimetry and particle identification

13 Example of calorimeters - ATLAS HCAL ATLAS HCAL: Sampling calorimeter Absorber: steel Scintillating tiles 8m diameter 12m long 13/47 R. Märki Calorimetry and particle identification

14 Example of calorimeters - ATLAS Argon ATLAS ECAL (and HCAL in the forward region): Sampling calorimeter Absorber: lead and stainless steel Liquid argon to sample Accordeon shaped electrodes 14/47 R. Märki Calorimetry and particle identification

15 Example of calorimeters - CMS HCAL CMS HCAL: Sampling calorimeter Absorber + plastic scintillator (scintillator plates 2m long) 15/47 R. Märki Calorimetry and particle identification

16 Example of calorimeters - CMS ECAL Very famous and compact CMS ECAL Homogeneous calorimeter Lead tungstate (PbWO 4 ) crystal tiles Before: pre-shower lead / silicon strips 16/47 R. Märki Calorimetry and particle identification

17 Calorimeter calibration - ATLAS Optical chain calibration: (in real time) tiles with source (Cs 137 ) PMT with laser readout electronics with test pulse Aging effects can be measured and taken into account: 17/47 R. Märki Calorimetry and particle identification

18 Calorimeter calibration - CMS Very first calibration in test beam ECAL calibrated with electrons (and photons) HCAL calibrated with π 0 (normal incidence, no working ECAL in front) need for correction The energy calibration is parametrized with E = a + b(p, η)ecal + c(p, η)hcal a, b and c are determined with isolated tracks in minimum bias events 18/47 R. Märki Calorimetry and particle identification

19 Detector aging - CMS EM crystals The aging can be monitored using the calibration methods seen before Monitor using laser calibration system Response using E/p in W eν 19/47 R. Märki Calorimetry and particle identification

20 Particle identification Already in calorimeters there are different shower responses for electrons and hadrons 20/47 R. Märki Calorimetry and particle identification

21 Particle identification General detector response depending on particle 21/47 R. Märki Calorimetry and particle identification

22 Particle identification - example in CMS 22/47 R. Märki Calorimetry and particle identification

23 Particle identification - example in CMS 23/47 R. Märki Calorimetry and particle identification

24 Particle identification - example in CMS During reconstruction the event is cleaned up: 1 Find and remove muons (σ track ) 2 Find and remove electrons ( min[σ track, σ ECAL ] ) 3 Find and remove charged hadrons (σ track ) 4 Find and remove converted photons ( min[σ track, σ ECAL ] ) 5 Find and remove V0 s (σ track ) 6 Find and remove photons (σ ECAL ) 7 Left with neutral hadrons (10%) (σ HCAL + fake) 24/47 R. Märki Calorimetry and particle identification

25 Particle identification - example in CMS Link tracks to ECAL and HCAL 25 ECAL cells underneath each HCAL cell 25/47 R. Märki Calorimetry and particle identification

26 Particle identification - example in CMS Top view helps to see the links The captions correspond to what was simulated What is actually reconstructed: γ, γ, γ, π +, π 26/47 R. Märki Calorimetry and particle identification

27 Particle identification - example in ATLAS 27/47 R. Märki Calorimetry and particle identification

28 Particle identification - example in ATLAS 28/47 R. Märki Calorimetry and particle identification

29 Particle identification - when E p Few energy in calorimeter compared to measured momentum Mainly due to muons Muon ID very efficient, 98% in CMS The resting 2% still contribute significantly Looser muon cuts used but still many cases left True origin: fake tracks and interactions in tracker material 29/47 R. Märki Calorimetry and particle identification

30 Particle identification - when E p Tracker acts like a pre-shower (silicon is heavy) Has up to 2 radiation lengths for certain pseudo-rapidities CMS ATLAS 30/47 R. Märki Calorimetry and particle identification

31 Particle identification - when E p Reduce hits progressively Start from very pure track seeding Remove used hits and start over with looser requirements For charged hadrons: from 85% efficiency, 20% fake rate to 93% efficiency, 1-2% fake rate 31/47 R. Märki Calorimetry and particle identification

32 Particle identification - Time of Flight Measure time difference between two detector plane crossings Different times for different particles of same momentum β = d/c t and p = γmcβ t = dp/γm Difference very small for relativistic particles Example for a 12m distance: 10 GeV/c K ns 10 GeV/c π ns One needs to measure 50 ps difference for a 12m distance which is already a large scale 32/47 R. Märki Calorimetry and particle identification

33 Particle identification - Ionization Particles lose energy according to the Bethe-Bloch formula Energy loss depends on momentum and mass If energy or momentum loss is measured, one can discrimanate between particles Hard to distinguish π and µ though, as their masses are very close 33/47 R. Märki Calorimetry and particle identification

34 Particle identification - Transition radiation A charged particle flying into a medium with different n (or different dielectric constant, as n = ε) will have its relative velocity with respect to c changed This change results in the emission of transition radiation (photons) Emitted energy proportional to the boost (γ) of the particle Hence also quite good for high energy particles 34/47 R. Märki Calorimetry and particle identification

35 Particle identification - Cherenkov radiation A charged particle having a velocity higher than c emits Cherenkov radiation The light is emitted in a cone, like the waves from a motorboat The angle of the cone is proportional to the velocity cos(θ c ) = 1/βn 250 e µ π 200 K Aerogel θ C max 242 mrad p θ C (mrad) C 4 F 10 gas mrad 32 mrad π K CF 4 gas Momentum (GeV/c) 35/47 R. Märki Calorimetry and particle identification

36 Particle identification - Electron ID Electrons radiate around 70% of the energy in the track by bremsstrahlung Photons have > 50% chance to convert into e + e pair Hence, energy spreads in ϕ ( to B) Standart Kalman Filter pattern recognition gives up quickly Need to account for Bethe-Heitler energy loss (bremsstrahlung) Use sum of Kalman Filters (Gaussian Sum Filter) to approximate non-gaussian part 36/47 R. Märki Calorimetry and particle identification

37 Particle identification - Electron ID Very important to identify/recover bremsstrahlung photons Otherwise their energy is counted twice: (in track + again in ECAL) Holds also for electron pair converted bremsstrahlung photons How it is done in CMS: Check if tangent of track points to ECAL cluster Link cluster to track Also test compatibility between ECAL cluster E and p along GSF track 37/47 R. Märki Calorimetry and particle identification

38 Particle identification - Electron ID BUT! Everything that we have just seen can be used to discrimanate between e and π for instance π radiate much less, so one can: count the number of hits linked to the track look at p count the number of bremsstrahlung γ associated to the track look at E bremsstrahlung look at shower shape along ϕ and η look at linked HCAL energy Everything put into a MVA gives 95% efficiency for isolated electrons and 70-80% efficiency in jets K S π + π 38/47 R. Märki Calorimetry and particle identification

39 Particle identification - Photon ID If not converted, the only way to measure photons are calorimeters When looking at unconverted photons, everything known has already been removed from the event. Then: Use fine segmentation to look at shower shape Use isolation criteria Clustering algorithm plays a big role (be sure that all energy is linked to the cluster!) 39/47 R. Märki Calorimetry and particle identification

40 Particle identification - Efficiency and purity Assume ID is uncorrelated with isolation The true number of photons among N A is equal to N(γ) = N A background This background is N B M A /M B Hence the purity is P = 1 N B /N A M A /M B Efficiency can also be simulated Or use tag and probe method 40/47 R. Märki Calorimetry and particle identification

41 Related physics results The Higgs in H γγ! 41/47 R. Märki Calorimetry and particle identification

42 Thank you for your attention

43 Backup slides 43/47 R. Märki Calorimetry and particle identification

44 CMS event Massive Pile-up at CMS 44/47 R. Märki Calorimetry and particle identification

45 Material interactions in tracking system at CMS Interaction vertices in the CMS tracker 45/47 R. Märki Calorimetry and particle identification

46 LHCb RICH PID LHCb φ K + K result from 2009 ( s = 900GeV ) without and with RICH PID information 46/47 R. Märki Calorimetry and particle identification

47 Tag and probe muons at CMS Fit J/ψ mass for dimuons which pass or do not pass PID cut Evaluate efficiency and purity 47/47 R. Märki Calorimetry and particle identification

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration In-situ Calibration (EM calorimeters)

More information

A Guide to Detectors Particle Physics Masterclass. M. van Dijk

A Guide to Detectors Particle Physics Masterclass. M. van Dijk A Guide to Particle Physics Masterclass M. van Dijk 16/04/2013 How detectors work Scintillation Ionization Particle identification Tracking Calorimetry Data Analysis W & Z bosons 2 Reconstructing collisions

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

IMPROVEMENT OF JET ENERGY RESOLUTION FOR SEGMENTED HCAL USING LAYER WEIGHTING TECHNIQUE

IMPROVEMENT OF JET ENERGY RESOLUTION FOR SEGMENTED HCAL USING LAYER WEIGHTING TECHNIQUE IMPROVEMEN OF JE ENERGY RESOLUION FOR SEGMENED HCAL USING LAYER WEIGHING ECHNIQUE V. Andreev 1, I. Golutvin 2, A. Nikitenko 3,V.Palichik 2 1 Lebedev Physical Institute, Moscow, Russia 2 Joint Institute

More information

07 - Cherenkov and transition radiation detectors

07 - Cherenkov and transition radiation detectors 07 - Cherenkov and transition radiation detectors Jaroslav Adam Czech Technical University in Prague Version 1.0 Jaroslav Adam (CTU, Prague) DPD_07, Cherenkov and transition radiation Version 1.0 1 / 30

More information

Delphes, a framework for fast simulation of a general purpose LHC detector

Delphes, a framework for fast simulation of a general purpose LHC detector Delphes, a framework for fast simulation of a general purpose LHC detector S. Ovyn and X. Rouby Center for Particle Physics and Phenomenology (CP3) Université catholique de Louvain B-1348 Louvain-la-Neuve,

More information

The accurate calibration of all detectors is crucial for the subsequent data

The accurate calibration of all detectors is crucial for the subsequent data Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved

More information

ATLAS Test Beam Analysis in Stockholm: An Overview

ATLAS Test Beam Analysis in Stockholm: An Overview ATLAS Test Beam Analysis in Stockholm: An Overview Elin Bergeås, Stockholm University Stand-alone test beam 2003 and before - test beam targeted at TileCal modules only Combined test beam 2004 - test beam

More information

PoS(Kruger 2010)013. Setting of the ATLAS Jet Energy Scale. Michele Petteni Simon Fraser University E-mail: mpetteni@sfu.ca

PoS(Kruger 2010)013. Setting of the ATLAS Jet Energy Scale. Michele Petteni Simon Fraser University E-mail: mpetteni@sfu.ca Setting of the ALAS Energy Scale Simon Fraser University E-mail: mpetteni@sfu.ca he setting of the energy scale and its uncertainty in the ALAS detector is presented. After a brief introduction of the

More information

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection -

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection - timo.peltola@helsinki.fi Finnish Society for Natural Philosophy, Helsinki, 17 February 2015 Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection - Timo Peltola

More information

Jets energy calibration in ATLAS

Jets energy calibration in ATLAS Jets energy calibration in ATLAS V.Giangiobbe Università di Pisa INFN sezione di Pisa Supported by the ARTEMIS Research Training Network Workshop sui Monte Carlo, la Fisica e le Simulazioni a LHC V.Giangiobbe

More information

Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics

Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics Carlo Schiavi Dottorato in Fisica - XVII Ciclo Outline The ATLAS Experiment The SiTrack Algorithm Application

More information

Electron-Muon Ranger (EMR)

Electron-Muon Ranger (EMR) Electron-Muon Ranger (EMR) Ruslan Asfandiyarov MICE Video Conference April 11, 2013 Construction Construction quarter of the detector completed (12 planes) every plane tested (LED / Camera / image analysis)

More information

Jet Reconstruction in CMS using Charged Tracks only

Jet Reconstruction in CMS using Charged Tracks only Jet Reconstruction in CMS using Charged Tracks only Andreas Hinzmann for the CMS Collaboration JET2010 12 Aug 2010 Jet Reconstruction in CMS Calorimeter Jets clustered from calorimeter towers independent

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

CMS Physics Analysis Summary

CMS Physics Analysis Summary Available on the CERN CDS information server CMS PAS RK-10-002 CMS Physics Analysis Summary Contact: cms-pog-conveners-tracking@cern.ch 2010/07/20 Measurement of racking Efficiency he CMS Collaboration

More information

The LHCb Tracking System. Jeroen van Hunen

The LHCb Tracking System. Jeroen van Hunen The LHCb Tracking System Jeroen van Hunen The LHCb Experiment LHCb at Point 8 : a lot of activity! LHCb : a B-physics experiment that is being constructed for : Precision measurements of the CPviolation

More information

Introduction to Geiger Counters

Introduction to Geiger Counters Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Comparisons between 2003 CMS ECAL TB data and a Geant 4 MC

Comparisons between 2003 CMS ECAL TB data and a Geant 4 MC Comparisons between 2003 CMS CAL TB data and a Geant 4 MC P. Meridiani LCG Validation Meeting 7 th July 2004 Outline CMS lectromagnetic calorimeter and 2003 TB h4sim http://cmsdoc.cern.ch/~h4sim/ (What

More information

Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method

Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method Carlos Garcia University of Rochester For the DØ Collaboration APS Meeting 2007 Outline Introduction Top

More information

Image Processing Techniques applied to Liquid Argon Time Projection Chamber(LArTPC) Data

Image Processing Techniques applied to Liquid Argon Time Projection Chamber(LArTPC) Data Image Processing Techniques applied to Liquid Argon Time Projection Chamber(LArTPC) Data Jessica Esquivel On Behalf of the MicroBooNE Collaboration Syracuse University Advisor: Mitch Soderberg Outline

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

Introduction to the Monte Carlo method

Introduction to the Monte Carlo method Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

X Ray Flourescence (XRF)

X Ray Flourescence (XRF) X Ray Flourescence (XRF) Aspiring Geologist XRF Technique XRF is a rapid, relatively non destructive process that produces chemical analysis of rocks, minerals, sediments, fluids, and soils It s purpose

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

T(CR)3IC Testbed for Coherent Radio Cherenkov Radiation from Cosmic-Ray Induced Cascades

T(CR)3IC Testbed for Coherent Radio Cherenkov Radiation from Cosmic-Ray Induced Cascades T(CR)3IC Testbed for Coherent Radio Cherenkov Radiation from Cosmic-Ray Induced Cascades R. Milinčić1, P. Gorham1, C. Hebert1, S. Matsuno1, P. Miočinović1, M. Rosen1, D. Saltzberg2, G. Varner1 1 University

More information

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons SLAC-PUB-7722 January 9 degrees Bremsstrahlung Source Term Produced in Thick Targets by 5 MeV to GeV Electrons X. S. Mao et al. Presented at the Ninth International Conference on Radiation Shielding, Tsukuba,

More information

ENERGY LOSS OF ALPHA PARTICLES IN GASES

ENERGY LOSS OF ALPHA PARTICLES IN GASES Vilnius University Faculty of Physics Department of Solid State Electronics Laboratory of Applied Nuclear Physics Experiment No. ENERGY LOSS OF ALPHA PARTICLES IN GASES by Andrius Poškus (e-mail: andrius.poskus@ff.vu.lt)

More information

Top-Quark Studies at CMS

Top-Quark Studies at CMS Top-Quark Studies at CMS Tim Christiansen (CERN) on behalf of the CMS Collaboration ICHEP 2010, Paris 35th International Conference on High-Energy Physics tt 2 km 22 28 July 2010 Single-top 4 km New Physics

More information

Track Trigger and Modules For the HLT

Track Trigger and Modules For the HLT CMS L1 Track Trigger for SLHC Anders Ryd for the CMS Track Trigger Task Force Vertex 2009 Sept. 13-18, 2009 L=1035 cm-2s-1 Outline: SLHC trigger challenge Tracking triggers Track trigger modules Simulation

More information

Proton tracking for medical imaging and dosimetry

Proton tracking for medical imaging and dosimetry Proton tracking for medical imaging and dosimetry J.Taylor, P.Allport, G.Casse For the PRaVDA Consortium 1 Background and motivation - What is the PRaVDA experiment? - Why are we using Monte Carlo? GEANT4

More information

Which calorimeter for FCC detector

Which calorimeter for FCC detector Which calorimeter for FCC detector Jean-Claude Brient* Laboratoire Leprince-Ringuet Ecole Polytechnique CNRS Palaiseau J. C. Brient ( LLR) 1 * ECAL contact for ILD and former spokesperson of CALICE FCC

More information

Electron-Muon Ranger (EMR)

Electron-Muon Ranger (EMR) Electron-Muon Ranger (EMR) Digitization and Reconstruction François Drielsma Ruslan Asfandiyarov University of Geneva On Behalf of the EMR Group 38 th MICE Collaboration Meeting February 23, 2014 Electron-Muon

More information

ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC Augusto Santiago Cerqueira On behalf of the ATLAS Tile Calorimeter Group Federal University of Juiz de Fora, Brazil

More information

Detectors in Nuclear and Particle Physics

Detectors in Nuclear and Particle Physics Detectors in Nuclear and Particle Physics Prof. Dr. Johanna Stachel Deartment of Physics und Astronomy University of Heidelberg June 17, 2015 J. Stachel (Physics University Heidelberg) Detectorhysics June

More information

JET ENERGY CALIBRATION IN ATLAS

JET ENERGY CALIBRATION IN ATLAS JET ENERGY CALIBRATION IN ATLAS by Douglas William Schouten B.Sc., University of British Columbia, 2004 a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

More information

Single Top Production at the Tevatron

Single Top Production at the Tevatron Single Top Production at the Tevatron Daniel Wicke (Bergische Universität Wuppertal) Introduction Outline DØ Cross Section CDF Results DØ V tb Conclusions Revision : 1.7 DESY-Zeuthen, 21-Feb-2007 1 Introduction

More information

Detector-related. related software development in the HEPP project. Are Strandlie Gjøvik University College and University of Oslo

Detector-related. related software development in the HEPP project. Are Strandlie Gjøvik University College and University of Oslo Detector-related related software development in the HEPP project Are Strandlie Gjøvik University College and University of Oslo Outline Introduction The ATLAS New Tracking project HEPP contributions Summary

More information

A Polarimetry concept for the EDM experiment at COSY

A Polarimetry concept for the EDM experiment at COSY A Polarimetry concept for the EDM experiment at COSY Paul Maanen JEDI Collaboration Physics Institute III B, RWTH Aachen University DPG Frühjahrstagung March 27, 2015 Outline Introduction Detector concept

More information

Fiber Optics: Fiber Basics

Fiber Optics: Fiber Basics Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded

More information

MICE detectors and first results. M. Bonesini Sezione INFN Milano Bicocca

MICE detectors and first results. M. Bonesini Sezione INFN Milano Bicocca MICE detectors and first results M. Bonesini Sezione INFN Milano Bicocca I will speak of the installed beamline PID detectors (TOFes, CKOVs, KL) and only shortly of EMR (to be built)/ the trackers (tested

More information

The OPERA Emulsions. Jan Lenkeit. Hamburg Student Seminar, 12 June 2008. Institut für Experimentalphysik Forschungsgruppe Neutrinophysik

The OPERA Emulsions. Jan Lenkeit. Hamburg Student Seminar, 12 June 2008. Institut für Experimentalphysik Forschungsgruppe Neutrinophysik The OPERA Emulsions Jan Lenkeit Institut für Experimentalphysik Forschungsgruppe Neutrinophysik Hamburg Student Seminar, 12 June 2008 1/43 Outline The OPERA experiment Nuclear emulsions The OPERA emulsions

More information

An option for the SHiP Muon Detector: Scintillator bars with WLS fibers and SiPMs readout

An option for the SHiP Muon Detector: Scintillator bars with WLS fibers and SiPMs readout An option for the SHiP Muon Detector: Scintillator bars with WLS fibers and SiPMs readout M. Anelli, W. Baldini, P. Ciambrone, M. Dallavalle, F. Fabbri, G. Lanfranchi, A. Montanari INFN-LNF, INFN-Ferrara,

More information

variables to investigate Monte Carlo methods of t t production

variables to investigate Monte Carlo methods of t t production Using the M 2 and variables to investigate Monte Carlo methods of t t production Caitlin Jones September 8, 25 Abstract In this project the behaviour of Monte Carlo simulations for the event t t! ` `+b

More information

The TOTEM experiment at the LHC: results and perspective

The TOTEM experiment at the LHC: results and perspective The TOTEM experiment at the LHC: results and perspective Edoardo Bossini Università degli studi di Siena and INFN-Pisa (on behalf of the TOTEM collaboration) Trieste, 24 Settembre 2013 OUTLINE: Detector

More information

The photoionization detector (PID) utilizes ultraviolet

The photoionization detector (PID) utilizes ultraviolet Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).

More information

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7 Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid April 21, 2002 Chapter 7 Problem 7.2 Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Characterisation of the Timepix Chip for the LHCb VELO Upgrade

Characterisation of the Timepix Chip for the LHCb VELO Upgrade Particle and Astroparticle Physics Master Thesis Characterisation of the Timepix Chip for the LHCb VELO Upgrade Veerle Heijne Supervisor: Dr. Martin van Beuzekom Second reviewer: Dr. Auke-Pieter Colijn

More information

Status and Prospects of HARP. Malcolm Ellis On behalf of the HARP Collaboration NuFact02 Imperial College, July 2002

Status and Prospects of HARP. Malcolm Ellis On behalf of the HARP Collaboration NuFact02 Imperial College, July 2002 Status and Prospects of HARP Malcolm Ellis On behalf of the HARP Collaboration NuFact02 Imperial College, July 2002 The HARP Collaboration: Università degli Studi e Sezione INFN, Bari, Italy Rutherford

More information

Evaluation Tools for the Performance of a NESTOR Test Detector

Evaluation Tools for the Performance of a NESTOR Test Detector Evaluation Tools for the Performance of a NESTOR Test Detector G. Bourlis, A. Leisos, S. E. Tzamarias and A. Tsirigotis Particle and Astroparticle Physics Group School of Science and Technology Hellenic

More information

Study of the B D* ℓ ν with the Partial Reconstruction Technique

Study of the B D* ℓ ν with the Partial Reconstruction Technique Study of the B D* ℓ ν with the Partial Reconstruction Technique + University of Ferrara / INFN Ferrara Dottorato di Ricerca in Fisica Ciclo XVII Mirco Andreotti 4 March 25 Measurement of B(B D*ℓν) from

More information

Recent SiD Tracking Studies at CU (and Ancient Outer Tracker Studies at SLAC)

Recent SiD Tracking Studies at CU (and Ancient Outer Tracker Studies at SLAC) Recent SiD Tracking Studies at CU (and Ancient Outer Tracker Studies at SLAC) Steve Wagner, University of Colorado, Boulder I did realistic pattern recognition studies for the SiD Barrel Outer Tracker

More information

Results from first tests of TRD prototypes for CBM. DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

Results from first tests of TRD prototypes for CBM. DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main Results from first tests of TRD prototypes for CBM DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Contents Overview of the CBM experiment CBM-TRD General TRD requirements The

More information

Tutorial 4.6 Gamma Spectrum Analysis

Tutorial 4.6 Gamma Spectrum Analysis Tutorial 4.6 Gamma Spectrum Analysis Slide 1. Gamma Spectrum Analysis In this module, we will apply the concepts that were discussed in Tutorial 4.1, Interactions of Radiation with Matter. Slide 2. Learning

More information

Electron Muon Ranger (EMR) Software Development

Electron Muon Ranger (EMR) Software Development Electron Muon Ranger (EMR) Software Development François Drielsma on behalf of the EMR Group University of Geneva June 25, 2014 François Drielsma on behalf of the EMR Group Electron (University Muon of

More information

Calorimeter Upgrades for the High Luminosity LHC

Calorimeter Upgrades for the High Luminosity LHC Calorimeter Upgrades for the High Luminosity LHC A. Straessner FSP 101 ATLAS DPG Frühjahrstagung Göttingen März, 2012 Outline Introduction: ATLAS and CMS Detectors Today Physics at the High-Luminosity

More information

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics

GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals

More information

Top rediscovery at ATLAS and CMS

Top rediscovery at ATLAS and CMS Top rediscovery at ATLAS and CMS on behalf of ATLAS and CMS collaborations CNRS/IN2P3 & UJF/ENSPG, LPSC, Grenoble, France E-mail: julien.donini@lpsc.in2p3.fr We describe the plans and strategies of the

More information

arxiv:hep-ph/0310021v2 4 Oct 2003

arxiv:hep-ph/0310021v2 4 Oct 2003 Physics in Collision - Zeuthen, Germany, June 6-8, 003 arxiv:hep-ph/0300v 4 Oct 003 SEARCHES FOR NEW PARTICLES AT THE ENERGY FRONTIER AT THE TEVATRON Patrice VERDIER LAL, Université Paris-Sud, 9898 Orsay

More information

PROSPECT: Precision Reactor Oscillation and Spectrum experiment

PROSPECT: Precision Reactor Oscillation and Spectrum experiment PROSPECT: Precision Reactor Oscillation and Spectrum experiment DAVID MARTINEZ CAICEDO on behalf of PROSPECT collaboration ILLINOIS INSTITUTE OF TECHNOLOGY NUFACT 2015 AUGUST 14th 2015 1 Outline Motivations:

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Radiation Strip Thickness Measurement Systems

Radiation Strip Thickness Measurement Systems Radiation Strip Thickness Measurement Systems During the past years we have increased our sales of radiometric Vollmer strip thickness measurement systems, i.e. X-ray or isotope gauges, dramatically. Now,

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (no PiN and pinned Diodes) Peter Fischer P. Fischer, ziti, Uni Heidelberg, Seite 1 Overview Reminder: Classical Photomultiplier

More information

Nara Women s University, Nara, Japan B.A. Honors in physics 2002 March 31 Thesis: Particle Production in Relativistic Heavy Ion Collisions

Nara Women s University, Nara, Japan B.A. Honors in physics 2002 March 31 Thesis: Particle Production in Relativistic Heavy Ion Collisions Maya SHIMOMURA Brookhaven National Laboratory, Upton, NY, 11973, U.S.A. PROFILE I am an experimentalist working for high-energy heavy ion at Iowa State University as a postdoctoral research associate.

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering

High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering Power spectrum development with heterodyne technology advances biotechnology and nanotechnology measurements. M. N. Trainer

More information

HMS/SOS Tracking Code Enhancement

HMS/SOS Tracking Code Enhancement HMS/SOS Tracking Code Enhancement T. Navasardyan, P. Bosted, M Jones Abstract Examination of data taken in Hall C with high rates in the HMS and/or SOS spectrometers revealed that sometimes the code that

More information

BNL Contribution to ATLAS

BNL Contribution to ATLAS BNL Contribution to ATLAS Software & Performance S. Rajagopalan April 17, 2007 DOE Review Outline Contributions to Core Software & Support Data Model Analysis Tools Event Data Management Distributed Software

More information

Event viewer for HRS-L

Event viewer for HRS-L Event viewer for HRS-L Tadej Dobravec mentor: assoc. prof. dr. Simon Širca 8/10/2012 1 Introduction For my summer project at F2 department at Institute of Jozef Stefan I made event viewer (EVe) for Left

More information

Icarus and Status of Liquid Argon Technology

Icarus and Status of Liquid Argon Technology IL NUOVO CIMENTO Vol.?, N.?? Icarus and Status of Liquid Argon Technology A. Fava( 1 ), for the ICARUS Collaboration ( 1 ) I.N.F.N. - Sezione di Padova, Via Marzolo 8, I-35131 Summary. ICARUS-T600 at the

More information

CMS Tracking Performance Results from early LHC Running

CMS Tracking Performance Results from early LHC Running CMS Tracking Performance Results from early LHC Running CMS PAPER TRK-10-001 L. Spiegel, K. Stenson, M. Swartz 1 First Collisions Tracking Paper Provide description of tracker, tracking algorithm, and

More information

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector

Calculation of Source-detector Solid Angle, Using Monte Carlo Method, for Radioactive Sources with Various Geometries and Cylindrical Detector International Journal of Pure and Applied Physics ISSN 0973-1776 Volume 3, Number 2 (2007), pp. 201 208 Research India Publications http://www.ripublication.com/ijpap.htm Calculation of Source-detector

More information

Study of electron cloud at MI and slip stacking process simulation

Study of electron cloud at MI and slip stacking process simulation Study of electron cloud at MI and slip stacking process simulation Alexandr S. Valkovich Purpose 1.Understand the slip stacking process which happens in the Main Injector. 2. Calculation of bunch distortion

More information

Precision Tracking Test Beams at the DESY-II Synchrotron. Simon Spannagel DPG 2014 T88.7 Mainz, 26.3.2014

Precision Tracking Test Beams at the DESY-II Synchrotron. Simon Spannagel DPG 2014 T88.7 Mainz, 26.3.2014 Precision Tracking Test Beams at the DESY-II Synchrotron. Simon Spannagel DPG 2014 T88.7 Mainz, 26.3.2014 Overview > Test Beams at DESY-II > Tracking with the DATURA Telescope Telescope Hardware Software

More information

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. D. J. Mangeol, U.

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. D. J. Mangeol, U. Available on CMS information server CMS NOTE 6/96 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH11 GENEVA 3, Switzerland July, 6 Search for χ decays to ττ and SUSY mass spectrum

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Concepts in Theoretical Physics

Concepts in Theoretical Physics Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces

More information

Rate estimates on the Gem Disks

Rate estimates on the Gem Disks Rate estimates on the Gem Disks PANDA Collaboration Meeting, GSI Darmstadt, 11.12.2008 1 Geometry and Simulation code 2 Rate estimate 3 Backup (pictures only) 1 Geometry and Simulation code 2 Rate estimate

More information

E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

PrHEP JHW2002. Experiments on high energy reactions in the diffractive regime at LHC. 1. Introduction. Twenty-sixth Johns Hopkins Workshop

PrHEP JHW2002. Experiments on high energy reactions in the diffractive regime at LHC. 1. Introduction. Twenty-sixth Johns Hopkins Workshop PROCEEDINGS Experiments on high energy reactions in the diffractive regime at LHC Helsinki Institute for Physics, c/o CERN, Route de Meyrin, CH-1211 Geneva 23, Switzerland E-mail: Stefan.Tapprogge@cern.ch

More information

Ultrasonic Wave Propagation Review

Ultrasonic Wave Propagation Review Ultrasonic Wave Propagation Review Presented by: Sami El-Ali 1 1. Introduction Ultrasonic refers to any study or application of sound waves that are higher frequency than the human audible range. Ultrasonic

More information

Particle ID Distinguishing Particles. We have decided now to identify the particle species by a bar code

Particle ID Distinguishing Particles. We have decided now to identify the particle species by a bar code Particle ID Distinguishing Particles We have decided now to identify the particle species by a bar code Introduction HEP detector: Measures particle momenta... by means of a spectrometer (tracker and magnetic

More information

CMS Tracker module / hybrid tests and DAQ development for the HL-LHC

CMS Tracker module / hybrid tests and DAQ development for the HL-LHC CMS Tracker module / hybrid tests and DAQ development for the HL-LHC S. Mersi, G. Auzinger georg.auzinger@cern.ch 1 Outline Reminder: the Ph2 CMS Tracker upgrade pt Modules: principle, elements, electronics

More information

Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL

Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL Masters Thesis in High Energy Physics Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL 1 Study for CP-violation in the ψ π + π J/ψ transition Vincent Fave July 18,

More information

arxiv:1007.1988v2 [physics.ins-det] 27 Jul 2010 The CMS Collaboration

arxiv:1007.1988v2 [physics.ins-det] 27 Jul 2010 The CMS Collaboration EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-PH-EP/-19 /7/14 -TRK--1 Tracking Performance Results from Early LHC Operation arxiv:7.1988v [physics.ins-det] 7 Jul The Collaboration Abstract The

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

A short Overview on Scintillators By C. D Ambrosio (CERN) Geneva, 13 April 2005

A short Overview on Scintillators By C. D Ambrosio (CERN) Geneva, 13 April 2005 A short Overview on Scintillators By C. D Ambrosio (CERN) Geneva, 13 April 2005 3a/1 Outline Lecture 1 - Introduction C. Joram, L. Ropelewski Lecture 2 - Tracking Detectors L. Ropelewski, M. Moll Lecture

More information

Eddy-current testing - Non-destructive testing for flaw detection of metals, coatings and carbon fibres

Eddy-current testing - Non-destructive testing for flaw detection of metals, coatings and carbon fibres Technology Offer Eddy-current testing - Non-destructive testing for flaw detection of metals, coatings and carbon fibres Summary A German SME offers the development of task specific eddy-current based

More information

POSSIBL-E EXPERIMENTS ON THE 200-GeV ACCELERATOR. A. D. Krisch University of Michigan. R. Serber Columbia University.

POSSIBL-E EXPERIMENTS ON THE 200-GeV ACCELERATOR. A. D. Krisch University of Michigan. R. Serber Columbia University. FN-68 POSSIBL-E EXPERIMENTS ON THE 200-GeV ACCELERATOR A. D. Krisch University of Michigan R. Serber Columbia University August 23, 1967 We will describe a number of experiments that might be dcne on.,he

More information

Computer Animation of Extensive Air Showers Interacting with the Milagro Water Cherenkov Detector

Computer Animation of Extensive Air Showers Interacting with the Milagro Water Cherenkov Detector Computer Animation of Extensive Air Showers Interacting with the Milagro Water Cherenkov Detector Miguel F. Morales Department of Physics, University of California, Santa Cruz, CA 95064, USA We employ

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information