Digital Calorimeter. Edwin Norbeck 1, Burak Bilki 1, Yasar Onel 1, José Repond 2, and Lei Xia Introduction

Size: px
Start display at page:

Download "Digital Calorimeter. Edwin Norbeck 1, Burak Bilki 1, Yasar Onel 1, José Repond 2, and Lei Xia 2. 1. Introduction"

Transcription

1 Proc. 25th Winter Workshop on Nuclear Dynamics (2009) th Winter Workshop on Nuclear Dynamics Big Sky, Montana, USA February 1 8, 2009 Digital Calorimeter Edwin Norbeck 1, Burak Bilki 1, Yasar Onel 1, José Repond 2, and Lei Xia 2 1 University of Iowa, Iowa City, IA USA 2 Argonne National Laboratory, Argonne, IL 60439, USA Abstract. A digital calorimeter, as described here, is a tracking device for highly relativistic hadrons. It is a sampling calorimeter, consisting of heavy metal plates separated by thin detectors of high granularity. Each pixel of a detector produces a single bit or a zero. This digital map is made useful by an elaborate computer program, a Particle Flow Algorithm, PFA. Keywords: digital calorimeter, particle flow algorithms PACS: Vj, Gx 1. Introduction Conventional calorimeters used for energy measurement in recent high energy particle and heavy ion collisions fall into two main categories: homogeneous and sampling calorimeters. Examples of homogeneous calorimeters consist of scintillating crystals, Čerenkov radiators and ionizing noble liquids, whereas sampling calorimeters employ alternating layers of metal absorbers and a variety of active media of which scintillators and gas-filled detectors can be considered as examples. Metal absorbers allow a large reduction in cost and size. The use of higher Z materials also results in a larger difference between electromagnetic and hadronic showers. To effectively deal with hadrons, the depth should be at least 10 nuclear reaction lengths. For silicon this is 4.55 m, but for iron it is 1.68 m, and for tungsten it is only 0.96 m. The goal of a calorimeter is to measure the energy and mass of the final state particles as precisely as possible. A significant part of new physics also requires a careful measurement of the missing energy. The energy resolution of a calorimeter can be expressed as σ(e)/e = α/ E where E is the particle energy in GeV and α is a constant which varies between 0.6 and 0.8 for most existing calorimeters. A future lepton collider (International Linear Collider) will probe Standard Model (SM) physics and beyond the SM near the electroweak energy scale [1]. The methodology of such physics analysis requires a clear identification of W ± and Z o bosons. In terms of calorimetry, this implies a precise measurement of jet energies

2 2 E. Norbeck et al. requiring α 0.3, about a factor of two better than currently accomplished values. The most promising approach to achieve jet energy resolutions at this level makes use of a Particle Flow Algorithm (PFA). In this approach, particles in a hadronic jet are individually measured by the detector component that provides the best momentum/energy resolution. These measurements are then combined to obtain the jet energy. The application of PFAs sets constraints on the design of active media and the readout of the tracker and the calorimeters. After a brief discussion of PFAs, the basic idea of digital calorimetry is introduced with a brief description of a digital hadron calorimeter with Resistive Plate Chambers that has been extensively studied. 2. Particle Flow Algorithms Jets consist of four components: charged particles, photons, neutral hadrons and neutrinos. Since the PFA requires utilizing the part of the detector that provides the best momentum/energy resolution for each distinct jet component, charged particles are measured with a tracking system, photons are measured with an electromagnetic calorimeter, neutral hadrons are measured by a combination of electromagnetic and hadronic calorimeters, and neutrinos escape without being detected. The PFA identifies the energy deposited in the calorimeters by each of the jet components [2 5]. We are concerned here primarily with the hadronic calorimeter. A typical PFA starts by grouping calorimeter hits into clusters according to a density driven clustering algorithm. To construct a cluster, the program starts with a seed, which is defined as a hit that is not in an existing cluster. Neighboring hits are attached to the seed to grow the cluster. After finding all clusters, a photon identification algorithm identifies clusters originating from EM showers by comparing their longitudinal shower profile to the expected shower profile of a photon (photons are important even in hadronic calorimeters because hadronic showers contain neutral pions). The momenta of the charged particles are measured by a tracker in front of the calorimeter (this requires a tracker with a large volume and a large magnetic field, of the order of 5 T). The paths of these particles are extrapolated into the calorimeter and matched with calorimeter clusters. Neutral hadron clusters are identified as being unmatched with any of the charged particle clusters. The main task is to distinguish between the two types of clusters. A cluster with both charged and neutral particle content could be identified as a neutral particle later in the PFA leading to a double counting of energy, or it could be identified as a charged particle resulting in a loss of reconstructed energy. To a good approximation, the energy represented by a cluster is proportional to the number of hits. The calibration factor can be provided by isolated charged particle clusters, for which the energy is known.

3 Digital Calorimeter 3 3. Calorimetry The usual function of a sampling calorimeter is to measure the energy deposited by a group of particles incident on the device. The signal is the sum of all the signals generated by individual particles in the active layers. Unless a reasonably large fraction of the energy is deposited in the active layers, the fluctuations seriously degrade the measurement. Thick detectors are expensive, and each type has some sort of problem [6]. Thin, high granularity detectors have been developed to optimize the utilization of PFAs in jet energy measurements. These include the Resistive Plate Chamber (RPC)[7], the Gas Electron Multiplier (GEM)[8] and the MicroMEsh GAseous Structure (MICROMEGAS) [9]. The energy resolution for MIPs in these detectors is abysmal; the pulse height spectrum has a shape something like that shown in Fig. 1. However, if the particle is known to be a MIP, the energy loss in the adjacent absorber layer and the detector is reasonably well known. In a digital calorimeter, the signal from the pixel is registered as a one if it is above threshold and a zero otherwise. A single-bit readout is sufficient to provide the necessary single particle energy resolution. Fig. 1. Signal from MIP in a thin detector There are situations for which it would be desirable to reconstruct the actual tracks. The energy, and sometimes even the type of particle, would be derived from the tracks. Figure 2 shows some of the tasks required of the computer program. The isolated noise pixels and the gaps in the tracks, caused by below threshold signals, should be easy. There is also the situation where a MIP will be near the edge of a pixel so that it leaves a one in two adjacent pixels. If there are branches, the tracks can be extrapolated back to the vertex to determine the pixels that represent more than one MIP. The angle of the tracks can be taken into account in calculating the energy deposited in each layer. The pixel spacing must be smaller than the average spacing between incoming particles, even when the particles are part of a jet. For hadronic calorimeters, 1 cm 2 cells are adequate [4].

4 4 E. Norbeck et al. Fig. 2. A digital event. Note isolated noise points and breaks in tracks. With an analog calorimeter the gain of each detector must be precisely known. This can be difficult because there are many factors that cause the gain to change. An accurate calibration of an analog calorimeter with many pixels can be a huge task. With a digital calorimeter, a gain shift causes a small shift in the threshold that will cause more noise signals or an excess of blank pixels in a track. It is advantageous to have small pixels in a tracking calorimeter, but then the data files are large. If the pixels are digital the structure of the data is simpler, and the files can be smaller. 4. A Digital Calorimeter Prototype with RPCs Individual events from a small prototype device [10, 11] are shown in Fig. 3 for muons and in Fig. 4 for pions. There are 16 x 16 = 256 pixels, each 1.0 cm x 1.0 cm, in each RPC (Resistive Plate Chamber). The detectors are separated by absorber plates, 16 mm of steel and 4 mm of copper. In these figures, the last few chambers are not operational. To show clearly the configuration of hits, the isometric view is supplemented with projections from the end, top and side. Figure 5 shows the hit pattern for multiple 120 GeV protons. This device is a prototype for a cubic meter calorimeter that will have 40 planes, each with 10, cm 2 pixels for a total of 400,000 single bit channels [12]. Figure 6 shows the hit patterns for two 8 GeV e + events. The transverse and longitudinal position resolution does not allow identification of individual shower particles in an electromagnetic shower. However, the shape of the shower does allow an estimation of the energy. Good agreement was found between the data and Geant4 simulations for the e + events [11].

5 Digital Calorimeter 5 Fig. 3. The display of a typical muon event (top) and an event with multiple muons (bottom).

6 6 E. Norbeck et al. Fig. 4. A typical 8 GeV pion event. Fig. 5. An event with multiple 120 GeV protons.

7 Digital Calorimeter 7 Fig. 6. Typical 8 GeV e + events (Chamber 7 was not in operation).

8 8 E. Norbeck et al. 5. Conclusions A promising method for improving the measurement of the energy of jets makes use of a Particle Flow Algorithm (PFA). It allows the measurement of each constituent of the jet to be made with a detector that provides the best momentum/energy resolution. This could be a tracker in a strong magnetic field followed by highly segmented calorimeters, both electromagnetic and hadronic. The PFA tracks the particles through the calorimeters and then combines all the information to yield the energy of the jet. Because of the separation of the tracks, the hadronic calorimeter itself need only measure the energy of the neutral hadrons, which carry only 10% to 20% of the jet energy. Tracks from the charged particles can be used for energy calibration. With sufficiently fine segmentation, so that usually no more than one particle passes through each pixel, a readout of a single bit is sufficient. This digital approach avoids the cost and complexity of an analog to digital conversion of the output from each pixel and allows the use of thin gas detectors in the calorimeters. Digital calorimetry is a rapidly developing field that depends heavily on the capabilities of the PFA and therefore on the capabilities of computers. It can be expected that digital calorimeters will be an important component in detector arrays used with future accelerators of energetic particles. References Session on PFAs in XII International Conference on Calorimetry in High Energy Physics, Chicago, AIP Conf. Proc. 867 (2006) N. Graf et al., 523; L. Xia, 531; P. Krstonosic, 538; D. Chakraborty et al., J. Repond, Nucl. Inst. and Meth. A 572 (2007) J. Repond, Nucl. Inst. and Meth. A 518 (2004) J. Repond, Nucl. Inst. and Meth. A 533 (2004) R. Wigmans, XII International Conference on Calorimetry in High Energy Physics, Chicago, AIP Conf.Proc. 867 (2006) G. Drake, J. Repond, D. Underwood and L. Xia, Nucl. Inst. and Meth. A 578 (2007) G. Anelli et al., (TOTEM Collaboration), JINST 3 (2008) S Y. Giomataris, Ph. Rebourgeard, J.P. Robert and G. Charpak, Nucl. Inst. and Meth. A 376 (1996) B. Bilki et al., JINST 3 (2008) P B. Bilki et al., JINST 4 (2009) P &sessionid=22&confid=2628.

Energy loss. Calorimeters. First: EM calorimeters

Energy loss. Calorimeters. First: EM calorimeters Calorimeters The energy of hadrons, pions, photons and electrons can be measured with calorimeters. This in contrast with muons: their momentum is measured from their track curvature (sagitta). The principle

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit n. 5 Hadron calorimeters Roberta Arcidiacono Lecture overview Main technique Few more words on compensation Particle Flow technique Two examples: ZEUS HCAL

More information

Construction of a Digital Hadron Calorimeter

Construction of a Digital Hadron Calorimeter Construction of a Digital Hadron Calorimeter José Repond 1 For the DHCAL Collaboration 1 Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, U.S.A. The DHCAL collaboration is assembling a large

More information

Calorimetry and particle identification

Calorimetry and particle identification Calorimetry and particle identification Summary of two selected HCPSS 2012 courses R. Märki EPFL - LPHE 8 October 2012 1/47 R. Märki Calorimetry and particle identification Outline I attended the 7th Annual

More information

A Guide to Detectors Particle Physics Masterclass. M. van Dijk

A Guide to Detectors Particle Physics Masterclass. M. van Dijk A Guide to Particle Physics Masterclass M. van Dijk 16/04/2013 How detectors work Scintillation Ionization Particle identification Tracking Calorimetry Data Analysis W & Z bosons 2 Reconstructing collisions

More information

Calorimetry in particle physics experiments

Calorimetry in particle physics experiments Calorimetry in particle physics experiments Unit n. 8 Calibration techniques Roberta Arcidiacono Lecture overview Introduction Hardware Calibration Test Beam Calibration In-situ Calibration (EM calorimeters)

More information

Calorimeter alignmnt and calibration in ILD

Calorimeter alignmnt and calibration in ILD Calorimeter alignmnt and calibration in ILD Executive summary We summarize here the answers of ILD to the questions raised by IDAG regarding the calorimeter alignment and calibration. We present calibration

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

Electron identification algorithms for calorimeter in front of CBM MuCH. Mikhail Prokudin

Electron identification algorithms for calorimeter in front of CBM MuCH. Mikhail Prokudin Electron identification algorithms for calorimeter in front of CBM MuCH Mikhail Prokudin Outline Electron identification Calorimeter geometry Methods Cluster Cluster formation E calo /P track Impact Impact

More information

8. Electromagnetic Calorimeter 8.1 General considerations calorimeter

8. Electromagnetic Calorimeter 8.1 General considerations calorimeter 8. Electromagnetic Calorimeter 8.1 General considerations calorimeter energy- vs momentum measurement resolution: calorimeter σe/e 1/ E tracking detectors σp/p p e.g. at E p = 100 GeV σe/e 3.5% (ZEUS)

More information

IMPROVEMENT OF JET ENERGY RESOLUTION FOR SEGMENTED HCAL USING LAYER WEIGHTING TECHNIQUE

IMPROVEMENT OF JET ENERGY RESOLUTION FOR SEGMENTED HCAL USING LAYER WEIGHTING TECHNIQUE IMPROVEMEN OF JE ENERGY RESOLUION FOR SEGMENED HCAL USING LAYER WEIGHING ECHNIQUE V. Andreev 1, I. Golutvin 2, A. Nikitenko 3,V.Palichik 2 1 Lebedev Physical Institute, Moscow, Russia 2 Joint Institute

More information

Electromagnetic Calorimetry

Electromagnetic Calorimetry Electromagnetic Calorimetry Urs Langenegger (Paul Scherrer Institute) Fall 2014 Shower profile longitudinal transverse Calorimeter types homogeneous sampling 50 GeV electron in bubble chamber (Ne:H 2 =

More information

3. Energy measurement in calorimeters

3. Energy measurement in calorimeters Part II, 3. Energy measurement in calorimeters 3.1 Concept of a calorimeter in particle physics 3.2 Interactions of photons with matter 3.3 Electromagnetic and hadronic showers 3.4 Layout and readout of

More information

An Electromagnetic Calorimeter for the Silicon Detector (SiD) Concept

An Electromagnetic Calorimeter for the Silicon Detector (SiD) Concept PRAMANA c Indian Academy of Sciences journal of physics pp. 1 An Electromagnetic Calorimeter for the Silicon Detector (SiD) Concept J.E. Brau, R.E. Frey, D. Strom University of Oregon, Eugene, OR 973-17

More information

Performance of track and vertex reconstruction and b-tagging studies with CMS in pp collisions at s =7 TeV

Performance of track and vertex reconstruction and b-tagging studies with CMS in pp collisions at s =7 TeV Performance of track and vertex reconstruction and b-tagging studies with CMS in pp collisions at s =7 TeV Universität Zürich, CH-857 Zürich, Switzerland E-mail: Alexander.Schmidt@cern.ch First 7 TeV proton-proton

More information

W-boson production in association with jets at the ATLAS experiment at LHC

W-boson production in association with jets at the ATLAS experiment at LHC W-boson production in association with jets at the ATLAS experiment at LHC Seth Zenz Qualifying Examination Talk January 14 2008 (Introductory section only; modified slightly for public distribution.)

More information

Part 3 tracking detectors material effects track models fitting with momentum

Part 3 tracking detectors material effects track models fitting with momentum Part 3 tracking detectors material effects track models fitting with momentum passage of particles through matter particles traversing through a medium interact with that medium they loose energy ionization:

More information

Introduction to Calorimetry. Marcel Stanitzki STFC - Rutherford Appleton Laboratory

Introduction to Calorimetry. Marcel Stanitzki STFC - Rutherford Appleton Laboratory Introduction to Calorimetry Marcel Stanitzki STFC - Rutherford Appleton Laboratory Outline A short overview Particle shower basics Calorimeters Sampling Calorimeters Homogeneous Calorimeters Readout and

More information

Beyond the Hype: The Status of the ATLAS Experiment and the Large Hadron Collider at CERN. Kenneth Johns University of Arizona

Beyond the Hype: The Status of the ATLAS Experiment and the Large Hadron Collider at CERN. Kenneth Johns University of Arizona Beyond the Hype: The Status of the ATLAS Experiment and the Large Hadron Collider at CERN Kenneth Johns University of Arizona A Dream LHC Schedule LHC (Large Hadron Collider) 3 First Beam in the LHC September

More information

PoS(Kruger 2010)013. Setting of the ATLAS Jet Energy Scale. Michele Petteni Simon Fraser University E-mail: mpetteni@sfu.ca

PoS(Kruger 2010)013. Setting of the ATLAS Jet Energy Scale. Michele Petteni Simon Fraser University E-mail: mpetteni@sfu.ca Setting of the ALAS Energy Scale Simon Fraser University E-mail: mpetteni@sfu.ca he setting of the energy scale and its uncertainty in the ALAS detector is presented. After a brief introduction of the

More information

Beauty Production and Identification at CMS

Beauty Production and Identification at CMS Beauty Production and Identification at CMS Alexander Schmidt Physik-Institut presented at: Outline - the CMS detector - b-production in hadron collisions - applications of b-identification methods - some

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

Time of flight system (TOF) Author list

Time of flight system (TOF) Author list MPD NICA Time of flight system (TOF) Author list V.Babkin, V.Golovatyuk, Yu.Fedotov, S.Lobastov, S.Volgin, N.Vladimirova Joint Institute for Nuclear Research, Dubna, Russia. Dubna 2009 TOF MPD Introduction

More information

Hadron energy resolution of the CALICE AHCAL and software compensation approaches

Hadron energy resolution of the CALICE AHCAL and software compensation approaches Hadron energy resolution of the CALICE AHCAL and software compensation approaches Marina Chadeeva, ITEP, Moscow for the CALICE Collaboration M. Chadeeva (ITEP) LCWS11, Granada, Spain September 28, 211

More information

Comparisons between 2003 CMS ECAL TB data and a Geant 4 MC

Comparisons between 2003 CMS ECAL TB data and a Geant 4 MC Comparisons between 2003 CMS CAL TB data and a Geant 4 MC P. Meridiani LCG Validation Meeting 7 th July 2004 Outline CMS lectromagnetic calorimeter and 2003 TB h4sim http://cmsdoc.cern.ch/~h4sim/ (What

More information

Hadron Calorimetry at the LHC

Hadron Calorimetry at the LHC Hadron Calorimetry at the LHC J. Proudfoot Argonne National Laboratory, Argonne, IL 60439, USA The hadronic calorimeter may not be the most glamorous detector system in LHC experiments, especially when

More information

AURORA PEPINO. Elettronica di front end per la camera a deriva del nuovo tracciatore di MEG

AURORA PEPINO. Elettronica di front end per la camera a deriva del nuovo tracciatore di MEG AURORA PEPINO Elettronica di front end per la camera a deriva del nuovo tracciatore di MEG Summary MEG experiment upgrade The MEG tracker upgrade Drift chamber signal characteristics Front End schematic

More information

ATLAS Test Beam Analysis in Stockholm: An Overview

ATLAS Test Beam Analysis in Stockholm: An Overview ATLAS Test Beam Analysis in Stockholm: An Overview Elin Bergeås, Stockholm University Stand-alone test beam 2003 and before - test beam targeted at TileCal modules only Combined test beam 2004 - test beam

More information

CMS Tracking Performance Results from early LHC Running

CMS Tracking Performance Results from early LHC Running CMS Tracking Performance Results from early LHC Running CMS PAPER TRK-10-001 L. Spiegel, K. Stenson, M. Swartz 1 First Collisions Tracking Paper Provide description of tracker, tracking algorithm, and

More information

PoS(TIPP2014)028. Development of the upgraded LHCf calorimeter with Gd 2 SiO 5 (GSO) scintillators

PoS(TIPP2014)028. Development of the upgraded LHCf calorimeter with Gd 2 SiO 5 (GSO) scintillators Development of the upgraded LHCf calorimeter with Gd 2 SiO 5 (GSO) scintillators, a O. Adriani, b,c E. Berti, b,c L. Bonechi, b M. Bongi, b,c G. Castellini, b,d R. D Alessandro, b,c M. Del Prete, b,c M.

More information

Which calorimeter for FCC detector

Which calorimeter for FCC detector Which calorimeter for FCC detector Jean-Claude Brient* Laboratoire Leprince-Ringuet Ecole Polytechnique CNRS Palaiseau J. C. Brient ( LLR) 1 * ECAL contact for ILD and former spokesperson of CALICE FCC

More information

Top rediscovery at ATLAS and CMS

Top rediscovery at ATLAS and CMS Top rediscovery at ATLAS and CMS on behalf of ATLAS and CMS collaborations CNRS/IN2P3 & UJF/ENSPG, LPSC, Grenoble, France E-mail: julien.donini@lpsc.in2p3.fr We describe the plans and strategies of the

More information

Jets energy calibration in ATLAS

Jets energy calibration in ATLAS Jets energy calibration in ATLAS V.Giangiobbe Università di Pisa INFN sezione di Pisa Supported by the ARTEMIS Research Training Network Workshop sui Monte Carlo, la Fisica e le Simulazioni a LHC V.Giangiobbe

More information

The OPERA Emulsions. Jan Lenkeit. Hamburg Student Seminar, 12 June 2008. Institut für Experimentalphysik Forschungsgruppe Neutrinophysik

The OPERA Emulsions. Jan Lenkeit. Hamburg Student Seminar, 12 June 2008. Institut für Experimentalphysik Forschungsgruppe Neutrinophysik The OPERA Emulsions Jan Lenkeit Institut für Experimentalphysik Forschungsgruppe Neutrinophysik Hamburg Student Seminar, 12 June 2008 1/43 Outline The OPERA experiment Nuclear emulsions The OPERA emulsions

More information

Proton tracking for medical imaging and dosimetry

Proton tracking for medical imaging and dosimetry Proton tracking for medical imaging and dosimetry J.Taylor, P.Allport, G.Casse For the PRaVDA Consortium 1 Background and motivation - What is the PRaVDA experiment? - Why are we using Monte Carlo? GEANT4

More information

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection -

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection - timo.peltola@helsinki.fi Finnish Society for Natural Philosophy, Helsinki, 17 February 2015 Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection - Timo Peltola

More information

Experience with CMS pixel software commissioning

Experience with CMS pixel software commissioning Experience with CMS pixel software commissioning Physik Institut, Universität Zürich, 87 Zürich, Switzerland E-mail: vincenzo.chiochia@cern.ch The CMS Pixel detector, consisting of three barrel layers

More information

Dual-Readout Calorimetry for High-Quality Energy Measurements

Dual-Readout Calorimetry for High-Quality Energy Measurements Dual-Readout Calorimetry for High-Quality Energy Measurements Proposal in the context of the Advanced Detector Research Program for the period April 1, 2002 - March 31, 2004 Principal Investigators: Dr.

More information

Ultimate Hadron Calorimetry

Ultimate Hadron Calorimetry Ultimate Hadron Calorimetry Classification (subsystem) Calorimeter Personnel and Institution(s) requesting funding Texas Tech University: N. Akchurin, H. Kim and R. Wigmans Collaborators University of

More information

Z-Path 2016 Event Displays Examples of l + l -, γγ and 4-lepton events

Z-Path 2016 Event Displays Examples of l + l -, γγ and 4-lepton events Z-Path 2016 Event Displays Examples of l + l -, γγ and 4-lepton events This compilation goes through examples of events the students will be looking at. This includes events easy to interpret, as well

More information

Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method

Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method Carlos Garcia University of Rochester For the DØ Collaboration APS Meeting 2007 Outline Introduction Top

More information

In situ jet energy calibration in the ATLAS experiment.

In situ jet energy calibration in the ATLAS experiment. In situ jet energy calibration in the ATLAS experiment. C. Biscarat, R. Lefevre, C. Santoni To cite this version: C. Biscarat, R. Lefevre, C. Santoni. In situ jet energy calibration in the ATLAS experiment..

More information

Summary of Jet Substructure Studies in ATLAS

Summary of Jet Substructure Studies in ATLAS Summary of Jet Substructure Studies in ATLAS Introduction Inputs to substructure variables Substructure calibration and systematic uncertainties Current uses and future experimental developments Conclusions

More information

A given Nucleus has the following particles Total number of nucleons : atomic mass number, A Proton number: atomic number, Z Neutron number: N = A Z

A given Nucleus has the following particles Total number of nucleons : atomic mass number, A Proton number: atomic number, Z Neutron number: N = A Z Chapter 30 Nuclear Physics and Radioactivity Units of Chapter 30 Structure and Properties of the Nucleus Binding Energy and Nuclear Forces Radioactivity Alpha Decay Beta Decay Gamma Decay Conservation

More information

Reliability and performance studies of DC-DC conversion powering scheme for the CMS pixel

Reliability and performance studies of DC-DC conversion powering scheme for the CMS pixel Home Search Collections Journals About Contact us My IOPscience Reliability and performance studies of DC-DC conversion powering scheme for the CMS pixel tracker at SLHC This content has been downloaded

More information

Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics

Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics Real Time Tracking with ATLAS Silicon Detectors and its Applications to Beauty Hadron Physics Carlo Schiavi Dottorato in Fisica - XVII Ciclo Outline The ATLAS Experiment The SiTrack Algorithm Application

More information

A.Besson, IPHC-Strasbourg

A.Besson, IPHC-Strasbourg DIGMAPS: a standalone tool to study digitization an overview of a digitizer strategy for CMOS/MAPS sensors A.Besson, IPHC-Strasbourg thanks to A.Geromitsos and J.Baudot Motivations for a CMOS sensor digitizer,

More information

Department of Physics, Texas Tech University, Lubbock, TX 79409-1051, U.S.A.

Department of Physics, Texas Tech University, Lubbock, TX 79409-1051, U.S.A. Scientifica Acta 2, No. 1, 18 55 (2008) Calorimetry Richard Wigmans Department of Physics, Texas Tech University, Lubbock, TX 79409-1051, U.S.A. wigmans@ttu.edu This paper is intended as an introduction

More information

The accurate calibration of all detectors is crucial for the subsequent data

The accurate calibration of all detectors is crucial for the subsequent data Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved

More information

07 - Cherenkov and transition radiation detectors

07 - Cherenkov and transition radiation detectors 07 - Cherenkov and transition radiation detectors Jaroslav Adam Czech Technical University in Prague Version 1.0 Jaroslav Adam (CTU, Prague) DPD_07, Cherenkov and transition radiation Version 1.0 1 / 30

More information

MICE detectors and first results. M. Bonesini Sezione INFN Milano Bicocca

MICE detectors and first results. M. Bonesini Sezione INFN Milano Bicocca MICE detectors and first results M. Bonesini Sezione INFN Milano Bicocca I will speak of the installed beamline PID detectors (TOFes, CKOVs, KL) and only shortly of EMR (to be built)/ the trackers (tested

More information

Delphes, a framework for fast simulation of a general purpose LHC detector

Delphes, a framework for fast simulation of a general purpose LHC detector Delphes, a framework for fast simulation of a general purpose LHC detector S. Ovyn and X. Rouby Center for Particle Physics and Phenomenology (CP3) Université catholique de Louvain B-1348 Louvain-la-Neuve,

More information

CMS Physics Analysis Summary

CMS Physics Analysis Summary Available on the CERN CDS information server CMS PAS RK-10-002 CMS Physics Analysis Summary Contact: cms-pog-conveners-tracking@cern.ch 2010/07/20 Measurement of racking Efficiency he CMS Collaboration

More information

Results from first tests of TRD prototypes for CBM. DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main

Results from first tests of TRD prototypes for CBM. DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main Results from first tests of TRD prototypes for CBM DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Contents Overview of the CBM experiment CBM-TRD General TRD requirements The

More information

Fundamental Particles, Fundamental Questions. Elizabeth H. Simmons Dean and Professor, Lyman Briggs College

Fundamental Particles, Fundamental Questions. Elizabeth H. Simmons Dean and Professor, Lyman Briggs College Fundamental Particles, Fundamental Questions Elizabeth H. Simmons Dean and Professor, Lyman Briggs College The smallest pieces of matter Nuclear physics and particle physics study the smallest known building

More information

arxiv: v2 [physics.ins-det] 16 Aug 2010

arxiv: v2 [physics.ins-det] 16 Aug 2010 arxiv:1008.0876v2 [physics.ins-det] 16 Aug 2010 Thermal conductivity of diamond-loaded glues for the ATLAS particle physics detector E.A. Ouellette 1 and A. Harris 2 1 University of Victoria Victoria,

More information

An LSO/LYSO Crystal Array

An LSO/LYSO Crystal Array In Response to the Call for ILC Detector R&D Supplemental Proposals An LSO/LYSO Crystal Array for a Precision Lepton/Photon Detector at the ILC David Hitlin and Ren-yuan Zhu California Institute of Technology

More information

Introduction to Nuclear Radiation 9/04. Purpose of the Experiment

Introduction to Nuclear Radiation 9/04. Purpose of the Experiment Modern Physics Lab Introduction to Nuclear Radiation 9/04 Purpose of the Experiment - become familiar with detectors for radioactive decay products - apply statistical analysis techniques to data - understand

More information

1 Experiments (Brahms, PHENIX, and STAR)

1 Experiments (Brahms, PHENIX, and STAR) 1 Experiments (Brahms, PHENIX, and STAR) This section describes the three experiments capable of making spin measurements. 1.1 PHENIX RHIC has made great strides towards providing high luminosity beams

More information

LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS. G. I. Silvestrov, Budker Institute for Nuclear Physics

LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS. G. I. Silvestrov, Budker Institute for Nuclear Physics LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS G. I. Silvestrov, Budker Institute for Nuclear Physics Novosibirsk, August 1998. LIQUID METAL JET TARGETS FOR INTENSE HIGH ENERGY BEAMS In the mid-80

More information

CMS L1 Track Trigger for SLHC

CMS L1 Track Trigger for SLHC CMS L1 Track Trigger for SLHC Anders Ryd for the CMS Track Trigger Task Force Vertex 2009 Sept. 13-18, 2009 L=1035 cm-2s-1 Outline: SLHC trigger challenge Tracking triggers Track trigger modules Simulation

More information

Nara Women s University, Nara, Japan B.A. Honors in physics 2002 March 31 Thesis: Particle Production in Relativistic Heavy Ion Collisions

Nara Women s University, Nara, Japan B.A. Honors in physics 2002 March 31 Thesis: Particle Production in Relativistic Heavy Ion Collisions Maya SHIMOMURA Brookhaven National Laboratory, Upton, NY, 11973, U.S.A. PROFILE I am an experimentalist working for high-energy heavy ion at Iowa State University as a postdoctoral research associate.

More information

Jet Reconstruction in CMS using Charged Tracks only

Jet Reconstruction in CMS using Charged Tracks only Jet Reconstruction in CMS using Charged Tracks only Andreas Hinzmann for the CMS Collaboration JET2010 12 Aug 2010 Jet Reconstruction in CMS Calorimeter Jets clustered from calorimeter towers independent

More information

Introduction to Calorimetry / Calorimeter Design The ATLAS Calorimeters

Introduction to Calorimetry / Calorimeter Design The ATLAS Calorimeters ATLAS Calorimetry at the Large Hadron Collider Peter Krieger, University of Toronto / IPP Introduction to Calorimetry / Calorimeter Design The ATLAS Calorimeters Peter Krieger, University of Toronto WRNPPC

More information

Operation and Performance of the CMS Silicon Tracker

Operation and Performance of the CMS Silicon Tracker Operation and Performance of the CMS Silicon Tracker Manfred Krammer 1 on behalf of the CMS Tracker Collaboration Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria Abstract.

More information

The TOTEM experiment at the LHC: results and perspective

The TOTEM experiment at the LHC: results and perspective The TOTEM experiment at the LHC: results and perspective Edoardo Bossini Università degli studi di Siena and INFN-Pisa (on behalf of the TOTEM collaboration) Trieste, 24 Settembre 2013 OUTLINE: Detector

More information

NITEC: a Negative Ion Time Expansion Chamber for very rare events searches

NITEC: a Negative Ion Time Expansion Chamber for very rare events searches What Next LNGS: prospettive per il ruolo scientifico del LNGS 15 th - 16 th October 2014 NITEC: a Negative Ion Time Expansion Chamber for very rare events searches Elisabetta Baracchini International Center

More information

DETECTION OF CHARGED PARTICLES WITH SILICON DETECTORS

DETECTION OF CHARGED PARTICLES WITH SILICON DETECTORS DETECTION OF CHARGED PARTICLES WITH SILICON DETECTORS A) DESCRIPTION OF SILICON CHARGED PARTICLE DETECTOR The silicon charged particle detector is a wafer of silicon having surface contacts forming a p-n

More information

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission

Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission MAVEN Science Community Workshop December 2, 2012 Particles and Fields Package Solar Energetic Particle Instrument (SEP) Davin Larson and the SEP

More information

Silicon Avalanche Pixel Structures (APiX) For Coordinate Measurements

Silicon Avalanche Pixel Structures (APiX) For Coordinate Measurements Silicon Avalanche Pixel Structures (APiX) For Coordinate Measurements V.Saveliev Institute of Applied Mathematics, Russian Academy of Science on behalf of APiX Project M.G. Bagliesi (a), G. Bigongiari

More information

The Use of Avalanche Photodiodes in High Energy Electromagnetic Calorimetry

The Use of Avalanche Photodiodes in High Energy Electromagnetic Calorimetry 12 The Use of Avalanche Photodiodes in High Energy Electromagnetic Calorimetry Paola La Rocca 1,2 and Francesco Riggi 2 1 Museo Storico della Fisica e Centro Studi e Ricerche E.Fermi 2 Department of Physics

More information

CMS Physics Analysis Summary

CMS Physics Analysis Summary Available on the CMS information server CMS PAS TOP 08 005 CMS Physics Analysis Summary 008/05/4 Observability of Top Quark Pair Production in the Semileptonic Muon Channel with the first pb of CMS Data

More information

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100) Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know

More information

New Electromagnetic Calorimeter (NewCal) for Gep(V)

New Electromagnetic Calorimeter (NewCal) for Gep(V) New Electromagnetic Calorimeter (NewCal) for Gep(V) SBS Fall meeting Charles F. Perdrisat October 19,2012 10/18/2012 1 Introduction GEp(V) will measure the G Ep /G Mp ratio to Q 2 =12 GeV 2 in phase 1

More information

Radioactivity. [ particles ] [second] [area] [ I ] =

Radioactivity. [ particles ] [second] [area] [ I ] = 1 Radioactivity The term radiation literally means "that which moves radially." This means that radiation usually emanates from a point and moves away along a radius of the sphere which has its center

More information

CALCULATE THE TOP QUARK MASS TEACHER NOTES

CALCULATE THE TOP QUARK MASS TEACHER NOTES CALCULATE THE TOP QUARK MASS TEACHER NOTES DESCRIPTION Students use momentum conservation, energy conservation and two-dimensional vector addition to calculate the mass of the heaviest of the six known

More information

ATLAS NOTE ATLAS-CONF-2010-063. July 21, 2010. Search for top pair candidate events in ATLAS at s = 7 TeV. The ATLAS Collaboration.

ATLAS NOTE ATLAS-CONF-2010-063. July 21, 2010. Search for top pair candidate events in ATLAS at s = 7 TeV. The ATLAS Collaboration. ATLAS NOTE ATLAS-CONF-2010-063 July 21, 2010 Search for top pair candidate events in ATLAS at s = 7 TeV The ATLAS Collaboration Abstract A search is performed for events consistent with top quark pair

More information

An option for the SHiP Muon Detector: Scintillator bars with WLS fibers and SiPMs readout

An option for the SHiP Muon Detector: Scintillator bars with WLS fibers and SiPMs readout An option for the SHiP Muon Detector: Scintillator bars with WLS fibers and SiPMs readout M. Anelli, W. Baldini, P. Ciambrone, M. Dallavalle, F. Fabbri, G. Lanfranchi, A. Montanari INFN-LNF, INFN-Ferrara,

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Particle Flow and ILD Detector Optimisation Studies Mark Thomson University of Cambridge

Particle Flow and ILD Detector Optimisation Studies Mark Thomson University of Cambridge Particle Flow and ILD Detector Optimisation Studies Mark Thomson University of Cambridge This Talk: PandoraPFA Performance Understanding PFA Optimisation Studies i) HCAL depth ii) B-field vs R TPC iii)

More information

CMS HCAL - Hadron Calorimeter - Shuichi Kunori U. of Maryland 12-Jan-2009

CMS HCAL - Hadron Calorimeter - Shuichi Kunori U. of Maryland 12-Jan-2009 CMS CAL - adron Calorimeter - Shuichi Kunori U. of Maryland 12-Jan-2009 12-Jan-2009 / S.Kunori CMS CAL / Jerm3 1 CMS Calorimeter CMS Calorimeter (ECAL+CAL) - Very hermetic (>10λ in all η, no projective

More information

Curriculum Vitae of Donatella Lucchesi

Curriculum Vitae of Donatella Lucchesi Curriculum Vitae of Donatella Lucchesi Address Department of Physics and Astronomy University of Padova via Marzolo 8 35131 Padova Italy Phone (39) 049 827 7253 Email donatella.lucchesi@pd.infn.it Born

More information

Chap. 6 Proportional Counters

Chap. 6 Proportional Counters Chap. 6 Proportional Counters Consider the drift motion of an ion in a simple ion chamber. The ions will have a thermal velocity plus a component along the field lines. Then after traveling for a mean-free-path

More information

Effects of Aging in the Hadronic Forward Calorimeter on the Vector Boson Fusion Higgs Search

Effects of Aging in the Hadronic Forward Calorimeter on the Vector Boson Fusion Higgs Search University of Iowa Iowa Research Online Theses and Dissertations 2013 Effects of Aging in the Hadronic Forward Calorimeter on the Vector Boson Fusion Higgs Search Kamuran Dilsiz University of Iowa Copyright

More information

Status and Prospects of HARP. Malcolm Ellis On behalf of the HARP Collaboration NuFact02 Imperial College, July 2002

Status and Prospects of HARP. Malcolm Ellis On behalf of the HARP Collaboration NuFact02 Imperial College, July 2002 Status and Prospects of HARP Malcolm Ellis On behalf of the HARP Collaboration NuFact02 Imperial College, July 2002 The HARP Collaboration: Università degli Studi e Sezione INFN, Bari, Italy Rutherford

More information

Pyramid Hunters Proposal of an experiment for BEAMLINE FOR SCHOOLS competition 2016

Pyramid Hunters Proposal of an experiment for BEAMLINE FOR SCHOOLS competition 2016 Pyramid Hunters Proposal of an experiment for BEAMLINE FOR SCHOOLS competition 2016 The secret chambers in the Chephren Pyramid 1. What s the mystery of the pyramids? Pyramids - the greatest architectural

More information

arxiv:astro-ph/0509450 v1 15 Sep 2005

arxiv:astro-ph/0509450 v1 15 Sep 2005 arxiv:astro-ph/0509450 v1 15 Sep 2005 TESTING THERMO-ACOUSTIC SOUND GENERATION IN WATER WITH PROTON AND LASER BEAMS K. GRAF, G. ANTON, J. HÖSSL, A. KAPPES, T. KARG, U. KATZ, R. LAHMANN, C. NAUMANN, K.

More information

variables to investigate Monte Carlo methods of t t production

variables to investigate Monte Carlo methods of t t production Using the M 2 and variables to investigate Monte Carlo methods of t t production Caitlin Jones September 8, 25 Abstract In this project the behaviour of Monte Carlo simulations for the event t t! ` `+b

More information

Rare Decays of Tau Leptons: an Experimental Review

Rare Decays of Tau Leptons: an Experimental Review Jon Urheim School of Physics and Astronomy, University of Minnesota Minneapolis, MN 55455, USA I review the current experimental situation with regard to searches for rare decays of τ leptons. The recent

More information

Event viewer for HRS-L

Event viewer for HRS-L Event viewer for HRS-L Tadej Dobravec mentor: assoc. prof. dr. Simon Širca 8/10/2012 1 Introduction For my summer project at F2 department at Institute of Jozef Stefan I made event viewer (EVe) for Left

More information

2. Interaction of Charged Particles with Matter

2. Interaction of Charged Particles with Matter 2. Interaction of Charged Particles with Matter Detection through interaction of the particles with matter, e.g. via energy loss in a medium (ionization and excitation) Energy loss must be detected, made

More information

SOI Pixel Sensor for Gamma-Ray Imaging

SOI Pixel Sensor for Gamma-Ray Imaging SOI Pixel Sensor for Gamma-Ray Imaging KENJI SHIMAZOE, FAIRUZ ATIQAH, YURI YOSHIHARA, AKIHIKO KOYAMA, HIROYUKI TAKAHASHI, TADASHI ORITA, KEI KAMADA, AYAKI TAKEDA, TAKESHI TSURU, YASUO ARAI 1 The University

More information

RESULTS OF FIRST EXPERIMENTS ON NEUTRON GENERATION IN THE VITA NEUTRON SOURCE

RESULTS OF FIRST EXPERIMENTS ON NEUTRON GENERATION IN THE VITA NEUTRON SOURCE RESULTS OF FIRST EXPERIMENTS ON NEUTRON GENERATION IN THE VITA NEUTRON SOURCE B. F. Bayanov 1, A. V. Burdakov 1, V. Ya. Chudaev 1, A. A. Ivanov 1, S. G. Konstantinov 1, A. S. Kuznetsov 1, A. N. Makarov

More information

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons

90 degrees Bremsstrahlung Source Term Produced in Thick Targets by 50 MeV to 10 GeV Electrons SLAC-PUB-7722 January 9 degrees Bremsstrahlung Source Term Produced in Thick Targets by 5 MeV to GeV Electrons X. S. Mao et al. Presented at the Ninth International Conference on Radiation Shielding, Tsukuba,

More information

PrHEP JHW2002. Experiments on high energy reactions in the diffractive regime at LHC. 1. Introduction. Twenty-sixth Johns Hopkins Workshop

PrHEP JHW2002. Experiments on high energy reactions in the diffractive regime at LHC. 1. Introduction. Twenty-sixth Johns Hopkins Workshop PROCEEDINGS Experiments on high energy reactions in the diffractive regime at LHC Helsinki Institute for Physics, c/o CERN, Route de Meyrin, CH-1211 Geneva 23, Switzerland E-mail: Stefan.Tapprogge@cern.ch

More information

Searches for SUSY in events with two or more leptons in CMS

Searches for SUSY in events with two or more leptons in CMS Searches for SUSY in events with two or more leptons in CMS On behalf of the CMS Collaboration Eidgenössische Technische Hochschule Zürich (ETH Zurich), E-mail: pablom@cern.ch We present results of searches

More information

arxiv:nucl-ex/0507023v2 18 Jul 2005

arxiv:nucl-ex/0507023v2 18 Jul 2005 Diffraction Dissociation - 50 Years later Sebastian N. White Brookhaven National Laboratory, Upton, N.Y. 11973, USA arxiv:nucl-ex/0507023v2 18 Jul 2005 Abstract. The field of Diffraction Dissociation,

More information

Searches for Non-Standard Model Higgs Bosons at CMS

Searches for Non-Standard Model Higgs Bosons at CMS Searches for Non-Standard Model Higgs Bosons at CMS Paolo SPAGNOLO on behalf of the CMS Collaboration INFN Pisa, Italy These proceedings report the results on the Higgs Searches beyond the Standard Model

More information

The conceptual design of the Electron Spectrometer for the High Field Physics experiments at ELI-NP. S. Balascuta, Edmond Turcu

The conceptual design of the Electron Spectrometer for the High Field Physics experiments at ELI-NP. S. Balascuta, Edmond Turcu The conceptual design of the Electron Spectrometer for the High Field Physics experiments at ELI-NP S. Balascuta, Edmond Turcu 1 Outline The acceleration of the electrons by Laser Wake Fields, using two

More information

Single Top Production at the Tevatron

Single Top Production at the Tevatron Single Top Production at the Tevatron Daniel Wicke (Bergische Universität Wuppertal) Introduction Outline DØ Cross Section CDF Results DØ V tb Conclusions Revision : 1.7 DESY-Zeuthen, 21-Feb-2007 1 Introduction

More information