Diagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions


 Julius Tate
 1 years ago
 Views:
Transcription
1 Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential reading for this chapter. It is essential that you do some reading, but the topics discussed in this chapter are adequately covered in many texts on linear algebra. The list below gives examples of relevant reading. (For full publication details, see Chapter.) Ostaszewski, A. Mathematics in Economics, Chapter 7, Sections 7., 7.4, 7.6. Ostaszewski, A. Advanced Mathematical Methods. Chapter 5, sections 5. and 5.. Leon, S.J., Linear Algebra with Applications. Chapter 6, sections 6. and 6.3. Simon, C.P. and Blume, L., Mathematics for Economists. Chapter 3, sections 3., 3.7. Introduction One of the most useful techniques in applications of matrices and linear algebra is diagonalisation. Before discussing this, we have to look at the topic of eigenvalues and eigenvectors. We shall explore a number of applications of diagonalisation in the next chapter of the guide. Eigenvalues and eigenvectors Definitions Suppose that A is a square matrix. The number λ is said to be an eigenvalue of A if for some nonzero vector x, Ax = λx. Any nonzero vector x for which this 37
2 equation holds is called an eigenvector for eigenvalue λ or an eigenvector of A corresponding to eigenvalue λ. Finding eigenvalues and eigenvectors To determine whether λ is an eigenvalue of A, we need to determine whether there are any nonzero solutions to the matrix equation Ax = λx. Note that the matrix equation Ax = λx is not of the standard form, since the righthand side is not a fixed vector b, but depends explicitly on x. However, we can rewrite it in standard form. Note that λx = λix, where I is, as usual, the identity matrix. So, the equation is equivalent to Ax = λix, or Ax λix =, which is equivalent to (A λi)x =. Now, a square linear system Bx = has solutions other than x = precisely when B =. Therefore, taking B = A λi, λ is an eigenvalue if and only if the determinant of the matrix A λi is zero. This determinant, p(λ) = A λi, is known as the characteristic polynomial of A, since it is a polynomial in the variable λ. To find the eigenvalues, we solve the equation A λi =. Let us illustrate with a very simple example. Example: Let Then A λi = A =. λ λ = λ and the characteristic polynomial is A λi = λ λ = ( λ)( λ) = λ 3λ + = λ 3λ. So the eigenvalues are the solutions of λ 3λ =. To solve this, one could use either the formula for the solutions to a quadratic, or simply observe that the equation is λ(λ 3) = with solutions λ = and λ = 3. Hence the eigenvalues of A are and 3. To find an eigenvector for eigenvalue λ, we have to find a solution to (A λi)x =, other than the zero vector. (I stress the fact that eigenvectors cannot be the zero vector because this is a mistake many students make.) This is easy, since for a particular value of λ, all we need to do is solve a simple linear system We illustrate by finding the eigenvectors for the matrix of the example just given. Example: We find eigenvectors of A =. We have seen that the eigenvalues are and 3. To find an eigenvector for eigenvalue we solve the system (A I)x = : that is, Ax =, or x =. x This could be solved using row operations. (Note that it cannot be solved by using inverse matrices since A is not invertible. In fact, inverse matrix techniques or 38
3 Cramer s rule will never be of use here since λ being an eigenvalue means that A λi is not invertible.) However, we can solve this fairly directly just by looking at the equations. We have to solve x + x =, x + x =. Clearly both equations are equivalent. From either one, we obtain x = x. We can choose x to be any number we like. Let s take x = ; then we need x = x =. It follows that an eigenvector for is x =. The choice x = was arbitrary; we could have chosen any nonzero number, so, for example, the following are eigenvectors for : 5.,. 5. There are infinitely many eigenvectors for : for each α, α α is an eigenvector for. But be careful not to think that you can choose α = ; for then x becomes the zero vector, and this is never an eigenvector, simply by definition. To find an eigenvector for 3, we solve (A 3I)x =, which is ( This is equivalent to the equations ) x = x ( ). x + x =, x x =, which are together equivalent to the single equation x = x. If we choose x =, we obtain the eigenvector x =. (Again, any nonzero scalar multiple of this vector is also an eigenvector for eigenvalue 3.) We illustrated with a example just for simplicity, but you should be able to work with 3 3 matrices. We give three such examples. Example: Suppose that A = Find the eigenvalues of A and obtain one eigenvector for each eigenvalue. To find the eigenvalues we solve A λi =. Now, 4 λ 4 A λi = 4 λ λ = (4 λ) 4 λ λ λ 4 4 = (4 λ) ((4 λ)(8 λ) 6) + 4 ( 4(4 λ)) = (4 λ) ((4 λ)(8 λ) 6) 6(4 λ). 39
4 Now, we notice that each of the two terms in this expression has 4 λ as a factor, so instead of expanding everything, we take 4 λ out as a common factor, obtaining A λi = (4 λ) ((4 λ)(8 λ) 6 6) = (4 λ)(3 λ + λ 3) = (4 λ)(λ λ) = (4 λ)λ(λ ). It follows that the eigenvalues are 4,,. (The characteristic polynomial will not always factorise so easily. Here it was simple because of the common factor (4 λ). The next example is more difficult.) To find an eigenvector for 4, we have to solve the equation (A 4I)x =, that is, 4 4 x x = x 3 Of course, we could use row operations, but the system is simple enough to solve straight away. The equations are 4x 3 = 4x 3 = 4x + 4x + 4x 3 =, so x 3 = and x = x. Choosing x =, we get the eigenvector. (Again, we can choose x to be any nonnegative number. eigenvalue 4 are all nonzero multiples of this vector.) So the eigenvalues for Activity 3. Determine eigenvectors for and. You should find that for λ =, your eigenvector is a nonzero multiple of and that for λ = your eigenvector is a nonzero multiple of. Example: Let 3 A =. Given that is an eigenvalue of A, find all the eigenvalues of A. 4
5 We calculate the characteristic polynomial of A: 3 A λi = = ( 3 λ) λ λ ( ) λ λ = ( 3 λ)(λ + λ ) + ( λ ) ( + λ) = λ 3 4λ 5λ. Now, the fact that is an eigenvalue means that is a solution of the equation A λi =, which means that (λ ( )), that is, (λ + ), is a factor of the characteristic polynomial A λi. So this characteristic polynomial can be written in the form (λ + )(aλ + bλ + c). Clearly we must have a = and c = to obtain the correct λ 3 term and the correct constant. Given this, b = 3. In other words, the characteristic polynomial is (λ + )( λ 3λ ) = (λ + )(λ + 3λ + ) = (λ + )(λ + )(λ + ). That is, A λi = (λ + ) (λ + ). The eigenvalues are the solutions to A λi =, so they are λ = and λ =. Note that in this case, there are only two eigenvalues (or, the eigenvalue is repeated, or has multiplicity, as it is sometimes said). Example: Let A = 3. 3 Then (check this!), the characteristic polynomial is λ 3 + 8λ λ + 6. factorises (check!) as (λ )(λ )(λ 4), This so the eigenvalues are and 4. There are only two eigenvalues in this case. (We sometimes say that the eigenvalue is repeated or has multiplicity, because (λ ) is a factor of the characteristic polynomial.) To find an eigenvector for λ = 4, we have to solve the equation (A 4I)x =, that is, The equations are x x = x 3 x x + x 3 = x = x x x 3 =, so x = and x = x 3. Choosing x 3 =, we get the eigenvector. For λ =, we have to solve the equation (A I)x =, that is, x x =. x 3. 4
6 This system is equivalent to the single equation x x +x 3 =. (Convince yourself!) Choosing x 3 = and x = we have x =, so we obtain the eigenvector. Complex eigenvalues Although we shall only deal in this subject with real matrices (that is, matrices whose entries are real numbers), it is possible for such real matrices to have complex eigenvalues. This is not something you have to spend much time on, but you have to be aware of it. We briefly describe complex numbers. The complex numbers For more discussion of are based on the complex number i, which is defined to be the square root of. (Of course, no such real number exists.) Any complex number z can be written in the form z = a + bi where a, b are real numbers. We call a the real part and b the imaginary part of z. Of course, any real number is a complex number, since a = a + i. The following example shows a matrix with complex eigenvalues, and it also demonstrates how to deal with complex numbers. Example: Consider the matrix A =. We shall see that it has complex 9 eigenvalues. First, the characteristic polynomial A λi is ( λ) +9 = λ λ+. (Check this!) Using the formula for the roots of a quadratic equation, the eigenvalues are ± 36. Now 36 = (36)( ) = 36 = 6 = 6i. complex numbers, see Appendix A3 of Simon and Blume. So the eigenvalues are the complex numbers + 3i and 3i. Let s proceed with finding eigenvectors. To find an eigenvector for + 3i, we solve (A ( + 3i)I)x =, which is 3i x =. 9 3i This is equivalent to the equations x 3ix + x =, 9x 3ix =. But the second equation is just 3i times the first, so both are equivalent. Taking the second, we see that x = i/3x. So an eigenvector is (taking x = 3) ( i, 3) T. For λ = 3i, we end up solving the system a solution of which is (i, 3) T. 3ix + x =, 9x + 3ix =, You should be aware, then, that even though we are not dealing with matrices that have complex numbers as their entries, the possibility still exists that eigenvalues (and eigenvectors) will involve complex numbers. However, if a matrix is symmetric (that is, it equals its transpose), then it certainly has real eigenvalues. This useful fact, which we shall prove later, is important when we consider quadratic forms in the next chapter. 4
7 Diagonalisation of a square matrix Square matrices A and B are similar if there is an invertible matrix P such that P AP = B. The matrix A is diagonalisable if it is similar to a diagonal matrix; in other words, if there is a diagonal matrix D and an invertible matrix P such that P AP = D. Suppose that matrix A is diagonalisable, and that P AP = D, where D is a diagonal matrix λ λ D = diag(λ, λ,..., λ n ) =.... λ n (Note the useful notation for describing the diagonal matrix D.) AP = DP. If the columns of P are the vectors v, v,..., v n, then and So this means that AP = A (v... v n ) = (Av... Av n ), λ λ DP =... (v... v n ) = (λ v... λ n v n ). λ n Av = λ v, Av = λ v,..., Av n = λ n v n. Then we have The fact that P exists means that none of the vectors v i is the zero vector. So this means that (for i =,,..., n) λ i is an eigenvalue of A and v i is a corresponding eigenvector. Since P has an inverse, these eigenvectors are linearly independent. Therefore, A has n linearly independent eigenvectors. Conversely, if A has n linearly independent eigenvectors, then the matrix P whose columns are these eigenvectors will be invertible, and we will have P AP = D where D is a diagonal matrix with entries equal to the eigenvalues of A. We have therefore established the following result. Theorem 3. A matrix A is diagonalisable if and only if it has n linearly independent eigenvectors. Suppose that this is the case, and let v,..., v n be n linearly independent eigenvectors, where v i is an eigenvector for eigenvalue λ i. Then the matrix P = (v... v n ) is such that P exists, and P AP = D where D = diag(λ,..., λ n ). There is a more sophisticated way to think about this result, in terms of change of basis and matrix representations of linear transformations. Suppose that T is the linear transformation corresponding to A, so that T (x) = Ax for all x. Suppose that A has a set of n linearly independent eigenvectors B = {x, x,..., x n }, corresponding (respectively) to the eigenvalues λ,..., λ n. Since this is a linearly independent set of size n in R n, B is a basis for R n. By Theorem.8, the matrix of T with respect to B is A T [B, B] = ([T (x )] B... [T (x n )] B ). But T (x i ) = Ax i = λx i, so the coordinate vector of T (x i ) with respect to B is [T (x i )] B = (,,...,, λ i,,..., ), 43
8 which has λ i in entry i and all other entries zero. Therefore A T [B, B] = diag(λ,..., λ n ) = D. But by Theorem., A T [B, B] = P A T P, where P = (x... x n ) and A T is the matrix representing T, which in this case is simply A itself. We therefore see that P AP = A T [B, B] = D, and so the matrix P diagonalises A. Example: Consider again the matrix A = We have seen that it has three distinct eigenvalues, 4,, and that eigenvectors corresponding to eigenvalues 4,, are (in that order),,. We now form the matrix P whose columns are these eigenvectors: P =. Then, according to the theory, P should have an inverse, and we should have P AP = D = diag(4,, ). To check that this is true, we could calculate P and evaluate the product. The inverse may be calculated using either elementary row operations or determinants. (Matrix inversion is not part of this subject: however, it is part of the prerequisite subject Mathematics for economists. You should therefore know how to invert a matrix.) Activity 3. Calculate P and verify that P AP = D. Not all n n matrices have n linearly independent eigenvalues, as the following example shows. Example: The matrix A = ( 4 ) has characteristic polynomial λ 6λ + 9 = (λ 3), so there is only one eigenvalue, λ = 3. The eigenvectors are the nonzero solutions to (A 3I)x = : that is, x =. This is equivalent to the single equation x + x =, with general solution x = x. Setting x = r, we see that the solution set of the system consists of all x 44
9 r vectors of the form as r runs through all nonzero real numbers. So the r eigenvectors are precisely the nonzero scalar multiples of the fixed vector. Any two eigenvectors are therefore multiples of each other and hence form a linearly dependent set. In other words, there are not two linearly independent eigenvectors, and the matrix is not diagonalisable. The following result is useful. It shows that if a matrix has n different eigenvalues then it is diagonalisable. Theorem 3. Eigenvectors corresponding to different eigenvalues are linearly independent. So if an n n matrix has n different eigenvalues, then it has a set of n linearly independent eigenvectors and is therefore diagonalisable. For a proof, see Ostaszewski, Mathematics in Economics, Section 7.4. It is not, however, necessary for the eigenvalues to be distinct. What is needed for diagonalisation is a set of n linearly independent eigenvectors, and this can happen even when there is a repeated eigenvalue (that is, when there are fewer than n different eigenvalues). The following example illustrates this. Example: We considered the matrix A = 3 3 above, and we saw that it has only two eigenvalues, 4 and. If we want to diagonalise it, we need to find three linearly independent eigenvectors. We found that an eigenvector corresponding to λ = 4 is, and that, for λ =, the eigenvectors are given by the nonzerovector solutions to the system consisting of just the single equation x x + x 3 =. Above, we simply wanted to find an eigenvector, but now we want to find two which, together with the eigenvector for λ = 4, form a linearly independent set. Now, the system for the eigenvectors corresponding to λ = has just one equation and is therefore of rank ; it follows that the solution set is twodimensional. Let s see exactly what the general solution looks like. We have x = x x 3, and x, x 3 can be chosen independently of each other. Setting x 3 = r and x = s, we see that the general solution is x x = s r s = s + r, (r, s R). x 3 r This shows that the solution space (the eigenspace, as it is called in this instance) is spanned by the two linearly independent vectors,. Now, each of these is an eigenvector corresponding to eigenvalue and, together with our eigenvector for λ = 4, the three form a linearly independent set. So there are 45
10 three linearly independent eigenvectors, even though two of them correspond to the same eigenvalue. The matrix is therefore diagonalisable. We may take P =. Then (Check!) P AP = D = diag(4,, ). Orthogonal diagonalisation of symmetric matrices The matrix we considered above, A = , is symmetric: that is, its transpose A T is equal to itself. It turns out that such matrices are always diagonalisable. They are, furthermore, diagonalisable in a special way. A matrix P is orthogonal if P T P = P P T = I: that is, if P has inverse P T. A matrix A is said to be orthogonally diagonalisable if there is an orthogonal matrix P such that P T AP = D where D is a diagonal matrix. Note that P T = P, so P T AP = P AP. The argument given above shows that the columns of P must be n linearly independent eigenvectors of A. But the condition that P T P = I means something else, as we now discuss. Suppose that the columns of P are x, x,..., x n, so that P = (x x... x n ). Then the rows of the transpose P T are x T,..., x T n, so x T x T P T =. Calculating the matrix product P T P, we find that the (i, j)entry of P T P is x T i x j. But, since P T P = I, we must have x T n. x T i x i = (i =,,..., n), x T i x j = (i j). We say that vectors x, y are orthogonal if the matrix product x T y is. (Orthogonality will be discussed in more detail later.) So, any two of the eigenvectors x,..., x n must be orthogonal. Furthermore, for i =,,..., n, x T i x i =. The length of a vector x is x = n x i = x T x. i= So, not only must any two of these eigenvectors be orthogonal, but each must have length. We shall discuss orthogonality in more detail in the next chapter. For the moment, we have the following result. Theorem 3.3 If the matrix A is symmetric (A T = A) then eigenvectors corresponding to different eigenvalues are orthogonal. 46
11 Proof Suppose that λ and µ are any two different eigenvalues of A and that x, y are corresponding eigenvectors. Then Ax = λx and Ay = µy. The trick in this proof is to find two different expressions for the product x T Ay (which then must, of course, be equal to each other). Note that the matrix product x T Ay is a matrix or, equivalently, a number. First, since Ay = µy, we have x T Ay = x T (µy) = µx T y. But also, since Ax = λx, we have (Ax) T = (λx) T = λx T. Now, for any matrices M, N, (MN) T = N T M T, so (Ax) T = x T A T. But A T = A (because A is symmetric), so x T A = λx T and hence x T Ay = λx T y. We therefore have two different expressions for x T Ay: it equals µx T y and λx T y. Hence, µx T y = λx T y, or (µ λ)x T y =. But since λ µ (they are different eigenvalues), we have µ λ. We deduce, therefore, that x T y =. But this says precisely that x and y are orthogonal, which is exactly what we wanted to prove. This is quite a sneaky proof: the trick is to remember to consider x T Ay. The result just presented shows that if an n n symmetric matrix has exactly n different eigenvalues then any n corresponding eigenvectors are orthogonal to one another. Since we may take the eigenvectors to have length, this shows that the matrix is orthogonally diagonalisable. The following result makes this precise. Theorem 3.4 Suppose that A has n different eigenvalues. Take n corresponding eigenvectors, each of length. (Recall that the length of a vector x is just x = n i= x i.) Form the matrix P which has these eigenvectors as its columns. Then P = P T (that is, P is an orthogonal matrix) and P T AP = D, the diagonal matrix whose entries are the eigenvalues of A. (Note that we have only shown here that symmetric matrices with n different eigenvalues are orthogonally diagonalisable, but it turns out that all symmetric matrices are orthogonally diagonalisable.) Example: We work with the same matrix we used earlier, A = As we have already observed, this is symmetric. We have seen that it has three distinct eigenvalues, 4,. Earlier, we found that eigenvectors for eigenvalues 4,, are (in that order),,. Activity 3.3 Convince yourself that any two of these three eigenvectors are orthogonal. 47
12 Now, these eigenvectors are not of length. For example, the first one has length + ( ) + =. If we divide each entry of it by, we will indeed obtain an eigenvector of length : / /. We can similarly normalise the other two vectors, obtaining / 3 / 3 /, / 6 / 6 3 /. 6 Activity 3.4 Make sure you understand this normalisation. We now form the matrix P whose columns are these normalised eigenvectors: P = / / 3 / 6 / / 3 / 6 / 3 /. 6 Then P is orthogonal and P T AP = D = diag(4,, ). Activity 3.5 Check that P is orthogonal by calculating P T P. Example: Let A = Note that A is symmetric. We find an orthogonal matrix P such that P T AP is a diagonal matrix. The characteristic polynomial of A is 7 λ 9 A λi = λ 9 7 λ = ( λ)[(7 λ)(7 λ) 8] = ( λ)(λ 4λ 3) = ( λ)(λ 6)(λ + ), where we have expanded the determinant using the middle row. So the eigenvalues are, 6,. An eigenvector for λ = is given by 5x + 9z =, 9x + 5z =. This means x = z =. So we may take (,, ) T. This already has length so there is no need to normalise it. (Recall that we need three eigenvectors which are of length.) For λ = we find that an eigenvector is (,, ) T (or some multiple of this). To normalise (that is, to make of length ), we divide by its length, which is, obtaining (/ )(,, ) T. For λ = 6, we find a normalised eigenvector is (/ )(,, ). It follows that if we let P = / / / /, then P is orthogonal and P T AP = D = diag(,, 6). Check this! 48
13 Learning outcomes This chapter has discussed eigenvalues and eigenvectors and the very important technique of diagonalisation. We shall see in the next chapter how useful a technique diagonalisation is. At the end of this chapter and the relevant reading, you should be able to: explain what is meant by eigenvectors and eigenvalues, and by diagonalisation find eigenvalues and corresponding eigenvectors for a square matrix diagonalise a diagonalisable matrix recognise what diagonalisation says in terms of change of basis and matrix representation of linear transformations perform orthogonal diagonalisation on a symmetric matrix that has distinct eigenvalues. Sample examination questions The following are typical exam questions, or parts of questions. Question 3. Find the eigenvalues of the matrix A = and find an eigenvector for each eigenvalue. Hence find an invertible matrix P and a diagonal matrix D such that P AP = D. Question 3. Prove that the matrix is not diagonalizable. Question 3.3 Let A be any (real) n n matrix and suppose λ is an eigenvalue of A. Show that {x : Ax = λx}, the set of eigenvectors for eigenvalue λ together with the zerovector, is a subspace of R n. Question 3.4 Let Show that the vector A = 6 6. x = is an eigenvector of A. What is the corresponding eigenvalue? Find the other eigenvalues of A, and an eigenvector for each of them. Find an invertible matrix P and a diagonal matrix D such that P AP = D. 49
14 Question 3.5 Let A =. 3 Find an invertible matrix P and a diagonal matrix D such that P AP = D. Question 3.6 Let A =. Find the eigenvalues of A, and an eigenvector for each of them. Find an orthogonal matrix P and a diagonal matrix D such that P T AP = D. Question 3.7 Suppose that A is a real diagonalisable matrix and that all the eigenvalues of A are nonnegative. Prove that there is a matrix B such that B = A. Sketch answers or comments on selected questions Question 3. The characteristic polynomial is λ 3 + 4λ 48, which is easily factorised as λ(λ 6)(λ 8). So the eigenvalues are, 6, 8. Corresponding eigenvectors, respectively, are calculated to be (and nonzero multiples of) (/, /, ) T, (/,, ) T, (/4,, ) T. We may therefore take / / /4 P = /, D = diag(, 6, 8). Question 3. You can check that the only eigenvalue is and that the corresponding eigenvectors are all the scalar multiples of (, ) T. So there cannot be two linearly independent eigenvectors, and hence the matrix is not diagonalisable. Question 3.3 Denote the set described by W. First, W. Suppose now that x, y are in W and that α R. We need to show that x + y and αx are also in W. We know that Ax = λx and Ay = λy, so and so x + y and αx are indeed in W. A(x + y) = Ax + Ay = λx + λy = λ(x + y) A(αx) = α(ax) = α(λx) = λ(αx), Question 3.4 It is given that x is an eigenvector. To determine the corresponding eigenvalue we work out Ax. This should be λx where λ is the required eigenvalue. Performing the calculation, we see that Ax = x and so λ =. The characteristic 5
15 polynomial of A is p(λ) = λ 3 + λ + λ. Since λ = is a root, we know that (λ ) is a factor. Factorising, we obtain p(λ) = (λ )( λ + λ + ) = (λ )(λ )(λ + ), so the other eigenvalues are λ =,. Corresponding eigenvectors are, respectively, (,, ) T and (,, ) T. We may therefore take P =, D = diag(,, ). Question 3.5 This is slightly more complicated since there are not 3 distinct eigenvalues. The eigenvalues turn out to be and, with two occurring twice. An eigenvector for is (,, ) T. We need to find a set of 3 linearly independent eigenvectors, so we need another two coming from the eigenspace corresponding to. You should find that the eigenspace for λ = is twodimensional and has a basis consisting of (,, ) T and (,, ) T. These two vectors together with (,, ) T do indeed form a linearly independent set. Therefore we may take P =, D = diag(,, ). Question 3.6 The characteristic polynomial turns out to be p(λ) = λ 3 + 4λ 3λ = λ(λ 3)(λ ), so the eigenvalues are,, 3. Corresponding eigenvectors are, respectively, (,, ) T, (,, ) T, (,, ) T. To perform orthogonal diagonalisation (rather than simply diagonalisation) we need to normalise these (that is, make them of length by dividing each by its length). The lengths of the vectors are (respectively), 3,, 6, so the normalised eigenvectors are ( / 3, / 3, / 3) T, (, /, / ) T, (/ 6, / 6, / 6) T. If we take then P = / 3 / 6 / 3 / / 6 / 3 / /, 6 P AP = diag(,, 3) = D. Question 3.7 Since A can be diagonalised, we have P AP = D for some P, where D = diag(λ,..., λ n ), these entries being the eigenvalues of A. It is given that all λ i. We have A = P DP. Let Then B = P diag( λ, λ,..., λ n )P. B = P diag( λ, λ,..., λ n )P P diag( λ, λ,..., λ n )P and we are done. = P diag( λ, λ,..., λn )P = P DP = A, 5
Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationInner products and orthogonality
Chapter 5 Inner products and orthogonality Inner product spaces, norms, orthogonality, GramSchmidt process Reading The list below gives examples of relevant reading. (For full publication details, see
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More information1 Eigenvalues and Eigenvectors
Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x
More informationSOLUTIONS TO HOMEWORK #7, MATH 54 SECTION 001, SPRING 2012
SOLUTIONS TO HOMEWORK #7, MATH 54 SECTION, SPRING JASON FERGUSON Beware of typos These may not be the only ways to solve these problems In fact, these may not even be the best ways to solve these problems
More informationSolutions to Assignment 12
Solutions to Assignment Math 7, Fall 6.7. Let P have the inner product given by evaluation at,,, and. Let p =, p = t and q = /(t 5). Find the best approximation to p(t) = t by polynomials in Span{p, p,
More informationSOLUTIONS TO PROBLEM SET 6
SOLUTIONS TO PROBLEM SET 6 18.6 SPRING 16 Note the difference of conventions: these solutions adopt that the characteristic polynomial of a matrix A is det A xi while the lectures adopt the convention
More informationMATH 551  APPLIED MATRIX THEORY
MATH 55  APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
More informationSection 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =
Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and
More informationEigenvalues and eigenvectors of a matrix
Eigenvalues and eigenvectors of a matrix Definition: If A is an n n matrix and there exists a real number λ and a nonzero column vector V such that AV = λv then λ is called an eigenvalue of A and V is
More informationAdvanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur
Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. # 06 Method to Find Eigenvalues and Eigenvectors Diagonalization
More informationSymmetric Matrices and Quadratic Forms
7 Symmetric Matrices and Quadratic Forms 7.1 DIAGONALIZAION OF SYMMERIC MARICES SYMMERIC MARIX A symmetric matrix is a matrix A such that. A A Such a matrix is necessarily square. Its main diagonal entries
More informationLecture 14. Diagonalization
International College of Economics and Finance (State University Higher School of Economics) Lectures on Linear Algebra by Vladimir Chernya Lecture. Diagonalization To be read to the music of Flowers on
More informationMAT 242 Test 2 SOLUTIONS, FORM T
MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these
More informationLinear Algebra PRACTICE EXAMINATION SOLUTIONS
Linear Algebra 2S2 PRACTICE EXAMINATION SOLUTIONS 1. Find a basis for the row space, the column space, and the nullspace of the following matrix A. Find rank A and nullity A. Verify that every vector in
More information1 Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors The product Ax of a matrix A M n n (R) and an nvector x is itself an nvector Of particular interest in many settings (of which differential equations is one) is the following
More informationMath 24 Winter 2010 Wednesday, February 24
(.) TRUE or FALSE? Math 4 Winter Wednesday, February 4 (a.) Every linear operator on an ndimensional vector space has n distinct eigenvalues. FALSE. There are linear operators with no eigenvalues, and
More informationMath 480 Diagonalization and the Singular Value Decomposition. These notes cover diagonalization and the Singular Value Decomposition.
Math 480 Diagonalization and the Singular Value Decomposition These notes cover diagonalization and the Singular Value Decomposition. 1. Diagonalization. Recall that a diagonal matrix is a square matrix
More informationMath 2040: Matrix Theory and Linear Algebra II Solutions to Assignment 3
Math 24: Matrix Theory and Linear Algebra II Solutions to Assignment Section 2 The Characteristic Equation 22 Problem Restatement: Find the characteristic polynomial and the eigenvalues of A = Final Answer:
More informationEigenvalues and Eigenvectors
Math 20F Linear Algebra Lecture 2 Eigenvalues and Eigenvectors Slide Review: Formula for the inverse matrix. Cramer s rule. Determinants, areas and volumes. Definition of eigenvalues and eigenvectors.
More informationMATH 2030: EIGENVALUES AND EIGENVECTORS
MATH 200: EIGENVALUES AND EIGENVECTORS Eigenvalues and Eigenvectors of n n matrices With the formula for the determinant of a n n matrix, we can extend our discussion on the eigenvalues and eigenvectors
More informationLinear Algebra A Summary
Linear Algebra A Summary Definition: A real vector space is a set V that is provided with an addition and a multiplication such that (a) u V and v V u + v V, (1) u + v = v + u for all u V en v V, (2) u
More informationSummary of week 8 (Lectures 22, 23 and 24)
WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry
More informationLinear Algebra: Matrix Eigenvalue Problems
Chap 8 Linear Algebra: Matrix Eigenvalue Problems Sec 81 Eigenvalues, Eigenvectors Eigenvectors of a (square!) matrix A are vectors x, not zero vectors, such that if you multiply them by A, you get a vector
More informationSolutions to Assignment 9
Solutions to Assignment 9 Math 7, Fall 5.. Construct an example of a matrix with only one distinct eigenvalue. [ ] a b We know that if A then the eigenvalues of A are the roots of the characteristic equation
More informationc 1 v 1 + c 2 v c k v k
Definition: A vector space V is a nonempty set of objects, called vectors, on which the operations addition and scalar multiplication have been defined. The operations are subject to ten axioms: For any
More information4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:
More informationCoordinates. Definition Let B = { v 1, v 2,..., v n } be a basis for a vector space V. Let v be a vector in V, and write
MATH10212 Linear Algebra Brief lecture notes 64 Coordinates Theorem 6.5 Let V be a vector space and let B be a basis for V. For every vector v in V, there is exactly one way to write v as a linear combination
More informationOrthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationLecture 19: Section 4.4
Lecture 19: Section 4.4 Shuanglin Shao November 11, 2013 Coordinate System in Linear Algebra. (1). Recall that S = {v 1, v 2,, v r } is linearly independent if the equation c 1 v 1 + + c r v r = 0 implies
More informationMore Linear Algebra Study Problems
More Linear Algebra Study Problems The final exam will cover chapters 3 except chapter. About half of the exam will cover the material up to chapter 8 and half will cover the material in chapters 93.
More information(a) Compute the dimension of the kernel of T and a basis for the kernel. The kernel of T is the nullspace of A, so we row reduce A to find
Scores Name, Section # #2 #3 #4 #5 #6 #7 #8 Midterm 2 Math 27W, Linear Algebra Directions. You have 0 minutes to complete the following 8 problems. A complete answer will always include some kind of work
More informationMA 52 May 9, Final Review
MA 5 May 9, 6 Final Review This packet contains review problems for the whole course, including all the problems from the previous reviews. We also suggest below problems from the textbook for chapters
More informationMath 1180, Hastings. Notes, part 9
Math 8, Hastings Notes, part 9 First I want to recall the following very important theorem, which only concerns square matrices. We will need to use parts of this frequently. Theorem Suppose that A is
More informationVector Spaces and Linear Transformations
Vector Spaces and Linear Transformations Beifang Chen Fall 6 Vector spaces A vector space is a nonempty set V whose objects are called vectors equipped with two operations called addition and scalar multiplication:
More informationSolution Set 8, Fall 11
Solution Set 8 186 Fall 11 1 What are the possible eigenvalues of a projection matrix? (Hint: if P 2 P and v is an eigenvector look at P 2 v and P v) Show that the values you give are all possible Solution
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More information1. Linear systems of equations. Chapters 78: Linear Algebra. Solution(s) of a linear system of equations. Row operations.
A linear system of equations of the form Sections 75 78 & 8 a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m can be written in matrix form as AX = B where a a a n x
More informationLinear Algebra and Matrices
LECTURE Linear Algebra and Matrices Before embarking on a study of systems of differential equations we will first review, very quickly, some fundamental objects and operations in linear algebra.. Matrices
More informationQuestions on Eigenvectors and Eigenvalues
Questions on Eigenvectors and Eigenvalues If you can answer these questions without any difficulty, the question set on this portion within the exam should not be a problem at all. Definitions Let A be
More informationMath 22 Final Exam 1
Math 22 Final Exam. (36 points) Determine if the following statements are true or false. In each case give either a short justification or example (as appropriate) to justify your conclusion. T F (a) If
More informationMatrices, vectors, and vector spaces
Chapter 2 Matrices, vectors, and vector spaces Reading Revision, vectors and matrices, vector spaces, subspaces, linear independence and dependence, bases and dimension, rank of a matrix, linear transformations
More informationMatrix Inverses. Since the linear system. can be written as. where. ,, and,
Matrix Inverses Consider the ordinary algebraic equation and its solution shown below: Since the linear system can be written as where,, and, (A = coefficient matrix, x = variable vector, b = constant
More information(Practice)Exam in Linear Algebra
(Practice)Exam in Linear Algebra First Year at The Faculties of Engineering and Science and of Health This test has 9 pages and 15 problems. In twosided print. It is allowed to use books, notes, photocopies
More informationA Crash Course in Linear Algebra
A Crash Course in Linear Algebra Jim Fakonas October, 202 Definitions The goal of this section is to provide a brief refresher in the basic terms and concepts of linear algebra, listed here roughly in
More informationUniversity of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
More informationMATH 304 Linear Algebra Lecture 22: Eigenvalues and eigenvectors (continued). Characteristic polynomial.
MATH 304 Linear Algebra Lecture 22: Eigenvalues and eigenvectors (continued). Characteristic polynomial. Eigenvalues and eigenvectors of a matrix Definition. Let A be an n n matrix. A number λ R is called
More informationMATH 304 Linear Algebra Lecture 34: Review for Test 2.
MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Coordinates and linear transformations (Leon 3.5, 4.1 4.3) Coordinates relative to a basis Change of basis, transition matrix Matrix
More informationEigenvalues and Eigenvectors
LECTURE 3 Eigenvalues and Eigenvectors Definition 3.. Let A be an n n matrix. The eigenvalueeigenvector problem for A is the problem of finding numbers λ and vectors v R 3 such that Av = λv. If λ, v are
More informationSolution based on matrix technique Rewrite. ) = 8x 2 1 4x 1x 2 + 5x x1 2x 2 2x 1 + 5x 2
8.2 Quadratic Forms Example 1 Consider the function q(x 1, x 2 ) = 8x 2 1 4x 1x 2 + 5x 2 2 Determine whether q(0, 0) is the global minimum. Solution based on matrix technique Rewrite q( x1 x 2 = x1 ) =
More information2.5 Complex Eigenvalues
1 25 Complex Eigenvalues Real Canonical Form A semisimple matrix with complex conjugate eigenvalues can be diagonalized using the procedure previously described However, the eigenvectors corresponding
More informationNotes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
More information16 Eigenvalues and eigenvectors
6 Eigenvalues and eigenvectors Definition: If a vector x 0 satisfies the equation Ax = λx for some real or complex number λ then λ is said to be an eigenvalue of the matrix A and x is said to be an eigenvector
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationROW REDUCTION AND ITS MANY USES
ROW REDUCTION AND ITS MANY USES CHRIS KOTTKE These notes will cover the use of row reduction on matrices and its many applications, including solving linear systems, inverting linear operators, and computing
More information(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product
More informationVector Spaces and Matrices Kurt Bryan
Matrices as Functions Vector Spaces and Matrices Kurt Bryan Up to now matrices have been pretty static objects. We ve used them mainly as a bookkeeping tool for doing Gaussian elimination on systems of
More informationIntroduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra  1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
More informationLecture 8. Econ August 19
Lecture 8 Econ 2001 2015 August 19 Lecture 8 Outline 1 Eigenvectors and eigenvalues 2 Diagonalization 3 Quadratic Forms 4 Definiteness of Quadratic Forms 5 Uniqure representation of vectors Eigenvectors
More informationV = [v 1, v 2,... v n ].
COORDINATES, EIGENVALUES, AND EIGENVECTORS Review of coordinates The standard basis The standard basis for R n is the basis E = {e, e, e n }, where e j is the vector with in the jth position and zeros
More informationNotes on Hermitian Matrices and Vector Spaces
1. Hermitian matrices Notes on Hermitian Matrices and Vector Spaces Defn: The Hermitian conjugate of a matrix is the transpose of its complex conjugate. So, for example, if M = 1 i 0, 1 i 1 + i then its
More informationSUBSPACES. Chapter Introduction. 3.2 Subspaces of F n
Chapter 3 SUBSPACES 3. Introduction Throughout this chapter, we will be studying F n, the set of all n dimensional column vectors with components from a field F. We continue our study of matrices by considering
More informationNote: A typo was corrected in the statement of computational problem #19.
Note: A typo was corrected in the statement of computational problem #19. 1 True/False Examples True or false: Answers in blue. Justification is given unless the result is a direct statement of a theorem
More informationMath 210 Linear Algebra Fall 2014
Math 210 Linear Algebra Fall 2014 Instructor's Name: Office Location: Office Hours: Office Phone: Email: Course Description This is a first course in vectors, matrices, vector spaces, and linear transformations.
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More information2.6 The Inverse of a Square Matrix
200/2/6 page 62 62 CHAPTER 2 Matrices and Systems of Linear Equations 0 0 2 + i i 2i 5 A = 0 9 0 54 A = i i 4 + i 2 0 60 i + i + 5i 26 The Inverse of a Square Matrix In this section we investigate the
More informationOctober 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix
Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,
More informationVector coordinates, matrix elements and changes of basis
Physics 6A Winter Vector coordinates, matrix elements and changes of basis. Coordinates of vectors and matrix elements of linear operators Let V be an ndimensional real (or complex) vector space. Vectors
More information1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)
Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationInverses and powers: Rules of Matrix Arithmetic
Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3
More informationPOL502: Linear Algebra
POL502: Linear Algebra Kosuke Imai Department of Politics, Princeton University December 12, 2005 1 Matrix and System of Linear Equations Definition 1 A m n matrix A is a rectangular array of numbers with
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationInner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
More informationEigenvalues and Eigenvectors
Chapter 4 Eigenvalues and Eigenvectors In this chapter we will look at matrix eigenvalue problems for and 3 3 matrices These are crucial in many areas of physics, and is a useful starting point for more
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More informationMath 3191 Applied Linear Algebra
Math 3191 Applied Linear Algebra Lecture 5: Quadratic Forms Stephen Billups University of Colorado at Denver Math 3191Applied Linear Algebra p.1/16 Diagonalization of Symmetric Matrices Recall: A symmetric
More informationGRE math study group Linear algebra examples D Joyce, Fall 2011
GRE math study group Linear algebra examples D Joyce, Fall 20 Linear algebra is one of the topics covered by the GRE test in mathematics. Here are the questions relating to linear algebra on the sample
More informationMath 108B Selected Homework Solutions
Math 108B Selected Homework Solutions Charles Martin March 5, 2013 Homework 1 5.1.7 (a) If matrices A, B both represent T under different bases, then for some invertible matrix Q we have B = QAQ 1. Then
More informationRANK AND NULLITY. x 1. x m
RANK AND NULLITY. The row and column spaces Let A be an m n matrix. Then A has n columns, each of which is a vector in R m. The linear span of the columns is a subspace of R n. It s called the column space
More informationMath 54 Midterm 2, Fall 2015
Math 54 Midterm 2, Fall 2015 Name (Last, First): Student ID: GSI/Section: This is a closed book exam, no notes or calculators allowed. It consists of 7 problems, each worth 10 points. The lowest problem
More information7. Linearly Homogeneous Functions and Euler's Theorem
24 7. Linearly Homogeneous Functions and Euler's Theorem Let f(x 1,..., x N ) f(x) be a function of N variables defined over the positive orthant, W {x: x >> 0 N }. Note that x >> 0 N means that each component
More information4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns
L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows
More informationExamination in TMA4110/TMA4115 Calculus 3, August 2013 Solution
Norwegian University of Science and Technology Department of Mathematical Sciences Page of Examination in TMA40/TMA45 Calculus 3, August 03 Solution 0 0 Problem Given the matrix A 8 4. 9 a) Write the solution
More informationChapters 78: Linear Algebra
Sections 75, 78 & 81 Solutions 1 A linear system of equations of the form a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written
More informationChapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded stepbystep through lowdimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
More informationPreliminaries of linear algebra
Preliminaries of linear algebra (for the Automatic Control course) Matteo Rubagotti March 3, 2011 This note sums up the preliminary definitions and concepts of linear algebra needed for the resolution
More informationMATH 340: EIGENVECTORS, SYMMETRIC MATRICES, AND ORTHOGONALIZATION
MATH 340: EIGENVECTORS, SYMMETRIC MATRICES, AND ORTHOGONALIZATION Let A be an n n real matrix. Recall some basic definitions. A is symmetric if A t = A; A vector x R n is an eigenvector for A if x 0, and
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationMath 220 Sections 1, 9 and 11. Review Sheet v.2
Math 220 Sections 1, 9 and 11. Review Sheet v.2 Tyrone Crisp Fall 2006 1.1 Systems of Linear Equations Key terms and ideas  you need to know what they mean, and how they fit together: Linear equation
More informationMATH 304 Linear Algebra Lecture 11: Basis and dimension.
MATH 304 Linear Algebra Lecture 11: Basis and dimension. Linear independence Definition. Let V be a vector space. Vectors v 1,v 2,...,v k V are called linearly dependent if they satisfy a relation r 1
More informationThe Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
More informationMATH 2300 Sample Proofs
MATH 2300 Sample Proofs This document contains a number of theorems, the proofs of which are at a difficulty level where they could be put on a test or exam. This should not be taken as an indication that
More informationUniversity of Ottawa
University of Ottawa Department of Mathematics and Statistics MAT 1302A: Mathematical Methods II Instructor: Alistair Savage Final Exam April 2013 Surname First Name Student # Seat # Instructions: (a)
More informationComputational Methods CMSC/AMSC/MAPL 460. Eigenvalues and Eigenvectors. Ramani Duraiswami, Dept. of Computer Science
Computational Methods CMSC/AMSC/MAPL 460 Eigenvalues and Eigenvectors Ramani Duraiswami, Dept. of Computer Science Eigen Values of a Matrix Definition: A N N matrix A has an eigenvector x (nonzero) with
More informationUsing the three elementary row operations we may rewrite A in an echelon form as
Rank, RowReduced Form, and Solutions to Example 1 Consider the matrix A given by Using the three elementary row operations we may rewrite A in an echelon form as or, continuing with additional row operations,
More information