POWER SETS AND RELATIONS


 Rhoda Bates
 1 years ago
 Views:
Transcription
1 POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty set, we could build the following sequence of sets: { } {{ }} {{{ }}} and so on. This is one of the many methods of constructing the natural numbers. We assign 0 and { } 1 and so forth. Given a set, for example, A = {1, 2, 3, 4, 5} one can construct a set of subsets. For example, we can construct the set of subsets of cardinality 2. A 2 = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} Now consider the collection of all subsets of A. This is a welldefined set and is called the Power set of A, denoted P(A). Therefore {1, 2, 3} P(A) A 2 P(A) 1 / P(A) 2. Relations Definition 1 (relation). A relation, R on a set A is a nonempty subset R A A. If (a, b) R then we usually denote this by arb. Usually, the binary relation is defined by all the elements of A A which satisfy some property, P. Here are some examples of relations. Example 1 (A trivial example). {(5, 5)} Z Z is a relation on Z, but not very interesting. So there isn t much to say about it. Date: September 29,
2 2 Example 2 ( less than). < N N is a relation defined by (n, m) < if n is less than m. Therefore, (1, 2) < and (4, 8) < but (5, 4) / < and (3, 3) / <. Example 3 ( Geometric). Let G be the set of regular polygons. relation, R, on G by R = {(P n, P 2n ) P k is a k sided regular polygon } Define a 2.1. Interesting Properties. Some relations have some interesting and useful properties that one would like to identify. (a) R is reflexive if a A then (a, a) R (b) R is symmetric if a, b A then (a, b) R (b, a) R (c) R is antisymmetric if a, b A then (a, b) R and a b then (b, a) / R (d) R is connected if a, b A then a b (a, b) (b, a) R (e) R is transitive if a, b, c A then (a, b) (b, c) R (a, c) R Definition 2 (partial ordering). A partial ordering of a set A is a reflexive, antisymmetric, and transitive relation. In other words, if a relation on a set A satisfies the properties: Every element in A is related to itself. If A contains two distinct elements a, b A such that a is related to b, then b is not related to a. If A contains three elements a, b, c A such that a is related to b, and b is related to c, then a is related to c. Note that order REALLY matters. Example 4. Prove that the following are examples of partial orders. (a) Define a relation L on R by (a, b) L if a is less than or equal to b. Proof 1. We must show that each of the properties are satisfied by the relation. (r) [reflexive] Clearly, every real number is less than or equal to itself. (a) [antisymmetric] If a, b R are distinct and a b then b a. (t) [transitive] If a, b, c R and a b and b c then a c (b) Define a relation D on N by (n, m) D if and only if m = nq for some q. This relation is called divides and is denoted n m. (c) on P(A) for a set A. (d) Let F be the set of all realvalued functions differentiable on the real line. Define a relation, R, by frg iff df dx x=0 is less than dg dx x=0. We denote partial orders by the symbol.
3 3 A total ordering on a set A is a connected, partial ordering. This means that any two distinct elements in the set must be related in some way. We sometimes also call this a linear order. Note that Example (a) is the only example from above that is a linear order. Why? Definition 3 (Equivalence Relation). An equivalence relation is a transitive, reflexive, and symmetric relation. We denote these relations by. Equivalence relations are the most interesting relations because they provide the most structure for our sets. Since these are the most useful in finding information about the set we are studying, we will concentrate on these particular binary relations. One can think about these particular relations as similar to equality or congruence. Example 5. Here are some examples of equivalence relations. (a) = is an equivalence relation on any of the number sets, N, Q, R, Z. (b) Define a relation on N N by (a, b) (c, d) if ad bc = 0. (c) Define a relation on the power set P(X) of an arbitrary finite set X by A, B P(X) A B if A = B. (d) Let r N be a nonzero natural number. Define a binary relation k on Z by n k m if and only if n = kq + m for some q Z. (e) Let F R be the set of all integrable functions on R. Define a relation R on F R F R by (f, g) R if. 1 0 f = 1 3. Partitions and Equivalence Classes The most useful consequence of finding a nontrivial equivalence relation on a set is that it provides structure on the set. Definition 4 (partition). A partition on a set X is a subset of P P(X) such that (m) [mutually disjoint] If A, B P such that A B then A B =. (c) [cover] The union of all the elements of P is the set X. A = X A P (d) [nonempty] All elements of P are nonempty. A collection of sets with this property is said to cover X. Properties [m] and [c] are equivalent to the property that every element of X must be contained in exactly one member of the partition of X. We will find that equivalence relations yield a partition on a set which, depending on the relation, exposes information about said set. 0 g
4 Equivalence Classes. Let (X, ) be a set with an equivalence relation. Let x X be an element of X. Define the set x = {a X a x} to be the set of all elements in X which are equivalent to x. This is called the equivalence class of x. Now, let y X such that y x is not equivalent to x. Define y = {a X a y} to be all of the elements in X equivalent to y. Lemma 1. Suppose x, y X such that y x. Then x y = Proof 2. Suppose a y x. Then a y and a x. By symmetry of equivalence relation, a y y a. Thus, y a and a x. By transitivity of an equivalence relation y x. But this contradicts the claim that y x. Hence, there does not exist a x y. The lemma above show distinct equivalence classes are mutually disjoint. Now we need only show that they are a cover for X. Lemma 2. The union of all equivalence classes is the whole set. x = X Proof 3. EXERCISE! x X These Lemmas show that the set of equivalence classes does indeed form a partition of X. Let us look at some examples of equivalence classes. Example 6. Let be an equivalence relation on R 2 defined by (x 1, y 1 ) (x 2, y 2 ) if and only if there exists k R {0} such that x 1 = kx 2 y 1 = ky 2
5 5 We write this as (x 1, y 1 ) = k(x 2, y 2 ), and call it scalar multiplication. Geometrically, two points in R 2 are equivalent if they lay on the same line through the origin. If you consider the points in R 2 to be vectors, then the equivalence is defined by direction. In other words, two vectors are equivalent if they ( or their negatives) point in the same direction. We call this projective 2dimensional real space. First we should prove, that this actually does define an equivalence relation. Reflexive Let (x, y) R 2 be an arbitrary point. Then, if k = 1, then (x, y) = 1(x, y). Hence (x, y) (x, y). Symmetric If (x, y) (a, b), then k R nonzero, such that (x, y) = k(a, b). By dividing both sides by k, 1 k (x, y) = (a, b) implies (a, b) (x, y). Transitive Let (x 1, y 1 ) (x 2, y 2 ) and (x 2, y 2 ) (x 3, y 3 ). Then (x 1, y 1 ) = k 1 (x 2, y 2 ) and (x 2, y 2 ) = k 2 (x 3, y 3 ). By substitution, we have (x 1, y 1 ) = k 1 k 2 (x 3, y 3 ) Allowing k = k 1 k 2 yields (x 1, y 1 ) (x 3, y 3 ) Since every line through the origin intersects the unit circle twice, there will be exactly two points on the unit circle in each equivalence class. If restrict ourselves to only the portion of the unit circle which lies on the upper half plane, than the intersection would be unique. Hence, we can represent each equivalence class by a point on the unit circle that lies on the upper half plane. However, the point (1, 0) and ( 1, 0) are also equivalent, and are, therefore, identified as one object. So the set of equivalence classes becomes, geometrically, like a circle.
6 6 4. Problems The first few problems involve examples and Lemmas which were not proven in the previous sections. Problem 1. Prove that the relations defined in Example 4, (b), (c), (d) are partial orders. Problem 2. Show that the partial orders in Example 4, (a) is a linear order. Problem 3. Show that the relations in Example 5 are equivalence relations and describe the set of equivalence classes. You must state how many equivalence classes there are, describe the elements in each equivalence class and give representatives for each. Problem 4. Show that the set of equivalence classes covers the set. Problem 5. For the following problems, either give example of a relation which has the following properties, or prove that it cannot be done. (a) reflexive and symmetric but not transitive. (b) symmetric and transitive but not reflexive. (c) reflexive and transitive but not symmetric. Problem 6 (Discussion). Give an example of a partial order on R 2. Do you think it s possible to find a total order on R 2? Does this extend to all dimensions? Department of Mathematics, Arkansas School of Mathematics, Sciences and the Arts address:
Sets, Relations and Functions
Sets, Relations and Functions Eric Pacuit Department of Philosophy University of Maryland, College Park pacuit.org epacuit@umd.edu ugust 26, 2014 These notes provide a very brief background in discrete
More informationChapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
More informationLecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
More informationFinite Sets. Theorem 5.1. Two nonempty finite sets have the same cardinality if and only if they are equivalent.
MATH 337 Cardinality Dr. Neal, WKU We now shall prove that the rational numbers are a countable set while R is uncountable. This result shows that there are two different magnitudes of infinity. But we
More informationS(A) X α for all α Λ. Consequently, S(A) X, by the definition of intersection. Therefore, X is inductive.
MA 274: Exam 2 Study Guide (1) Know the precise definitions of the terms requested for your journal. (2) Review proofs by induction. (3) Be able to prove that something is or isn t an equivalence relation.
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More informationChapter 1. SigmaAlgebras. 1.1 Definition
Chapter 1 SigmaAlgebras 1.1 Definition Consider a set X. A σ algebra F of subsets of X is a collection F of subsets of X satisfying the following conditions: (a) F (b) if B F then its complement B c is
More informationMatrix Representations of Linear Transformations and Changes of Coordinates
Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under
More informationE3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationDuality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
More informationSequences and Convergence in Metric Spaces
Sequences and Convergence in Metric Spaces Definition: A sequence in a set X (a sequence of elements of X) is a function s : N X. We usually denote s(n) by s n, called the nth term of s, and write {s
More informationThis chapter describes set theory, a mathematical theory that underlies all of modern mathematics.
Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationReview for Final Exam
Review for Final Exam Note: Warning, this is probably not exhaustive and probably does contain typos (which I d like to hear about), but represents a review of most of the material covered in Chapters
More informationINCIDENCEBETWEENNESS GEOMETRY
INCIDENCEBETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
More information3. Equivalence Relations. Discussion
3. EQUIVALENCE RELATIONS 33 3. Equivalence Relations 3.1. Definition of an Equivalence Relations. Definition 3.1.1. A relation R on a set A is an equivalence relation if and only if R is reflexive, symmetric,
More informationMODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.
MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on
More informationLogic & Discrete Math in Software Engineering (CAS 701) Dr. Borzoo Bonakdarpour
Logic & Discrete Math in Software Engineering (CAS 701) Background Dr. Borzoo Bonakdarpour Department of Computing and Software McMaster University Dr. Borzoo Bonakdarpour Logic & Discrete Math in SE (CAS
More informationSets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object.
Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: real numbers, complex numbers, C integers, All students in
More informationDiscrete Mathematics, Chapter 5: Induction and Recursion
Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Wellfounded
More informationCHAPTER 5: MODULAR ARITHMETIC
CHAPTER 5: MODULAR ARITHMETIC LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN 1. Introduction In this chapter we will consider congruence modulo m, and explore the associated arithmetic called
More informationMATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
More informationLEARNING OBJECTIVES FOR THIS CHAPTER
CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. FiniteDimensional
More informationLinear Algebra I. Ronald van Luijk, 2012
Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.
More informationCourse 221: Analysis Academic year , First Semester
Course 221: Analysis Academic year 200708, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................
More information2.5 Gaussian Elimination
page 150 150 CHAPTER 2 Matrices and Systems of Linear Equations 37 10 the linear algebra package of Maple, the three elementary 20 23 1 row operations are 12 1 swaprow(a,i,j): permute rows i and j 3 3
More informationLecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
More information4.5 Linear Dependence and Linear Independence
4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then
More informationElementary Number Theory We begin with a bit of elementary number theory, which is concerned
CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,
More informationLogic and Incidence Geometry
Logic and Incidence Geometry February 27, 2013 1 Informal Logic Logic Rule 0. No unstated assumption may be used in a proof. 2 Theorems and Proofs If [hypothesis] then [conclusion]. LOGIC RULE 1. The following
More informationClassical Analysis I
Classical Analysis I 1 Sets, relations, functions A set is considered to be a collection of objects. The objects of a set A are called elements of A. If x is an element of a set A, we write x A, and if
More informationMathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
More informationPartitioning edgecoloured complete graphs into monochromatic cycles and paths
arxiv:1205.5492v1 [math.co] 24 May 2012 Partitioning edgecoloured complete graphs into monochromatic cycles and paths Alexey Pokrovskiy Departement of Mathematics, London School of Economics and Political
More informationGROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.
Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the
More informationSo let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
More informationPROBLEM SET 7: PIGEON HOLE PRINCIPLE
PROBLEM SET 7: PIGEON HOLE PRINCIPLE The pigeonhole principle is the following observation: Theorem. Suppose that > kn marbles are distributed over n jars, then one jar will contain at least k + marbles.
More information2.1.1 Examples of Sets and their Elements
Chapter 2 Set Theory 2.1 Sets The most basic object in Mathematics is called a set. As rudimentary as it is, the exact, formal definition of a set is highly complex. For our purposes, we will simply define
More informationThe Language of Mathematics
CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,
More informationMATH41112/61112 Ergodic Theory Lecture Measure spaces
8. Measure spaces 8.1 Background In Lecture 1 we remarked that ergodic theory is the study of the qualitative distributional properties of typical orbits of a dynamical system and that these properties
More informationRelations Graphical View
Relations Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Introduction Recall that a relation between elements of two sets is a subset of their Cartesian product (of ordered pairs). A binary
More informationMath 507/420 Homework Assignment #1: Due in class on Friday, September 20. SOLUTIONS
Math 507/420 Homework Assignment #1: Due in class on Friday, September 20. SOLUTIONS 1. Show that a nonempty collection A of subsets is an algebra iff 1) for all A, B A, A B A and 2) for all A A, A c A.
More informationHomework Exam 1, Geometric Algorithms, 2016
Homework Exam 1, Geometric Algorithms, 2016 1. (3 points) Let P be a convex polyhedron in 3dimensional space. The boundary of P is represented as a DCEL, storing the incidence relationships between the
More information8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
More informationApplications of Methods of Proof
CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The settheoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are
More informationIntroduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim
6. Sets Terence Sim 6.1. Introduction A set is a Many that allows itself to be thought of as a One. Georg Cantor Reading Section 6.1 6.3 of Epp. Section 3.1 3.4 of Campbell. Familiar concepts Sets can
More informationStructure of Measurable Sets
Structure of Measurable Sets In these notes we discuss the structure of Lebesgue measurable subsets of R from several different points of view. Along the way, we will see several alternative characterizations
More informationSolutions A ring A is called a Boolean ring if x 2 = x for all x A.
1. A ring A is called a Boolean ring if x 2 = x for all x A. (a) Let E be a set and 2 E its power set. Show that a Boolean ring structure is defined on 2 E by setting AB = A B, and A + B = (A B c ) (B
More informationCS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992
CS268: Geometric Algorithms Handout #5 Design and Analysis Original Handout #15 Stanford University Tuesday, 25 February 1992 Original Lecture #6: 28 January 1991 Topics: Triangulating Simple Polygons
More information1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by MenGen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More informationCross product and determinants (Sect. 12.4) Two main ways to introduce the cross product
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More informationThis asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.
3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but
More informationWeek 5: Binary Relations
1 Binary Relations Week 5: Binary Relations The concept of relation is common in daily life and seems intuitively clear. For instance, let X be the set of all living human females and Y the set of all
More informationLattice Point Geometry: Pick s Theorem and Minkowski s Theorem. Senior Exercise in Mathematics. Jennifer Garbett Kenyon College
Lattice Point Geometry: Pick s Theorem and Minkowski s Theorem Senior Exercise in Mathematics Jennifer Garbett Kenyon College November 18, 010 Contents 1 Introduction 1 Primitive Lattice Triangles 5.1
More informationIntroducing Functions
Functions 1 Introducing Functions A function f from a set A to a set B, written f : A B, is a relation f A B such that every element of A is related to one element of B; in logical notation 1. (a, b 1
More informationEquivalence Relations
Equivalence Relations Definition An equivalence relation on a set S, is a relation on S which is reflexive, symmetric and transitive. Examples: Let S = Z and define R = {(x,y) x and y have the same parity}
More informationMath212a1010 Lebesgue measure.
Math212a1010 Lebesgue measure. October 19, 2010 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According
More informationIntroduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
More informationMath 4310 Handout  Quotient Vector Spaces
Math 4310 Handout  Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
More informationMath 421, Homework #5 Solutions
Math 421, Homework #5 Solutions (1) (8.3.6) Suppose that E R n and C is a subset of E. (a) Prove that if E is closed, then C is relatively closed in E if and only if C is a closed set (as defined in Definition
More informationTangent and normal lines to conics
4.B. Tangent and normal lines to conics Apollonius work on conics includes a study of tangent and normal lines to these curves. The purpose of this document is to relate his approaches to the modern viewpoints
More informationChapter 15 Introduction to Linear Programming
Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 WeiTa Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of
More informationWeak topologies. David Lecomte. May 23, 2006
Weak topologies David Lecomte May 3, 006 1 Preliminaries from general topology In this section, we are given a set X, a collection of topological spaces (Y i ) i I and a collection of maps (f i ) i I such
More informationAxiom A.1. Lines, planes and space are sets of points. Space contains all points.
73 Appendix A.1 Basic Notions We take the terms point, line, plane, and space as undefined. We also use the concept of a set and a subset, belongs to or is an element of a set. In a formal axiomatic approach
More informationProblem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS
Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection
More informationChapter 10. Abstract algebra
Chapter 10. Abstract algebra C.O.S. Sorzano Biomedical Engineering December 17, 2013 10. Abstract algebra December 17, 2013 1 / 62 Outline 10 Abstract algebra Sets Relations and functions Partitions and
More informationSets and Cardinality Notes for C. F. Miller
Sets and Cardinality Notes for 620111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use
More informationMath 3000 Running Glossary
Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (
More informationTHE 0/1BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER
THE 0/1BORSUK CONJECTURE IS GENERICALLY TRUE FOR EACH FIXED DIAMETER JONATHAN P. MCCAMMOND AND GÜNTER ZIEGLER Abstract. In 1933 Karol Borsuk asked whether every compact subset of R d can be decomposed
More informationA Little Set Theory (Never Hurt Anybody)
A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra
More informationthe lemma. Keep in mind the following facts about regular languages:
CPS 2: Discrete Mathematics Instructor: Bruce Maggs Assignment Due: Wednesday September 2, 27 A Tool for Proving Irregularity (25 points) When proving that a language isn t regular, a tool that is often
More informationZERODIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS
ZERODIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS M. AXTELL, J. COYKENDALL, AND J. STICKLES Abstract. We recall several results of zero divisor graphs of commutative rings. We
More informationSOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
More informationTHE DIMENSION OF A VECTOR SPACE
THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field
More informationSolutions to InClass Problems Week 4, Mon.
Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions
More informationDeterminants, Areas and Volumes
Determinants, Areas and Volumes Theodore Voronov Part 2 Areas and Volumes The area of a twodimensional object such as a region of the plane and the volume of a threedimensional object such as a solid
More information10.2 Series and Convergence
10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and
More informationProblem Set I: Preferences, W.A.R.P., consumer choice
Problem Set I: Preferences, W.A.R.P., consumer choice Paolo Crosetto paolo.crosetto@unimi.it Exercises solved in class on 18th January 2009 Recap:,, Definition 1. The strict preference relation is x y
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationMAT2400 Analysis I. A brief introduction to proofs, sets, and functions
MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take
More informationChapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded stepbystep through lowdimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
More informationMetric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More informationRi and. i=1. S i N. and. R R i
The subset R of R n is a closed rectangle if there are n nonempty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an
More informationThe set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;
Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method
More informationChapter 1. Logic and Proof
Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More informationv w is orthogonal to both v and w. the three vectors v, w and v w form a righthanded set of vectors.
3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with
More informationSome Definitions about Sets
Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish
More information1 Gaussian Elimination
Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 GaussJordan reduction and the Reduced
More informationOur goal first will be to define a product measure on A 1 A 2.
1. Tensor product of measures and Fubini theorem. Let (A j, Ω j, µ j ), j = 1, 2, be two measure spaces. Recall that the new σ algebra A 1 A 2 with the unit element is the σ algebra generated by the
More informationSection 13.5 Equations of Lines and Planes
Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines  specifically, tangent lines.
More informationFUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
More information3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
More informationProf. Girardi, Math 703, Fall 2012 Homework Solutions: Homework 13. in X is Cauchy.
Homework 13 Let (X, d) and (Y, ρ) be metric spaces. Consider a function f : X Y. 13.1. Prove or give a counterexample. f preserves convergent sequences if {x n } n=1 is a convergent sequence in X then
More information26 Ideals and Quotient Rings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 26 Ideals and Quotient Rings In this section we develop some theory of rings that parallels the theory of groups discussed
More informationIntroduction to finite fields
Introduction to finite fields Topics in Finite Fields (Fall 2013) Rutgers University Swastik Kopparty Last modified: Monday 16 th September, 2013 Welcome to the course on finite fields! This is aimed at
More information