6. Dynamic Programming

Size: px
Start display at page:

Download "6. Dynamic Programming"

Transcription

1 lgorithmic Paradigms Dynamic Programming reed Build up a solution incrementally, myopically optimizing some local criterion Divide-and-conquer Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem Dynamic programming Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems lgorithm Design by Éva Tardos and Jon Kleinberg opyright 25 ddison Wesley Slides by Kevin Wayne 2 Dynamic Programming History Dynamic Programming pplications Bellman Pioneered the systematic study of dynamic programming in the 95s Etymology Dynamic programming = planning over time Secretary of Defense was hostile to mathematical research Bellman sought an impressive name to avoid confrontation "it's impossible to use dynamic in a pejorative sense" "something not even a ongressman could object to" Reference: Bellman, R E Eye of the Hurricane, n utobiography reas Bioinformatics ontrol theory Information theory Operations research omputer science: theory, graphics, I, systems, Some famous dynamic programming algorithms nix diff for comparing two files Viterbi for hidden Markov models Smith-Waterman for sequence alignment Bellman-Ford for shortest path routing in networks ocke-kasami-younger for parsing context free grammars 3 4

2 Weighted Interval Scheduling Weighted Interval Scheduling Weighted interval scheduling problem Job j starts at s j, finishes at f j, and has weight or value v j Two jobs compatible if they don't overlap oal: find maximum weight subset of mutually compatible jobs a b c d e f g h Time lgorithm Design by Éva Tardos and Jon Kleinberg opyright 25 ddison Wesley Slides by Kevin Wayne nweighted Interval Scheduling Review Weighted Interval Scheduling Recall reedy algorithm works if all weights are onsider jobs in ascending order of finish time dd job to subset if it is compatible with previously chosen jobs Notation Label jobs by finishing time: f f 2 f n Def p(j) = largest index i < j such that job i is compatible with j Ex: p(8) = 5, p() = 3, p(2) = Observation reedy algorithm can fail spectacularly if arbitrary weights are allowed weight = 999 b weight = a Time Time 8

3 Dynamic Programming: Binary hoice Weighted Interval Scheduling: Brute Force Notation OPT(j) = value of optimal solution to the problem consisting of job requests, 2,, j Brute force algorithm ase : OPT selects job j can't use incompatible jobs { p(j), p(j) 2,, j - must include optimal solution to problem consisting of remaining compatible jobs, 2,, p(j) optimal substructure ase 2: OPT does not select job j must include optimal solution to problem consisting of remaining compatible jobs, 2,, j- # if j = OPT( j) = $ % max v j OPT( p( j)), OPT( j ") { otherwise Input: n, s,,s n, f,,f n, v,,v n Sort jobs by finish times so that f f 2 f n ompute p(), p(2),, p(n) ompute-opt(j) { if (j = ) return else return max(v j ompute-opt(p(j)), ompute-opt(j-)) 9 Weighted Interval Scheduling: Brute Force Weighted Interval Scheduling: Memoization Observation Recursive algorithm fails spectacularly because of redundant sub-problems " exponential algorithms Memoization Store results of each sub-problem in a cache; lookup as needed Ex Number of recursive calls for family of "layered" instances grows like Fibonacci sequence 5 Input: n, s,,s n, f,,f n, v,,v n Sort jobs by finish times so that f f 2 f n ompute p(), p(2),, p(n) p() =, p(j) = j for j = to n M[j] = empty M[j] = global array M-ompute-Opt(j) { if (M[j] is empty) M[j] = max(w j M-ompute-Opt(p(j)), M-ompute-Opt(j-)) return M[j] 2

4 Weighted Interval Scheduling: Running Time utomated Memoization laim Memoized version of algorithm takes O(n log n) time Sort by finish time: O(n log n) omputing p(#) : O(n) after sorting by start time M-ompute-Opt(j): each invocation takes O() time and either utomated memoization Many functional programming languages (eg, Lisp) have built-in support for memoization Q Why not in imperative languages (eg, Java)? (i) returns an existing value M[j] (ii) fills in one new entry M[j] and makes two recursive calls Progress measure $ = # nonempty entries of M[] initially $ =, throughout $ n (ii) increases $ by " at most 2n recursive calls (defun F (n) (if (<= n ) n ( (F (- n )) (F (- n 2))))) Lisp (efficient) static int F(int n) { if (n <= ) return n; else return F(n-) F(n-2); Java (exponential) Overall running time of M-ompute-Opt(n) is O(n) F(39) F(4) F(38) Remark O(n) if jobs are pre-sorted by start and finish times F(3) F(38) F(3) F(3) F(3) F(35) F(3) F(3) F(35) F(35) F(3) F(34) 3 4 Weighted Interval Scheduling: Finding a Solution Weighted Interval Scheduling: Bottom-p Q Dynamic programming algorithms computes optimal value What if we want the solution itself? Do some post-processing Bottom-up dynamic programming nwind recursion Input: n, s,,s n, f,,f n, v,,v n Run M-ompute-Opt(n) Run Find-Solution(n) Find-Solution(j) { if (j = ) output nothing else if (v j M[p(j)] > M[j-]) print j Find-Solution(p(j)) else Find-Solution(j-) Sort jobs by finish times so that f f 2 f n ompute p(), p(2),, p(n) Iterative-ompute-Opt { M[] = for j = to n M[j] = max(v j M[p(j)], M[j-]) # of recursive calls n " O(n) 5

5 Segmented Least Squares 3 Segmented Least Squares Least squares Foundational problem in statistic and numerical analysis iven n points in the plane: (x, y ), (, ),, (x n, y n ) Find a line y = ax b that minimizes the sum of the squared error: n SSE = # ( y i " ax i " b) 2 i= y Solution alculus " min error is achieved when x a = n # x i y i i " (# i x i ) (# i y i ), b = n i " ( x i ) 2 # i # i # i y i " a # i x i n lgorithm Design by Éva Tardos and Jon Kleinberg opyright 25 ddison Wesley Slides by Kevin Wayne 8 Segmented Least Squares Segmented Least Squares Segmented least squares Points lie roughly on a sequence of several line segments iven n points in the plane (x, y ), (, ),, (x n, y n ) with x < < < x n, find a sequence of lines that minimizes f(x) Q What's a reasonable choice for f(x) to balance accuracy and parsimony? goodness of fit Segmented least squares Points lie roughly on a sequence of several line segments iven n points in the plane (x, y ), (, ),, (x n, y n ) with x < < < x n, find a sequence of lines that minimizes: the sum of the sums of the squared errors E in each segment the number of lines L Tradeoff function: E c L, for some constant c > number of lines y y x x 9 2

6 Dynamic Programming: Multiway hoice Segmented Least Squares: lgorithm Notation OPT(j) = minimum cost for points p, p i,, p j e(i, j) = minimum sum of squares for points p i, p i,, p j To compute OPT(j): Last segment uses points p i, p i,, p j for some i ost = e(i, j) c OPT(i-) INPT: n, p,,p N, c Segmented-Least-Squares() { M[] = for j = to n for i = to j compute the least square error e ij for the segment p i,, p j $ & if j = OPT( j) = % min { e(i, j) c OPT(i #) otherwise '& " i " j for j = to n M[j] = min i j (e ij c M[i-]) return M[n] Running time O(n 3 ) can be improved to O(n 2 ) by pre-computing various statistics Bottleneck = computing e(i, j) for O(n 2 ) pairs, O(n) per pair using previous formula 2 22 Knapsack Problem 4 Knapsack Problem Knapsack problem iven n objects and a "knapsack" Item i weighs w i > kilograms and has value v i > Knapsack has capacity of W kilograms oal: fill knapsack so as to maximize total value Ex: { 3, 4 has value 4 Item Value Weight W = reedy: repeatedly add item with maximum ratio v i / w i Ex: { 5, 2, achieves only value = 35 " greedy not optimal lgorithm Design by Éva Tardos and Jon Kleinberg opyright 25 ddison Wesley Slides by Kevin Wayne 24

7 Dynamic Programming: False Start Dynamic Programming: dding a New Variable Def OPT(i) = max profit subset of items,, i ase : OPT does not select item i OPT selects best of {, 2,, i- ase 2: OPT selects item i accepting item i does not immediately imply that we will have to reject other items without knowing what other items were selected before i, we don't even know if we have enough room for i onclusion Need more sub-problems Def OPT(i, w) = max profit subset of items,, i with weight limit w ase : OPT does not select item i OPT selects best of {, 2,, i- using weight limit w ase 2: OPT selects item i new weight limit = w w i OPT selects best of {, 2,, i using this new weight limit # if i = % OPT(i, w) = $ OPT(i ", w) if w i > w % & max{ OPT(i ", w), v i OPT(i ", w " w i ) otherwise 25 2 Knapsack Problem: Bottom-p Knapsack lgorithm Knapsack Fill up an n-by-w array W Input: n, w,,w N, v,,v N % for w = to W M[, w] = for i = to n for w = to W if (w i > w) M[i, w] = M[i-, w] else M[i, w] = max {M[i-, w], v i M[i-, w-w i ] n { {, 2 {, 2, 3 {, 2, 3, 4 {, 2, 3, 4, Item Value Weight return M[n, W] OPT: { 4, 3 value = 22 8 = 4 W =

8 Knapsack Problem: Running Time Running time &(n W) Not polynomial in input size "Pseudo-polynomial" Decision version of Knapsack is NP-complete [hapter 8] 5 RN Secondary Structure Knapsack approximation algorithm There exists a polynomial algorithm that produces a feasible solution that has value within % of optimum [Section 8] 29 lgorithm Design by Éva Tardos and Jon Kleinberg opyright 25 ddison Wesley Slides by Kevin Wayne RN Secondary Structure RN Secondary Structure RN String B = b b 2 b n over alphabet {,,, Secondary structure RN is single-stranded so it tends to loop back and form base pairs with itself This structure is essential for understanding behavior of molecule Ex: Secondary structure set of pairs S = { (b i, b j ) that satisfy: [Watson-rick] S is a matching and each pair in S is a Watson- rick complement: -, -, -, or - [No sharp turns] The ends of each pair are separated by at least 4 intervening bases If (b i, b j ) ' S, then i < j - 4 [Non-crossing] If (b i, b j ) and (b k, b l ) are two pairs in S, then we cannot have i < k < j < l Free energy sual hypothesis is that an RN molecule will form the secondary structure with the optimum total free energy approximate by number of base pairs oal iven an RN molecule B = b b 2 b n, find a secondary structure S that maximizes the number of base pairs complementary base pairs: -,

9 RN Secondary Structure: Examples RN Secondary Structure: Subproblems Examples First attempt OPT(j) = maximum number of base pairs in a secondary structure of the substring b b 2 b j match b t and b n base pair t n Difficulty Results in two sub-problems 4 Finding secondary structure in: b b 2 b t- Finding secondary structure in: b t b t2 b n- OPT(t-) need more sub-problems ok sharp turn crossing Dynamic Programming Over Intervals Bottom p Dynamic Programming Over Intervals Notation OPT(i, j) = maximum number of base pairs in a secondary structure of the substring b i b i b j Q What order to solve the sub-problems? Do shortest intervals first ase If i ( j - 4 OPT(i, j) = by no-sharp turns condition ase 2 Base b j is not involved in a pair OPT(i, j) = OPT(i, j-) RN(b,,b n ) { for k = 5,,, n- for i =, 2,, n-k j = i k ompute M[i, j] i ase 3 Base b j pairs with b t for some i t < j - 4 non-crossing constraint decouples resulting sub-problems OPT(i, j) = max t { OPT(i, t-) OPT(t, j-) return M[, n] using recurrence 8 9 j take max over t such that i t < j-4 and b t and b j are Watson-rick complements Running time O(n 3 ) Remark Same core idea in KY algorithm to parse context-free grammars 35 3

10 Dynamic Programming Summary Recipe haracterize structure of problem Recursively define value of optimal solution ompute value of optimal solution onstruct optimal solution from computed information Sequence lignment Dynamic programming techniques Binary choice: weighted interval scheduling Multi-way choice: segmented least squares dding a new variable: knapsack Dynamic programming over intervals: RN secondary structure Top-down vs bottom-up: different people have different intuitions 3 lgorithm Design by Éva Tardos and Jon Kleinberg opyright 25 ddison Wesley Slides by Kevin Wayne String Similarity Edit Distance How similar are two strings? ocurrance occurrence o c u r r a n c e - o c c u r r e n c e 5 mismatches, gap o c - u r r a n c e pplications Basis for nix diff Speech recognition omputational biology Edit distance [Levenshtein 9, Needleman-Wunsch 9, Smith-Waterman 98] ap penalty ); mismatch penalty * pq ost = sum of gap and mismatch penalties o c c u r r e n c e mismatch, gap T T T - T T T o c - u r r - a n c e T T T T - T T o c c u r r e - n c e * T * T * 2* 2) * mismatches, 3 gaps 39 4

11 Sequence lignment Sequence lignment: Problem Structure oal: iven two strings X = x x m and Y = y y n find alignment of minimum cost Def n alignment M is a set of ordered pairs x i -y j such that each item occurs in at most one pair and no crossings Def The pair x i -y j and x i' -y j' cross if i < i', but j > j' cost( M ) = $ " xi y j $ % $ % (x i, y j ) # M i : x i unmatched j : y j unmatched mismatch Ex: T vs TT Sol: M = -y, x 3 -, x 4 -y 3, x 5 -y 4, x -y gap x x 3 x 4 x 5 x T - - T T Def OPT(i, j) = min cost of aligning strings x x i and y y j ase : OPT matches x i -y j pay mismatch for x i -y j min cost of aligning two strings x x i- and y y j- ase 2a: OPT leaves x i unmatched pay gap for x i and min cost of aligning x x i- and y y j ase 2b: OPT leaves y j unmatched pay gap for y j and min cost of aligning x x i and y y j- " $ $ OPT(i, j) = # $ % $ j& if i = " ' xi y j OPT(i (, j () $ min # & OPT(i (, j) otherwise $ % & OPT(i, j () i& if j = y y 3 y 4 y 5 y 4 42 Sequence lignment: lgorithm Sequence-lignment(m, n, x x m, y y n, ), *) { for i = to m M[, i] = i) for j = to n M[j, ] = j) Sequence lignment in Linear Space for i = to m for j = to n M[i, j] = min(*[x i, y j ] M[i-, j-], ) M[i-, j], ) M[i, j-]) return M[m, n] nalysis &(mn) time and space English words or sentences: m, n omputational biology: m = n =, billions ops OK, but B array? 43 lgorithm Design by Éva Tardos and Jon Kleinberg opyright 25 ddison Wesley Slides by Kevin Wayne

12 Sequence lignment: Linear Space Sequence lignment: Linear Space Q an we avoid using quadratic space? Easy Optimal value in O(m n) space and O(mn) time ompute OPT(i, ) from OPT(i-, ) No longer a simple way to recover alignment itself Edit distance graph Let f(i, j) be shortest path from (,) to (i, j) Observation: f(i, j) = OPT(i, j) Theorem [Hirschberg, 95] Optimal alignment in O(m n) space and O(mn) time - y y 3 y 4 y 5 y lever combination of divide-and-conquer and dynamic programming Inspired by idea of Savitch from complexity theory x " xi y j ) ) i-j x 3 m-n 45 4 Sequence lignment: Linear Space Sequence lignment: Linear Space Edit distance graph Let f(i, j) be shortest path from (,) to (i, j) an compute f (, j) for any j in O(mn) time and O(m n) space Edit distance graph Let g(i, j) be shortest path from (i, j) to (m, n) an compute by reversing the edge orientations and inverting the roles of (, ) and (m, n) j y y 3 y 4 y 5 y y y 3 y 4 y 5 y - - x x i-j ) " xi y j i-j ) x 3 m-n x 3 m-n 4 48

13 Sequence lignment: Linear Space Sequence lignment: Linear Space Edit distance graph Let g(i, j) be shortest path from (i, j) to (m, n) an compute g(, j) for any j in O(mn) time and O(m n) space Observation The cost of the shortest path that uses (i, j) is f(i, j) g(i, j) j y y 3 y 4 y 5 y y y 3 y 4 y 5 y - - x i-j x i-j x 3 m-n x 3 m-n 49 5 Sequence lignment: Linear Space Sequence lignment: Linear Space Observation 2 let q be an index that minimizes f(q, n/2) g(q, n/2) Then, the shortest path from (, ) to (m, n) uses (q, n/2) Divide: find index q that minimizes f(q, n/2) g(q, n/2) using DP lign x q and y n/2 onquer: recursively compute optimal alignment in each piece n / 2 n / 2 y y 3 y 4 y 5 y y y 3 y 4 y 5 y - - x i-j q x i-j q x 3 m-n x 3 m-n 5 52

14 Sequence lignment: Running Time nalysis Warmup Sequence lignment: Running Time nalysis Theorem Let T(m, n) = max running time of algorithm on strings of length at most m and n T(m, n) = O(mn log n) Theorem Let T(m, n) = max running time of algorithm on strings of length m and n T(m, n) = O(mn) T(m, n) " 2T(m, n/2) O(mn) # T(m, n) = O(mn log n) Remark nalysis is not tight because two sub-problems are of size (q, n/2) and (m - q, n/2) In next slide, we save log n factor Pf (by induction on n) O(mn) time to compute f(, n/2) and g (, n/2) and find index q T(q, n/2) T(m - q, n/2) time for two recursive calls hoose constant c so that: T(m, 2) " cm T(2, n) " cn T(m, n) " cmn T(q, n/2) T(m # q, n/2) Base cases: m = 2 or n = 2 Inductive hypothesis: T(m, n) 2cmn T ( m, n) " " = = T ( q, n / 2) T ( m q, n / 2) cmn 2cqn / 2 2c( m q) n / 2 cmn cqn cmn cqn cmn 2cmn 53 54

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction

Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

More information

Near Optimal Solutions

Near Optimal Solutions Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.

More information

Mathematical Induction. Lecture 10-11

Mathematical Induction. Lecture 10-11 Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Solutions to Homework 6

Solutions to Homework 6 Solutions to Homework 6 Debasish Das EECS Department, Northwestern University ddas@northwestern.edu 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example

More information

Guessing Game: NP-Complete?

Guessing Game: NP-Complete? Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

More information

Classification - Examples

Classification - Examples Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

The Goldberg Rao Algorithm for the Maximum Flow Problem

The Goldberg Rao Algorithm for the Maximum Flow Problem The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }

More information

Analysis of Algorithms I: Optimal Binary Search Trees

Analysis of Algorithms I: Optimal Binary Search Trees Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search

More information

Why? A central concept in Computer Science. Algorithms are ubiquitous.

Why? A central concept in Computer Science. Algorithms are ubiquitous. Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online

More information

SIMS 255 Foundations of Software Design. Complexity and NP-completeness

SIMS 255 Foundations of Software Design. Complexity and NP-completeness SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 mdw@cs.berkeley.edu 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity

More information

Recursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1

Recursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1 Recursion Slides by Christopher M Bourke Instructor: Berthe Y Choueiry Fall 007 Computer Science & Engineering 35 Introduction to Discrete Mathematics Sections 71-7 of Rosen cse35@cseunledu Recursive Algorithms

More information

Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU

Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Birgit Vogtenhuber Institute for Software Technology email: bvogt@ist.tugraz.at office hour: Tuesday 10:30 11:30 slides: http://www.ist.tugraz.at/pact.html

More information

Dynamic Programming Problem Set Partial Solution CMPSC 465

Dynamic Programming Problem Set Partial Solution CMPSC 465 Dynamic Programming Problem Set Partial Solution CMPSC 465 I ve annotated this document with partial solutions to problems written more like a test solution. (I remind you again, though, that a formal

More information

Offline sorting buffers on Line

Offline sorting buffers on Line Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: rkhandekar@gmail.com 2 IBM India Research Lab, New Delhi. email: pvinayak@in.ibm.com

More information

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015 CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential

More information

Lecture 13: The Knapsack Problem

Lecture 13: The Knapsack Problem Lecture 13: The Knapsack Problem Outline of this Lecture Introduction of the 0-1 Knapsack Problem. A dynamic programming solution to this problem. 1 0-1 Knapsack Problem Informal Description: We have computed

More information

5.4 Closest Pair of Points

5.4 Closest Pair of Points 5.4 Closest Pair of Points Closest Pair of Points Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them. Fundamental geometric primitive. Graphics, computer

More information

Problem Set 7 Solutions

Problem Set 7 Solutions 8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

1 Approximating Set Cover

1 Approximating Set Cover CS 05: Algorithms (Grad) Feb 2-24, 2005 Approximating Set Cover. Definition An Instance (X, F ) of the set-covering problem consists of a finite set X and a family F of subset of X, such that every elemennt

More information

csci 210: Data Structures Recursion

csci 210: Data Structures Recursion csci 210: Data Structures Recursion Summary Topics recursion overview simple examples Sierpinski gasket Hanoi towers Blob check READING: GT textbook chapter 3.5 Recursion In general, a method of defining

More information

Introduction to Parallel Programming and MapReduce

Introduction to Parallel Programming and MapReduce Introduction to Parallel Programming and MapReduce Audience and Pre-Requisites This tutorial covers the basics of parallel programming and the MapReduce programming model. The pre-requisites are significant

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With

More information

Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction

Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know

More information

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design

Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,

More information

CSC2420 Spring 2015: Lecture 3

CSC2420 Spring 2015: Lecture 3 CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits

Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique

More information

Software Testing. Definition: Testing is a process of executing a program with data, with the sole intention of finding errors in the program.

Software Testing. Definition: Testing is a process of executing a program with data, with the sole intention of finding errors in the program. Software Testing Definition: Testing is a process of executing a program with data, with the sole intention of finding errors in the program. Testing can only reveal the presence of errors and not the

More information

Testing LTL Formula Translation into Büchi Automata

Testing LTL Formula Translation into Büchi Automata Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN-02015 HUT, Finland

More information

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities

Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned

More information

Fairness in Routing and Load Balancing

Fairness in Routing and Load Balancing Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria

More information

Closest Pair Problem

Closest Pair Problem Closest Pair Problem Given n points in d-dimensions, find two whose mutual distance is smallest. Fundamental problem in many applications as well as a key step in many algorithms. p q A naive algorithm

More information

Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014

Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li. Advised by: Dave Mount. May 22, 2014 Euclidean Minimum Spanning Trees Based on Well Separated Pair Decompositions Chaojun Li Advised by: Dave Mount May 22, 2014 1 INTRODUCTION In this report we consider the implementation of an efficient

More information

The Tower of Hanoi. Recursion Solution. Recursive Function. Time Complexity. Recursive Thinking. Why Recursion? n! = n* (n-1)!

The Tower of Hanoi. Recursion Solution. Recursive Function. Time Complexity. Recursive Thinking. Why Recursion? n! = n* (n-1)! The Tower of Hanoi Recursion Solution recursion recursion recursion Recursive Thinking: ignore everything but the bottom disk. 1 2 Recursive Function Time Complexity Hanoi (n, src, dest, temp): If (n >

More information

Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Definition 11.1. Given a graph G on n vertices, we define the following quantities: Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

More information

Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines. Colin Campbell, Bristol University Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

More information

Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor

Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor Online algorithms for combinatorial problems Ph.D. Thesis by Judit Nagy-György Supervisor: Péter Hajnal Associate Professor Doctoral School in Mathematics and Computer Science University of Szeged Bolyai

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

Efficient Fault-Tolerant Infrastructure for Cloud Computing

Efficient Fault-Tolerant Infrastructure for Cloud Computing Efficient Fault-Tolerant Infrastructure for Cloud Computing Xueyuan Su Candidate for Ph.D. in Computer Science, Yale University December 2013 Committee Michael J. Fischer (advisor) Dana Angluin James Aspnes

More information

Closest Pair of Points. Kleinberg and Tardos Section 5.4

Closest Pair of Points. Kleinberg and Tardos Section 5.4 Closest Pair of Points Kleinberg and Tardos Section 5.4 Closest Pair of Points Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them. Fundamental geometric

More information

Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li

Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order

More information

1.204 Lecture 10. Greedy algorithms: Job scheduling. Greedy method

1.204 Lecture 10. Greedy algorithms: Job scheduling. Greedy method 1.204 Lecture 10 Greedy algorithms: Knapsack (capital budgeting) Job scheduling Greedy method Local improvement method Does not look at problem globally Takes best immediate step to find a solution Useful

More information

Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina stefano.martina@stud.unifi.it

Seminar. Path planning using Voronoi diagrams and B-Splines. Stefano Martina stefano.martina@stud.unifi.it Seminar Path planning using Voronoi diagrams and B-Splines Stefano Martina stefano.martina@stud.unifi.it 23 may 2016 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

ML for the Working Programmer

ML for the Working Programmer ML for the Working Programmer 2nd edition Lawrence C. Paulson University of Cambridge CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface to the Second Edition Preface xiii xv 1 Standard ML 1 Functional Programming

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Dynamic programming formulation

Dynamic programming formulation 1.24 Lecture 14 Dynamic programming: Job scheduling Dynamic programming formulation To formulate a problem as a dynamic program: Sort by a criterion that will allow infeasible combinations to be eli minated

More information

SMT 2014 Algebra Test Solutions February 15, 2014

SMT 2014 Algebra Test Solutions February 15, 2014 1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the

More information

CSCE 310J Data Structures & Algorithms. Dynamic programming 0-1 Knapsack problem. Dynamic programming. Dynamic Programming. Knapsack problem (Review)

CSCE 310J Data Structures & Algorithms. Dynamic programming 0-1 Knapsack problem. Dynamic programming. Dynamic Programming. Knapsack problem (Review) CSCE J Data Structures & Algorithms Dynamic programming - Knapsac problem Dr. Steve Goddard goddard@cse.unl.edu CSCE J Data Structures & Algorithms Giving credit where credit is due:» Most of slides for

More information

Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013

Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013 Dynamic programming Doctoral course Optimization on graphs - Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NP-hard and we usually

More information

Unit 4: Dynamic Programming

Unit 4: Dynamic Programming Unit 4: Dynamic Programming Course contents: Assembly-line scheduling Matrix-chain multiplication Longest common subsequence Optimal binary search trees Applications: Rod cutting, optimal polygon triangulation,

More information

Discuss the size of the instance for the minimum spanning tree problem.

Discuss the size of the instance for the minimum spanning tree problem. 3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

4.2 Sorting and Searching

4.2 Sorting and Searching Sequential Search: Java Implementation 4.2 Sorting and Searching Scan through array, looking for key. search hit: return array index search miss: return -1 public static int search(string key, String[]

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Rising Rates in Random institute (R&I)

Rising Rates in Random institute (R&I) 139. Proc. 3rd Car. Conf. Comb. & Comp. pp. 139-143 SPANNING TREES IN RANDOM REGULAR GRAPHS Brendan D. McKay Computer Science Dept., Vanderbilt University, Nashville, Tennessee 37235 Let n~ < n2

More information

16. Recursion. COMP 110 Prasun Dewan 1. Developing a Recursive Solution

16. Recursion. COMP 110 Prasun Dewan 1. Developing a Recursive Solution 16. Recursion COMP 110 Prasun Dewan 1 Loops are one mechanism for making a program execute a statement a variable number of times. Recursion offers an alternative mechanism, considered by many to be more

More information

Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling. Tim Nieberg Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

More information

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]

2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8] Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)

More information

Scheduling Single Machine Scheduling. Tim Nieberg

Scheduling Single Machine Scheduling. Tim Nieberg Scheduling Single Machine Scheduling Tim Nieberg Single machine models Observation: for non-preemptive problems and regular objectives, a sequence in which the jobs are processed is sufficient to describe

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.

Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity. 7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,

More information

Functions Recursion. C++ functions. Declare/prototype. Define. Call. int myfunction (int ); int myfunction (int x){ int y = x*x; return y; }

Functions Recursion. C++ functions. Declare/prototype. Define. Call. int myfunction (int ); int myfunction (int x){ int y = x*x; return y; } Functions Recursion C++ functions Declare/prototype int myfunction (int ); Define int myfunction (int x){ int y = x*x; return y; Call int a; a = myfunction (7); function call flow types type of function

More information

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

More information

A Practical Scheme for Wireless Network Operation

A Practical Scheme for Wireless Network Operation A Practical Scheme for Wireless Network Operation Radhika Gowaikar, Amir F. Dana, Babak Hassibi, Michelle Effros June 21, 2004 Abstract In many problems in wireline networks, it is known that achieving

More information

Statistical Machine Translation: IBM Models 1 and 2

Statistical Machine Translation: IBM Models 1 and 2 Statistical Machine Translation: IBM Models 1 and 2 Michael Collins 1 Introduction The next few lectures of the course will be focused on machine translation, and in particular on statistical machine translation

More information

Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

More information

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs

Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Section IV.1: Recursive Algorithms and Recursion Trees

Section IV.1: Recursive Algorithms and Recursion Trees Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller

More information

Graph Theory Problems and Solutions

Graph Theory Problems and Solutions raph Theory Problems and Solutions Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is

More information

Computational Models Lecture 8, Spring 2009

Computational Models Lecture 8, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown Univ. p. 1 Computational Models Lecture 8, Spring 2009 Encoding of TMs Universal Turing Machines The Halting/Acceptance

More information

Online Algorithms: Learning & Optimization with No Regret.

Online Algorithms: Learning & Optimization with No Regret. Online Algorithms: Learning & Optimization with No Regret. Daniel Golovin 1 The Setup Optimization: Model the problem (objective, constraints) Pick best decision from a feasible set. Learning: Model the

More information

Introduction to Automata Theory. Reading: Chapter 1

Introduction to Automata Theory. Reading: Chapter 1 Introduction to Automata Theory Reading: Chapter 1 1 What is Automata Theory? Study of abstract computing devices, or machines Automaton = an abstract computing device Note: A device need not even be a

More information

Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally

Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally Recurrence Relations Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally modeled by recurrence relations. A recurrence relation is an equation which

More information

Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.

Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Background One basic goal in complexity theory is to separate interesting complexity

More information

Warshall s Algorithm: Transitive Closure

Warshall s Algorithm: Transitive Closure CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths

More information

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

Transportation Polytopes: a Twenty year Update

Transportation Polytopes: a Twenty year Update Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,

More information

A Note on Maximum Independent Sets in Rectangle Intersection Graphs

A Note on Maximum Independent Sets in Rectangle Intersection Graphs A Note on Maximum Independent Sets in Rectangle Intersection Graphs Timothy M. Chan School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada tmchan@uwaterloo.ca September 12,

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)

More information

Web Data Extraction: 1 o Semestre 2007/2008

Web Data Extraction: 1 o Semestre 2007/2008 Web Data : Given Slides baseados nos slides oficiais do livro Web Data Mining c Bing Liu, Springer, December, 2006. Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008

More information

Computability Theory

Computability Theory CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.

More information

Lecture 2: August 29. Linear Programming (part I)

Lecture 2: August 29. Linear Programming (part I) 10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

11 Multivariate Polynomials

11 Multivariate Polynomials CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 1 (These lecture notes were prepared and presented by Dan Roche.) 11 Multivariate Polynomials References: MC: Section 16.6

More information