Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.


 Eunice Spencer
 1 years ago
 Views:
Transcription
1 Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while the vribles K nd L usully represent the quntity of cpitl nd lbor, respectively Although the specific vlue is not known the rnge of vlue is usully restricted, either by ssumption or economic intuition or logic For emple ll of the bove vribles will hve non negtive vlue, ie number greter thn or equl to zero A function is mthemticl eqution tht reltes two or more vribles together There re two types of functionl forms: generl functionl form nd specific functionl form A generl functionl form reltes the vribles together in nonspecific formt For instnce, the generl functionl form for the production function is Y F( K, L) which reds Y is function of K nd L In this cse, it is known tht both cpitl nd lbor ffect the level of output but not the ect mnner in which they do so A specific functionl form reltes the vribles in precise formt There cn be mny different specific functions for generl function For emple, the CobbDougls production function Y K L α α, where α (lph) is constnt between 0 nd, is one specific functionl form for the generl production function Y F( K, L) In the contet of n economic model, we mke distinction between two kinds of vribles: endogenous vribles nd eogenous vribles An endogenous vrible is vrible tht n economic model tries to eplin (determined within the model) An eogenous vrible, on the other hnd, is vrible tht n economic model tkes s given (determined outside the model) To illustrte, consider the following simple production function: Y KL This function summrizes ll the fesible production ptterns vilble; it will give the vlue of output Y (eogenous) s function of K nd L (endogenous) For instnce if K0 nd L5 then the firm will produce 50 units of output A constnt is mthemticl bbrevition for number tht does not chnge A constnt cn be represented by Greek letter like α, β (bet) or (more simply) by letter like, b or A, B For emple, let's introduce constnt representing (Hicks neutrl) technology prmeter in our production function: Plese do not distribute outside the clssroom Comments on this hndout re welcome
2 Y A F( K, L) It is cler tht the greter the vlue of A the greter the output of the firm for ny given level of cpitl nd lbor 2 Power Functions A power function is function where vrible is rised to constnt power A power function tkes the following generl form: ε f ( ) k, where k nd ε re constnts The constnt ε is clled the eponent of the function For emple, the vrible could be rised to the second, third or /2 power There re mny rules of eponents tht re very useful to simplify some epression Rule : 0 Rule 2: p Rule 3: p Rule 4: b b b Rule 6: Rule 5: ( ) b Rule 7: y ( y) Rule 8: y b + b y 3 Nturl Logrithms The nturl logrithm is logrithmic function tht tkes the Euler constnt e , s its bse In other words, the nturl logrithm y ln( ) is the inverse of the eponentil function y e For mny resons, economists often employ logrithmic trnsformtion to n eqution First, logrithmic trnsformtion converts product of two or more vribles into sum of those sme vribles A sum is often esier to del with thn product Second, logrithmic trnsformtion is strictly monotonic in the sense tht ll the peks (mimums) nd vlleys (minimums) of the originl function re retined Therefore, the trnsformed eqution preserves importnt properties of the originl eqution Third, the growth rte of vrible cn lso be pproimted by tking the log difference of the vrible (see section 4 below) The rules for nturl logrithms re s follows For ny constnt r nd vribles nd y: Rule : e ln ln e r r Rule 2: 2
3 Rule 3: ln ( y) ln + ln y Rule 4: ln( y) ln ln y Antoine Gervis University of Notre Dme Rule 5: ln r r ln For emple, the logrithmic trnsformtion of the function y Ae is simply ln y ln A + While the first is not liner function the second clerly is Let A0 nd rnge from 0 to 25, then grphiclly: Y lny Y lny 4 Levels vs Growth Rtes A level vrible records n mount For instnce if we let Y denote the level of rel GDP then is the mount of goods nd services produced in yer A growth rte vrible records the percentge chnge cross specific time period To clculte growth rte, you need to hve the level t the beginning of the time period nd t the end of the period For instnce, the nnul growth rte of Y for 2006 is given by: Y2006 Y2005 g( Y) % Y, Y where g ( Y) represents the nnul growth rte, Y 2006 is the level of rel GDP in 2006 nd Y 2005 is the level of rel GDP in The growth rte cn lso be pproimted by tking the log difference of the vrible Therefore, the growth rte of rel GDP in 2002 cn lso be clculted s: g( Y) ln Y2006 ln Y2005 3
4 ln Y ln Y Y Y Y Proof 2 : ln Y ln Y0 g( Y) Y Y Y To clculte n verge nnul growth rte, you need to divide the log difference by the number of yers For instnce, the verge nnul growth rte from 975 to 2000 is: ln Y2000 ln Y ( Y) 25 g 975 There eists couple of Mth Tricks tht use the rules for nturl logrithms nd derivtives to obtin the two simple rules of converting levels into growth rtes: Rule : The growth rte of sum is the sum of the growth rtes, g ( XY) g( X) + g( Y) Rule 2: The growth rte of rtio is the difference of the growth rtes, g( X Y) g( X) g( Y), where X nd Y re two vribles mesured in levels, g( XY) is the growth rtes of the product XY, while g( X) nd g ( Y) re the growth rtes of X nd Y, respectively Proof of : ln X ln Y ln( XY) ln( XY) 0 ( ln X ln X0 ) + ( ln Y ln Y0 ) + g( X) + g( Y) Proof of 2: similr 5 Derivtives If we define some function y f ( ), then for two distinct points nd c we cn form the difference quotient, f ( ) f( c) c The derivtive of the function y f ( ) with respect to is the limit of tht quotient when becomes very close to c Formlly, f ( ) lim c Hence the derivtive provides the rte of chnge in f() s the chnge in goes to 0 2 Do not pnic! The proofs re included for completeness only You will not be sked to reproduce them on the em 4
5 There re mny nottions used to represent derivtive Let y f ( ), then the derivtive of y with respect to cn be represented by ll the following: d y f ( ), f( ), or d A number of simple rules eist to compute derivtives Here we list subset of these rules: Rule : The Constnt rule: [ kf ( ) ] [ f ( ) ] k ε [ ] Rule 2: The eponent rule: ε ε Rule 3: The Product rule: Rule 4: The Rtio rule: Rule 5: The Log rule: Rule 6: The Chin rule: [ f ( ) g( ) ] f ( ) g( ) + f ( ) g ( ) [ f ( ) g( ) ] f ( ) g( ) f ( ) g ( ) [ g( ) ] 2 [ ln( ) ] { f[ g( ) ]} f [ g( ) ] g ( ) The prtil derivtive of some function y f (,z) with respect to revels how much f (, z) chnges when chnges by very smll mount holding z constnt Similrly, the prtil derivtive of y f (,z) with respect to z revels how much f (, z) chnges when z chnges by very smll mount holding constnt Fortuntely, the rules for prtil derivtives re the sme s those of the "regulr" derivtive Agin, there re mny nottions used to represent prtil derivtive Let y f (,z), then the derivtive of y with respect to cn be represented by ll the following: y (, z), f (, z), or f For emple, tking the prtil derivtive of the production function Y A F( K, L) with respect to L gives the chnge in output Y when the quntity of lbor L chnges by very smll mount, holding cpitl K constnt This derivtive is defined s the mrginl product of lbor (MPL) while the prtil derivtive of Y with respect to K is defined s the mrginl product of cpitl (MPK) 5
6 6 Optimiztion Antoine Gervis University of Notre Dme Mny problems in economics tke the form of n optimiztion problem: consumers mimize utility or minimize ependiture nd firms mimize profits or minimize costs Generlly speking, mimiztion problem is one in which the gent selects those vlues of the choice vrible(s) tht provides the highest vlue of the objective function (like Profit or Utility) potentilly fcing some constrints (like income, technology, or input vilbility) In generl the objective function of mimiztion problem will be humpshped such tht the mimum will be ttined t the pek of the function (see grph below) Therefore, the optiml vlues cn be obtin by tking the first derivtive of the function with respect to the choice vrible(s) nd setting them equl to zero, these re clled the FirstOrder Conditions (FOC) For emple, the competitive firm (price tker) profit (π) mimiztion problem is sitution in which the firm selects vlues for the quntity of lbor (L) nd stock of cpitl (K) tht provides the highest level of (economic) profits Π PY RK WL, subject to the technology constrint tht Y AF( K, L) π π* F L ( K, *) 0 L L* π ( K, L) L M Π PY RK WL ( K,L ) st Y AF( K, L) Π R FOC(K) : PAFK ( K, L) R 0 AFK ( K, L) K P Π W FOC(L) : PAFL ( K, L) W 0 AFL ( K, L) L P The firstorder conditions tell us tht the firm hires lbor until the mrginl product of lbor is equl to the rel wge ( w W P ) nd rents cpitl until the mrginl product of cpitl is equl to the rel rentl rte on cpitl ( r R P ) 6
Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials
MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic
More informationBasic Analysis of Autarky and Free Trade Models
Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently
More informationSolutions to Section 1
Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationExponential and Logarithmic Functions
Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define
More information9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
More informationChapter 9: Quadratic Equations
Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.
More informationPerfect competition model (PCM)
18/9/21 Consumers: Benefits, WT, nd Demnd roducers: Costs nd Supply Aggregting individul curves erfect competition model (CM) Key ehviourl ssumption Economic gents, whether they e consumers or producers,
More informationBrief review of prerequisites for ECON4140/4145
1 ECON4140/4145, August 2010 K.S., A.S. Brief review of prerequisites for ECON4140/4145 References: EMEA: K. Sdsæter nd P. Hmmond: Essentil Mthemtics for Economic Anlsis, 3rd ed., FT Prentice Hll, 2008.
More informationIntegration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
More informationAppendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
More informationChapter 6 Solving equations
Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign
More informationUniform convergence and its consequences
Uniform convergence nd its consequences The following issue is centrl in mthemtics: On some domin D, we hve sequence of functions {f n }. This mens tht we relly hve n uncountble set of ordinry sequences,
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More informationThe Chain Rule. rf dx. t t lim " (x) dt " (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx
The Chin Rule The Chin Rule In this section, we generlize the chin rule to functions of more thn one vrible. In prticulr, we will show tht the product in the singlevrible chin rule extends to n inner
More informationAREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
More information4.0 5Minute Review: Rational Functions
mth 130 dy 4: working with limits 1 40 5Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two
More informationwww.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)
www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationHomework #6: Answers. a. If both goods are produced, what must be their prices?
Text questions, hpter 7, problems 12. Homework #6: Answers 1. Suppose there is only one technique tht cn be used in clothing production. To produce one unit of clothing requires four lborhours nd one
More informationSection 74 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
More informationExponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.
Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:
More informationExponents base exponent power exponentiation
Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily
More informationSPECIAL PRODUCTS AND FACTORIZATION
MODULE  Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come
More informationPlotting and Graphing
Plotting nd Grphing Much of the dt nd informtion used by engineers is presented in the form of grphs. The vlues to be plotted cn come from theoreticl or empiricl (observed) reltionships, or from mesured
More informationNet Change and Displacement
mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the
More information200506 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration
Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 256 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationand thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 24925 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
More informationLINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
More informationIntegration. 148 Chapter 7 Integration
48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but
More information1 Numerical Solution to Quadratic Equations
cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll
More informationMatrix Algebra CHAPTER 1 PREAMBLE 1.1 MATRIX ALGEBRA
CHAPTER 1 Mtrix Algebr PREAMBLE Tody, the importnce of mtrix lgebr is of utmost importnce in the field of physics nd engineering in more thn one wy, wheres before 1925, the mtrices were rrely used by the
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationBasic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }
ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All
More informationEcon 4721 Money and Banking Problem Set 2 Answer Key
Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra
SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting
More informationOr more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
More informationReview guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
More informationTests for One Poisson Mean
Chpter 412 Tests for One Poisson Men Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson distribution
More informationAntiderivatives/Indefinite Integrals of Basic Functions
Antiderivtives/Indefinite Integrls of Bsic Functions Power Rule: x n+ x n n + + C, dx = ln x + C, if n if n = In prticulr, this mens tht dx = ln x + C x nd x 0 dx = dx = dx = x + C Integrl of Constnt:
More informationLecture 3 Basic Probability and Statistics
Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The
More informationOn the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding
Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl
More informationA Note on Complement of Trapezoidal Fuzzy Numbers Using the αcut Method
Interntionl Journl of Applictions of Fuzzy Sets nd Artificil Intelligence ISSN  Vol.  A Note on Complement of Trpezoidl Fuzzy Numers Using the αcut Method D. Stephen Dingr K. Jivgn PG nd Reserch Deprtment
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationQuadratic Equations  1
Alger Module A60 Qudrtic Equtions  1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions  1 Sttement of Prerequisite
More informationArc Length. P i 1 P i (1) L = lim. i=1
Arc Length Suppose tht curve C is defined by the eqution y = f(x), where f is continuous nd x b. We obtin polygonl pproximtion to C by dividing the intervl [, b] into n subintervls with endpoints x, x,...,x
More informationP.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn
33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of
More informationFirm Objectives. The Theory of the Firm II. Cost Minimization Mathematical Approach. First order conditions. Cost Minimization Graphical Approach
Pro. Jy Bhttchry Spring 200 The Theory o the Firm II st lecture we covered: production unctions Tody: Cost minimiztion Firm s supply under cost minimiztion Short vs. long run cost curves Firm Ojectives
More informationWorksheet 24: Optimization
Worksheet 4: Optimiztion Russell Buehler b.r@berkeley.edu 1. Let P 100I I +I+4. For wht vlues of I is P mximum? P 100I I + I + 4 Tking the derivtive, www.xkcd.com P (I + I + 4)(100) 100I(I + 1) (I + I
More informationUnit 6: Exponents and Radicals
Eponents nd Rdicls : The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N):  counting numers. {,,,,, } Whole Numers (W):  counting numers with 0. {0,,,,,, } Integers (I): 
More informationLesson 10. Parametric Curves
Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find
More informationSection 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables
The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationIn this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.
Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix
More informationCurve Sketching. 96 Chapter 5 Curve Sketching
96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of
More informationSequences and Series
Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationDistributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
More informationAe2 Mathematics : Fourier Series
Ae Mthemtics : Fourier Series J. D. Gibbon (Professor J. D Gibbon, Dept of Mthemtics j.d.gibbon@ic.c.uk http://www.imperil.c.uk/ jdg These notes re not identicl wordforword with my lectures which will
More information1. CobbDouglas Utility
Econ 00/ API Fll 007 Solutions: Problem Set. CobbDougls Utility The utility function is homogenous of degree + in. To see this multily both nd by α: u u Does + need to be n integer? Not necessrily. The
More informationMath 22B Solutions Homework 1 Spring 2008
Mth 22B Solutions Homework 1 Spring 2008 Section 1.1 22. A sphericl rindrop evportes t rte proportionl to its surfce re. Write differentil eqution for the volume of the rindrop s function of time. Solution
More informationaddition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.
APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More informationSection A4 Rational Expressions: Basic Operations
A Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr opentopped bo is to be constructed out of 9 by 6inch sheets of thin crdbord by cutting inch squres out of ech corner nd bending the
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationTreatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the ttest is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the ttest cn be used to compre the mens of only
More information1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationAll pay auctions with certain and uncertain prizes a comment
CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 12015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin
More information2 DIODE CLIPPING and CLAMPING CIRCUITS
2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of
More informationDerivatives and Rates of Change
Section 2.1 Derivtives nd Rtes of Cnge 2010 Kiryl Tsiscnk Derivtives nd Rtes of Cnge Te Tngent Problem EXAMPLE: Grp te prbol y = x 2 nd te tngent line t te point P(1,1). Solution: We ve: DEFINITION: Te
More informationMA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!
MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more
More informationPure C4. Revision Notes
Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd
More information4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationRotating DC Motors Part II
Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors
More information4: RIEMANN SUMS, RIEMANN INTEGRALS, FUNDAMENTAL THEOREM OF CALCULUS
4: RIEMA SUMS, RIEMA ITEGRALS, FUDAMETAL THEOREM OF CALCULUS STEVE HEILMA Contents 1. Review 1 2. Riemnn Sums 2 3. Riemnn Integrl 3 4. Fundmentl Theorem of Clculus 7 5. Appendix: ottion 10 1. Review Theorem
More informationElectric Circuits. Simple Electric Cell. Electric Current
Electric Circuits Count Alessndro olt (74587) Georg Simon Ohm (787854) Chrles Augustin de Coulomb (736 806) André Mrie AMPÈRE (775836) Crbon Electrode () Simple Electric Cell wire Zn Zn Zn Zn Sulfuric
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More informationExample A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
More informationIntroduction to Integration Part 2: The Definite Integral
Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne Contents Introduction. Objectives...... Finding Ares 3 Ares Under Curves 4 3. Wht is the
More informationMathematics Higher Level
Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More informationNewton s Three Laws. d dt F = If the mass is constant, this relationship becomes the familiar form of Newton s Second Law: dv dt
Newton s Three Lws For couple centuries before Einstein, Newton s Lws were the bsic principles of Physics. These lws re still vlid nd they re the bsis for much engineering nlysis tody. Forml sttements
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More informationPROBLEMS 13  APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS  APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
More informationnot to be republished NCERT POLYNOMIALS CHAPTER 2 (A) Main Concepts and Results (B) Multiple Choice Questions
POLYNOMIALS (A) Min Concepts nd Results Geometricl mening of zeroes of polynomil: The zeroes of polynomil p(x) re precisely the xcoordintes of the points where the grph of y = p(x) intersects the xxis.
More information11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.
. Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for
More information14.2. The Mean Value and the RootMeanSquare Value. Introduction. Prerequisites. Learning Outcomes
he Men Vlue nd the RootMenSqure Vlue 4. Introduction Currents nd voltges often vry with time nd engineers my wish to know the men vlue of such current or voltge over some prticulr time intervl. he men
More informationHomework #4: Answers. 1. Draw the array of world outputs that free trade allows by making use of each country s transformation schedule.
Text questions, Chpter 5, problems 15: Homework #4: Answers 1. Drw the rry of world outputs tht free trde llows by mking use of ech country s trnsformtion schedule.. Drw it. This digrm is constructed
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationAlgorithms Chapter 4 Recurrences
Algorithms Chpter 4 Recurrences Outline The substitution method The recursion tree method The mster method Instructor: Ching Chi Lin 林清池助理教授 chingchilin@gmilcom Deprtment of Computer Science nd Engineering
More informationCalculus of variations with fractional derivatives and fractional integrals
Anis do CNMAC v.2 ISSN 1984820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810193 Aveiro, Portugl
More information10.6 Applications of Quadratic Equations
10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationACIDBASE BASICS Stephen Wright, Ph.D. Dept of Physiology
Foundtions Lerning Objectives for the selflerning module on ACIDBASE Bsics 1. Define ph. 2. Clculte the hydrogen ion concentrtion from ph nd vice vers. 3. List the mjor body buffer systems. ACIDBASE
More informationApplications to Physics and Engineering
Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics
More informationr 2 F ds W = r 1 qe ds = q
Chpter 4 The Electric Potentil 4.1 The Importnt Stuff 4.1.1 Electricl Potentil Energy A chrge q moving in constnt electric field E experiences force F = qe from tht field. Also, s we know from our study
More information5.1 SecondOrder linear PDE
5.1 SecondOrder liner PDE Consider secondorder liner PDE L[u] = u xx + 2bu xy + cu yy + du x + eu y + fu = g, (x,y) U (5.1) for n unknown function u of two vribles x nd y. The functions,b nd c re ssumed
More information