# Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is called inertia. Inertia is a measure of mass of a body. Greater the mass of a body greater will be its inertia or vice-versa. Inertia is of three types: (i) Inertia of Rest When a bus or train starts to move suddenly, the passengers sitting in it falls backward due to inertia of rest. (ii) Inertia of Motion When a moving bus or train stops suddenly, the passengers sitting in it jerks in forward direction due to inertia of motion. (iii) Inertia of Direction We can protect yourself from rain by an umbrella because rain drops can not change its direction its own due to inertia of direction. Force Force is a push or pull which changes or tries to change the state of rest, the state of uniform motion, size or shape of a body. Its SI unit is newton (N) and its dimensional formula is [MLT -2 ]. Forces can be categorized into two types: (i) Contact Forces Frictional force, tensional force, spring force, normal force, etc are the contact forces. (ii) Action at a Distance Forces Electrostatic force, gravitational force, magnetic force, etc are action at a distance forces. Impulsive Force A force which acts on body for a short interval of time, and produces a large change in momentum is called an impulsive force. Linear Momentum

2 2 P a g e The total amount of motion present in a body is called its momentum. Linear momentum of a body is equal to the product of its mass and velocity. It is denoted by p. Linear momentum p = mu. Its S1 unit is kg-m/s and dimensional formula is [MLT -1 ]. It is a vector quantity and its direction is in the direction of velocity of the body. Impulse The product of impulsive force and time for which it acts is called impulse. Impulse = Force * Time = Change in momentum Its S1 unit is newton-second or kg-m/s and its dimension is [MLT -1 ]. It is a vector quantity and its direction is in the direction of force. Newton s Laws of Motion 1. Newton s First Law of Motion A body continues to be in its state of rest or in uniform motion along a straight line unless an external force is applied on it. This law is also called law of inertia. Examples (i) When a carpet or a blanket is beaten with a stick then the dust particles separate out from it. (ii) If a moving vehicle suddenly stops then the passengers inside the vehicle bend outward. 2. Newton s Second Law of Motion The rate of change of linear momentum is proportional to the applied force and change in momentum takes place in the direction of applied force. Mathematically F &infi; dp / dt F = k (d / dt) (mv) where, k is a constant of proportionality and its value is one in SI and CGS system. F= mdv / dt = ma

3 3 P a g e Examples (i) It is easier for a strong adult to push a full shopping cart than it is for a baby to push the same cart. (This is depending on the net force acting on the object). (ii) It is easier for a person to push an empty shopping cart than a full one (This is depending on the mass of the object). 3. Newton s Third Law of Motion For every action there is an equal and opposite reaction and both acts on two different bodies Mathematically F 12 = F 21 Examples (i) Swimming becomes possible because of third law of motion. (ii) Jumping of a man from a boat onto the bank of a river. (iii) Jerk is produced in a gun when bullet is fired from it. (iv) Pulling of cart by a horse. Note Newton s second law of motion is called real law of motion because first and third laws of motion can be obtained by it. The modern version of these laws is (i) A body continues in its initial state of rest or motion with uniform velocity unless acted on by an unbalanced external force. (ii) Forces always occur in pairs. If body A exerts a force on body B, an equal but opposite force is exerted by body B on body A. Law of Conservation of Linear Momentum If no external force acts on a system, then its total linear momentum remains conserved. Linear momentum depends on frame of reference but law of conservation of linear momentum is independent of frame of reference. Newton s laws of motion are valid only in inertial frame of reference.

4 4 P a g e Weight (w) It is a field force, the force with which a body is pulled towards the centre of the earth due to gravity. It has the magnitude mg, where m is the mass of the body and g is the acceleration due to gravity. w = mg Apparent Weight in a Lift (i) When a lift is at rest or moving with a constant speed, then R = mg The weighing machine will read the actual weight. (ii) When a lift is accelerating upward, then apparent weight R 1 = m(g + a) The weighing machine will read the apparent weight, which is more than the actual weight. (iii) When a lift is accelerating downward, then apparent weight R 2 = m (g a) The weighing machine will read the apparent weight, which is less than the actual weight. (iv) When lift is falling freely under gravity, then

5 5 P a g e R 2 = m(g g)= 0 The apparent weight of the body becomes zero. (v) If lift is accelerating downward with an acceleration greater than g, then body will lift from floor to the ceiling of the lift. Rocket Rocket is an example of variable mass following law of conservation of momentum. Thrust on the rocket at any instant F = u (dm / dt) where u = exhaust speed of the burnt and dm / dt = rate 0f gases combustion of fuel. Velocity of rocket at any instant is given by u = v o + u log e (M o / M ) where, v o = initial velocity of the rocket, M o = initial mass of the rocket and M = present mass of the rocket. If effect of gravity is taken into account then speed of rocket u = v o + u log e (M o / M) gt Friction A force acting on the point of contact of the objects, which opposes the relative motion is called friction. It acts parallel to the contact surfaces. Frictional forces are produced due to intermolecular interactions acting between the molecules of the bodies in contact. Friction is of three types: 1. Static Friction It is an opposing force which comes into play when one body tends to move over the surface of the other body but actual motion is not taking place. Static friction is a self adjusting force which increases as the applied force is increased, 2. Limiting Friction

6 6 P a g e It is the maximum value of static friction when body is at the verge of starting motion. Limiting friction (f s ) = μ s R where μ s, = coefficient of limiting friction and R = normal reaction. Limiting friction do not depend on area of contact surfaces but depends on their nature, i.e., smoothness or roughness. If angle of friction is θ, then coefficient of limiting friction μ s = tan θ 3. Kinetic Friction If the body begins to slide on the surface, the magnitude of the frictional force rapidly decreases to a constant value f k kinetic friction. Kinetic friction, f k = μ k N where μ k = coefficient of kinetic friction and N = normal force. Kinetic friction is of two types: (a) Sliding friction (b) Rolling friction As, rolling friction < sliding friction, therefore it is easier to roll a body than to slide. Kinetic friction (f k ) = μ k R where μ k = coefficient of kinetic friction and R = normal reaction. Angle of repose or angle of sliding It is the minimum angle of inclination of a plane with the horizontal, such that a body placed on it, just begins to slide down. If angle of repose is a. and coefficient of limiting friction is μ, then μ s = tan α Motion on an Inclined Plane When an object moves along an inclined plane then: different forces act on it like normal reaction of plane, friction force acting in opposite direction of motion etc. Different relations for the motion are given below.

7 7 P a g e Normal reaction of plane R = mg cos θ and net force acting downward on the block. F = mg sin θ f Acceleration on inclined plane a = g (sin θ μ cos θ) When angle of inclination of the plane from horizontal is less than the angle of repose (α), then (i) minimum force required to move the body up the inclined plane f 1 = mg (sin θ + μ cos θ) (ii) minimum force required to push the body down the inclined plane f 2 = mg (μ cos θ sin θ) J Tension Tension force always pulls a body. Tension is a reactive force. It is not an active force. Tension across a massless pulley or frictionless pulley remain constant. Rope becomes slack when tension force becomes zero. Motion of Bodies in Contact (i) Two Bodies in Contact If F force is a applied on object of mass m 1 then acceleration of the bodies a = F / (m 1 + m 2 )

8 8 P a g e Contact force on m 1 = m 1 a = m 1 F / (m 1 + m 2 ) Contact force on m 2 = m 2 a = m 2 F / (m 1 + m 2 ) (ii) Three Bodies in Contact If F force is applied an object of mass m 1, then acceleration of the bodies = F / (m 1 + m 2 + m 3 ) Contact force between m 1 and m 2 F 1 = (m 2 + m 3 ) F / (m 1 + m 2 + m 3 ) Contact force between m 2 and m 3 F 2 = m 3 F / (m 1 + m 2 + m 3 ) (iii) Motion of Two Bodies, One Resting on the Other (a) The coefficient of friction between surface of A and B be μ. If a force F is applied on the lower body A. then common acceleration of two bodies a = F / (M + m) Pseudo force acting on block B due to the accelerated motion f = ma The pseudo force tends to produce a relative motion between bodies A and B and consequently a frictional force f = μ N = μmg is developed. For equilibrium ma μ mg or a μg (b) Let friction is also present between the ground surface and body A Let the coefficient of friction between the given surface and body A is μ 1 and the coefficient of friction between the surfaces of bodies A and B is μ 2 If a force F is applied on the lower body A

9 9 P a g e Net accelerating force = F f A = F μ 1 (M + m)g Net acceleration a = F μ 1 (M + m)g / (M + m) = F / (M + m) μ g Pseudo force acting on the block B f = ma The pseudo force tends to produce a relative motion between the bodies A and B are consequently a frictional force f B = μ mg is developed. For equilibrium ma le; μ 2 mg or a μ 2 g If acceleration produced under the the effect of force F is more than μ 2 g, then two bodies will not move together. (iv) Motion of Bodies Connected by Strings Acceleration of the system a = F / (m 1 + m 2 + m 3 ) Tension in string T 1 = F T 2 = ( m 2 + m 3 ) a = (m 2 + m 3 ) F / (m 1 + m 2 + m 3 ) T 3 = m 3 a = m 3 F / (m 1 + m 2 + m 3 ) Pulley Mass System (i) When unequal masses m 1 and m 2 are suspended from a pulley (m 1 > m 2 ) m 1 g T = m 1 a, and T m 2 g = m 2 a

10 10 P a g e On solving equations, we get a = ((m 1 m 2 ) / (m 1 + m 2 )) * g T = 2m 1 m 2 / (m 1 + m 2 ) * g (ii) When a body of mass m 2 is placed frictionless horizontal surface, then Acceleration a = m 1 g / (m 1 + m 2 ) Tension in string T = m 1 m 2 g / (m 1 + m 2 ) (iii) When a body of mass m2 is placed on a rough horizontal surface, then Acceleration a = ((m 1 μm 2 ) / (m 1 + m 2 )) * g Tension in string T = (m 1 m 2 (1 + μ) / (m 1 + m 2 )) * g (iv) When two masses m 1 and m 2 are connected to a single mass M as shown in figure, then

11 11 P a g e m 1 g T 1 = m 1 a..(i) T 2 m 2 g = m 2 a (ii) T 1 T 2 = Ma.(iii) Acceleration a = ((m 1 m 2 / (m 1 + m 2 + M)) * g Tension T 1 = (2m 2 + M / (m 1 + m 2 + M) * m 1 g T 2 = (2m a + M / (m 1 + m 2 + M) * m 2 g (v) Motion on a smooth inclined plane, then m 1 g T = m 1 a..(i) T m 2 g sin θ = m 2 a (ii) Acceleration a = ((m 1 m 2 sin θ/ (m 1 + m 2 )) * g Tension T = m 1 m 2 (1 + sin θ) g / (m 1 + m 2 ) (vi) Motion of two bodies placed on two inclined planes having different angle of inclination, then Acceleration a = (m 1 sin θ 1 m 2 sin θ 2 ) g / m 1 + m 2

12 12 P a g e Tension T = (m 1 m 2 / m 1 + m 2 ) * (sin θ 1 sin θ 2 ) g

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### 2.2 NEWTON S LAWS OF MOTION

2.2 NEWTON S LAWS OF MOTION Sir Isaac Newton (1642-1727) made a systematic study of motion and extended the ideas of Galileo (1564-1642). He summed up Galileo s observation in his three laws of motion

### Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

### Newton s Laws of Motion

Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

### Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### QUESTIONS : CHAPTER-5: LAWS OF MOTION

QUESTIONS : CHAPTER-5: LAWS OF MOTION 1. What is Aristotle s fallacy? 2. State Aristotlean law of motion 3. Why uniformly moving body comes to rest? 4. What is uniform motion? 5. Who discovered Aristotlean

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

### Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1

Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is

### Mechanics 1. Revision Notes

Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

### Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

### Newton s Laws Pre-Test

Newton s Laws Pre-Test 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)

### Newton s Laws of Motion

Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

### physics 111N forces & Newton s laws of motion

physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

### Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

### Forces: Equilibrium Examples

Physics 101: Lecture 02 Forces: Equilibrium Examples oday s lecture will cover extbook Sections 2.1-2.7 Phys 101 URL: http://courses.physics.illinois.edu/phys101/ Read the course web page! Physics 101:

### What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?

Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### STUDY GUIDE UNIT 10-Newton s Third Law

Name ANSWERS STUDY GUIDE UNIT 10-Newton s Third Law Date Agenda HW Tues, Jan 5 Wed., Jan 6 Review Video Read Section 6.1-6.3 Fill in Reading Notes (p. 2) Worksheet - Action-Reaction Pairs (p. 3) Go over

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### Newton's laws of motion

Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion - Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Summary Notes. to avoid confusion it is better to write this formula in words. time

National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

### Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

### Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)

Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions

### Explaining Motion:Forces

Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application

### 04-1. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.

Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that

### Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences

### Vectors and the Inclined Plane

Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force

### Mass, energy, power and time are scalar quantities which do not have direction.

Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and

### 56 Chapter 5: FORCE AND MOTION I

Chapter 5: FORCE AND MOTION I 1 An example of an inertial reference frame is: A any reference frame that is not accelerating B a frame attached to a particle on which there are no forces C any reference

### F = ma. F = mg. Forces. Forces. Free Body Diagrams. Find the unknown forces!! Ex. 1 Ex N. Newton s First Law. Newton s Second Law

Forces Free Body Diagrams Push or pull on an object Causes acceleration Measured in Newtons N = Kg m s Shows all forces as vectors acting on an object Vectors always point away from object Used to help

### Notes: Mechanics. The Nature of Force, Motion & Energy

Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force- The sum (addition) of all the forces acting on an

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### 9 ROTATIONAL DYNAMICS

CHAPTER 9 ROTATIONAL DYNAMICS CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION The magnitude of the torque produced by a force F is given by τ = Fl, where l is the lever arm. When a long pipe is slipped

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

### Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Dynamics Force and Mass Units of Chapter 5 Newton s 1 st, 2 nd and 3 rd Laws of Motion The Vector Nature

### NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

### Version 001 Quest 3 Forces tubman (20131) 1

Version 001 Quest 3 Forces tubman (20131) 1 This print-out should have 19 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. l B Conceptual

### There are three different properties associated with the mass of an object:

Mechanics Notes II Forces, Inertia and Motion The mathematics of calculus, which enables us to work with instantaneous rates of change, provides a language to describe motion. Our perception of force is

### Newton s Laws of Motion (Ch 5)

Newton s Laws of Motion (Ch 5) Force Isaac Newton 1642-1727 English physicist & mathematician By the age of 31, discovered: laws of motion universal gravitation calculus Eccentric read Coming of Age in

### UNIT 2D. Laws of Motion

Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

### 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the NormalForce

### There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction

2.3 RICTION The property by virtue of which a resisting force is created between two rough bodies that resists the sliding of one body over the other is known as friction. The force that always opposes

### MOTION AND FORCE: DYNAMICS

MOTION AND FORCE: DYNAMICS We ve been dealing with the fact that objects move. Velocity, acceleration, projectile motion, etc. WHY do they move? Forces act upon them, that s why! The connection between

### Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

### Physics 201 Homework 5

Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

### Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

### Concept Review. Physics 1

Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

### Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

### This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical

### Chapter 4. Forces I. 4.1 The Important Stuff Newton s First Law Newton s Second Law

Chapter 4 Forces I 4.1 The Important Stuff 4.1.1 Newton s First Law With Newton s Laws we begin the study of how motion occurs in the real world. The study of the causes of motion is called dynamics, or

### Physics 1A Lecture 10C

Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

### PHYSICS 149: Lecture 4

PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all

### SOLUTIONS TO PROBLEM SET 4

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01X Fall Term 2002 SOLUTIONS TO PROBLEM SET 4 1 Young & Friedman 5 26 A box of bananas weighing 40.0 N rests on a horizontal surface.

### Friction and Newton s 3rd law

Lecture 4 Friction and Newton s 3rd law Pre-reading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both

### Lecture 9. Friction in a viscous medium Drag Force Quantified

Lecture 9 Goals Describe Friction in Air (Ch. 6) Differentiate between Newton s 1 st, 2 nd and 3 rd Laws Use Newton s 3 rd Law in problem solving Assignment: HW4, (Chap. 6 & 7, due 10/5) 1 st Exam Thurs.,

### Chapter 3: Force and Motion

Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter. In

### Principles and Laws of Motion

2009 19 minutes Teacher Notes: Ian Walter DipAppChem; TTTC; GDipEdAdmin; MEdAdmin (part) Program Synopsis This program begins by looking at the different types of motion all around us. Forces that cause

### Example (1): Motion of a block on a frictionless incline plane

Firm knowledge of vector analysis and kinematics is essential to describe the dynamics of physical systems chosen for analysis through ewton s second law. Following problem solving strategy will allow

### Units DEMO spring scales masses

Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

### Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

### Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.

I. What is Motion? a. Motion - is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far

### Physics 2AB Notes - 2012. Heating and Cooling. The kinetic energy of a substance defines its temperature.

Physics 2AB Notes - 2012 Heating and Cooling Kinetic Theory All matter is made up of tiny, minute particles. These particles are in constant motion. The kinetic energy of a substance defines its temperature.

### Physics 11 Chapter 4 HW Solutions

Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction

### 2. (b). The newton is a unit of weight, and the quantity (or mass) of gold that weighs 1 newton is m 1 N

QUICK QUIZZS 1. Newton s second law says that the acceleration of an object is directly proportional to the resultant (or net) force acting on. Recognizing this, consider the given statements one at a

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### 3) a 1 = a 2. 5) a 1 = 2 a 2

ConcepTest Pulley Two masses are connected by a light rope as shown below. What is the 1) a 1 = 1/3 a 2 2) a 1 = ½ a 2 relationship between the magnitude of 3) a 1 = a 2 the acceleration of m 1 to that

### PHYSICS MIDTERM REVIEW

1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

### Forces. Lecturer: Professor Stephen T. Thornton

Forces Lecturer: Professor Stephen T. Thornton Reading Quiz: Which of Newton s laws refers to an action and a reaction acceleration? A) First law. B) Second law. C) Third law. D) This is a trick question.

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

### FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

### P211 Midterm 2 Spring 2004 Form D

1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

### AP Physics 1 Midterm Exam Review

AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to