# Electronic Structure and the Periodic Table Learning Outcomes

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Electronic Structure and the Periodic Table Learning Outcomes (a) Electronic structure (i) Electromagnetic spectrum and associated calculations Electromagnetic radiation may be described in terms of waves. Electromagnetic radiation can be specified by its wavelength () and by its frequency (). The electromagnetic spectrum is the range of frequencies or wavelengths of electromagnetic radiation. The unit of measurement of wavelength is the metre or an appropriate submultiple. The unit of measurement of frequency is the reciprocal of time in seconds (s -1 ) and is called the Hertz (Hz). The velocity of electromagnetic radiation is constant and has a value of approximately 3 x 10 8 ms -1. Velocity, frequency and wavelength are related in the expression: c = Under certain circumstances electromagnetic radiation may be regarded as a stream of particles, rather than as waves. These particles are known as photons. The energy (E) of radiation, and the energy associated with photons, is related to frequency by Planck s constant (h) in the expressions: E = h for one photon E = Lh for one mole of photons where L represents Avogadro s Constant. (ii) Electronic configuration and the Periodic Table The emission spectrum of hydrogen provides evidence of energy levels. Quantum theory states that matter can only emit or absorb energy in small fixed amounts (called quanta). The energy of a bound electron in an atom is quantised. An atom can be considered as emitting a photon of light energy when an electron moves from a higher energy level to a lower energy level. Each line of the emission spectrum represents radiation of a specific wavelength or frequency from which the difference in energy between the levels can be calculated. Emission spectra of elements with more than one electron provide sublevels within each principal energy level above the first. The principal energy levels correspond to the principal shells. The second and subsequent principal shells contain sub-shells which correspond to the sublevels. Sub-shells can be labelled s, p, d and f. 1

2 The types of sub-shells within each principal shell are as follows: First shell s subshell Second shell s and p subshells Third shell s, p and d subshells Fourth and subsequent shells s, p, d and f subshells Heisenberg s uncertainty principle states that it is impossible to define with absolute precision, simultaneously, both the position and the momentum of an electron. Electrons, like photons, display the properties of particles and waves. Treating bound electrons in atoms as waves leads to regions of high probability of finding the electrons. These regions are called atomic orbitals. There are four types of orbitals, namely s, p, d and f, each with a characteristic shape or set of shapes. Diagrams of the shapes of s and p orbitals can be drawn and recognised. Diagrams of d orbitals can be recognised. An orbital holds a maximum of two electrons, as required by the Pauli exclusion principle. The number of orbitals in each subshell is as follows : s subshell one s orbital p subshell three p orbitals d subshell five d orbitals f subshell seven f orbitals In an isolated atom the orbitals within each subshell are degenerate. The aufbau principle states that orbitals are filled in order of increasing energy. The relative energies corresponding to each orbital can be represented diagrammatically for the first four shells of a multi-electron atom. Hund s Rule states that when degenerate orbitals are available, electrons fill each singly, keeping their spins parallel before spin pairing starts. Electronic configurations using spectroscopic notation and orbital box notation can be written for elements of atomic numbers 1 to 36. The Periodic Table can be subdivided into four blocks (s, p, d and f) corresponding to the outer electronic configurations of the elements within these blocks. The variation in first ionisation energy with increasing atomic number for the first 36 elements can be explained in terms of the relative stability of different electron configurations, and so provides evidence for these electronic configurations. The relative values of first, second and subsequent ionisation energies can be explained in terms of the stabilities of the electronic configurations from which the electrons are being removed. 2

3 (iii) Spectroscopy Atomic emission spectroscopy and atomic absorption spectroscopy involve transitions between electronic energy levels in atoms. Generally, the energy differences correspond to the visible region of the electromagnetic spectrum, ie, to the approximate wavelength range of nm. Some applications use the ultra-violet region (wavelength range approximately nm). In emission spectroscopy the sample is energised by heat or electricity causing electrons to be promoted to higher energy levels. The wavelength of the radiation emitted as electrons fall back to lower energy levels is measured. In absorption spectroscopy electromagnetic radiation is directed at the sample. Radiation is absorbed as electrons are promoted to higher energy levels. The wavelength of the absorbed radiation is measured. Each element provides a characteristic spectrum which can be used to identify an element. The amount of species can be determined quantitatively if the intensity of emitted or transmitted radiation is measured. (b) Chemical Bonding (i) Covalent Bonding Non-polar covalent bonding and ionic bonding can be considered as being at opposite ends of a bonding continuum with polar covalent bonding lying between these two extremes. Different electron models can be used to explain the experimental evidence associated with covalent bonding. Lewis electron dot diagrams represent bonding and non-bonding electron pairs in molecules and in polyatomic ions. A dative covalent bond is one in which one atom of the bond provides both electrons of the bonding pair. Species such as ozone, sulphur dioxide and the carbonate ion can be equivalent electron dot diagrams known as resonance structures. (ii) Shapes of molecules and polyatomic ions The shapes of molecules or polyatomic ions can be predicted from the number of bonding electron pairs and the number of non-bonding electron pairs. The arrangement of electron pairs is linear, trigonal, tetrahedral, trigonal bipyramidal and octahedral when the total number of electron pairs is 2, 3, 4, 5 and 6, respectively. Electron pair repulsions decrease in strength in the order: non-bonding pair/non-bonding pair > non-bonding pair/bonding pair > bonding pair/bonding pair. These different strengths of electron pair repulsion account for slight deviations from expected bond angles in molecules such as NH 3 and H 2 O. 3

4 (iii) Ionic lattices, superconductors and semiconductors Ionic lattice structures: The geometry of the crystalline structure adopted by an ionic compound depends on the relative sizes of the ions. This affects the number of ions which can pack round an ion of opposite charge. Examples of crystal lattice structures are: sodium chloride caesium chloride Superconductors: Superconductors are a special class of materials that have zero electrical resistance at temperatures near absolute zero. Achieving temperatures near absolute zero is difficult and superconduction at these temperatures is impractical. Recently superconductors have been discovered which have zero resistance up to temperatures above the boiling point of liquid nitrogen - temperatures which are less costly to attain. Superconductors may have future applications in power transmission and electrically powered forms of transport. Semiconductors: A covalent element such as silicon or germanium which has a higher conductivity than that of a typical non-metal but a much lower conductivity than that of a metal is described as a semiconductor. Semiconductors are also referred to as metalloids and occur at the division between metals and non-metals in the Periodic Table. The electrical conductivity of semiconductors increases with increasing temperature. The electrical conductivity of semiconductors increases on exposure to light. This is known as the photovoltaic effect. Elements such as silicon and germanium have similar structures to diamond but the covalent bonds are weaker. Thermal agitation of the lattice can result in some of the bonding electrons breaking free, leaving positive sites called holes. When a voltage is applied to these elements, electrons and holes can migrate through the lattice. Doping pure crystals of silicon or germanium with certain other elements produces ntype and p-type semiconductors. The type of semiconduction depends on the specific dopant used. In n-type and p-type semiconductors the main current carriers are surplus electrons and positive holes respectively. Crystals of silicon or germanium can be prepared with bands of n-type or p- type semiconductors. The p-n junction which occurs between a layer of n-type 4

5 and a layer of p-type semiconductor has specific electrical properties which form the basis of the electronics industry. Solar cells use the photovoltaic effect to convert sunlight into electricity. (c) Some Chemistry of the Periodic Table (i) The second and third short periods: oxides, chlorides and hydrides Melting points, boiling points and electrical conductivities of the oxides, chlorides and hydrides of the elements of the second and third periods can be explained in terms of their structure and type of bonding. Metal oxides tend to be basic and non-metal oxides tend to be acidic but amphoteric oxides exhibit both acidic and basic properties. Most ionic chlorides dissolve in water without reaction but some covalent chlorides are hydrolysed, producing fumes of hydrogen chloride. Ionic hydrides possess the hydride ion which acts as a reducing agent. On reaction with water ionic hydrides produce hydrogen gas and the hydroxide ion. Electrolysis of molten ionic hydrides produces hydrogen gas at the positive electrode. (ii) Electronic configuration and oxidising states of transition metals Electronic configuration: The d block transition metals are metals with an incomplete d subshell in at least one of their ions. The filling of the d orbitals follows the aufbau principle, with the exception of chromium and copper atoms. These exceptions are due to a special stability associated with all the d orbitals being half filled or completely filled. When transition metals form ions it is the s electrons which are lost first rather than the d electrons. Oxidation states: An element is said to be in a particular oxidation state when it has a specific oxidation number. The oxidation number is determined by following certain rules. Transition metals exhibit variable oxidation states of differing stability. Compounds of the same transition metal but in different oxidation states may have different colours. Oxidation can be considered as an increase in oxidation number and reduction can be considered as a decrease in oxidation number. Compounds containing metals in high oxidation states tend to be oxidising agents whereas compounds with metals in low oxidation states are often reducing agents. 5

6 (iii) Transition metal complexes A complex consists of a central metal ion surrounded by ligands. Ligands are electron donors and may be negative ions or molecules with nonbonding pairs of electrons. Ligands can be classified as monodentate, bidentate, etc. The number of bonds from the ligand to the central metal ion is known as the coordination number of the central ion. Complexes are written and named according to IUPAC rules. In a complex of a transition metal the d orbitals are no longer degenerate. The energy difference between subsets of d orbitals depends on the position of the ligand in the spectrochemical series. Colours of many transition metal complexes can be explained in terms of d-d transitions. UV and visible spectroscopy: Catalysis: The effects of d-d transitions can be studied using ultra-violet and visible absorption spectroscopy. Ultra-violet and visible absorption spectroscopy involve transitions between electronic energy levels in atoms and molecules where the energy difference corresponds to the ultra-violet and visible regions of the electromagnetic spectrum. The wavelength ranges are approximately nm for ultra-violet and nm for visible. An ultra-violet/visible spectrometer measures the intensity of radiation transmitted through the sample and compares this with the intensity of incident radiation. Transition metals or their compounds act as catalysts in many chemical reactions. It is believed that the presence of unpaired d electrons or unfilled d orbitals allows intermediate complexes to form, providing reaction pathways of lower energy compared to the uncatalysed reaction. The variability of oxidation states of transition metals is also an important factor. 6

### Topic 4. Chemical bonding and structure

Topic 4. Chemical bonding and structure There are three types of strong bonds: Ionic Covalent Metallic Some substances contain both covalent and ionic bonding or an intermediate. 4.1 Ionic bonding Ionic

### AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity 7.1 Electromagnetic Radiation A. Types of EM Radiation (wavelengths in meters) 10-1 10-10 10-8 4 to 7x10-7 10-4 10-1 10 10 4 gamma

### Electromagnetic spectrum and associated calculations

SECTION 1 ELECTRONIC STRUCTURE Electromagnetic spectrum and associated calculations The work of Rutherford and others in the early part of the twentieth century resulted in the model of the atom in which

### Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

### Lewis Dot Structure Answer Key

Lewis Dot Structure Answer Key 1) Nitrogen is the central atom in each of the following species: N2 N2 - N2 + Nitrogen can also form electron deficient compounds with a single unpaired electron on the

### Final Semester 1 Review Sheet

Final Semester 1 Review Sheet Chapter 1&3 What is Chemistry Matter Mass Weight Scientific method o Observation Observation vs. inference (know the difference) Qualitative data Quantitative data o Hypothesis

### CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

### AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

### 11 Chemical Bonds: The Formation of Compounds from Atoms. Chapter Outline. Periodic Trends in Atomic Properties. Periodic Trends in Atomic Properties

11 Chemical Bonds The Formation of Compounds from Atoms Chapter Outline 11.1 11.2 Lewis Structures of Atoms 11.3 The Ionic Bond Transfer of Electrons from One Atom to Another 11.4 Predicting Formulas of

### Topic 3 National Chemistry Summary Notes. Bonding, Structure and Properties of Substances. Covalent Bonds

Topic 3 National Chemistry Summary Notes Bonding, Structure and Properties of Substances LI 1 Covalent Bonds Most atoms do not exist as single atoms. They are mainly found combined with other atoms in

### Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

### Practice questions for Ch. 7

Name: Class: Date: ID: A Practice questions for Ch. 7 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When ignited, a uranium compound burns with a green

### A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

### AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

### CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08

CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08 6.9 What are the basic SI units for? (a) the wavelength of light meters, although colors are usually reported in 3 digit

WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

### Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.

Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The

### Chemistry Assessment Unit AS 1

New Specification Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2010 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic

### UNIT TEST Atomic & Molecular Structure. Name: Date:

SCH4U UNIT TEST Atomic & Molecular Structure Name: _ Date: Part A - Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Who postulated that electrons

### Aufbau principle Electron affinity Electron orbitals (s, p, d, and f) Electron configuration Electron-dot structure Hund s rule Ion Polyatomic Ion

Aufbau principle states that each electron occupies the lowest energy orbital available. Electron affinity energy released when an electron is added to an atom to form an ion. Electron orbitals the different

### Illustrating Bonds - Lewis Dot Structures

Illustrating Bonds - Lewis Dot Structures Lewis Dot structures are also known as electron dot diagrams These diagrams illustrate valence electrons and subsequent bonding A line shows each shared electron

### Unit 1 Building Blocks

Unit 1 Building Blocks a) Substances (i) Elements Everything in the world is made from about 100 elements. Each element has a name and a symbol. Elements are classified in different ways, including naturallyoccurring/made

### Arrangement of Electrons in Atoms

CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital

### CHEMISTRY BONDING REVIEW

Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

### AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

### AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity

AS Chemistry Revision Notes Unit Atomic Structure, Bonding And Periodicity Atomic Structure. All atoms have a mass number, A (the number of nucleons), and a proton number, Z (the number of protons). 2.

### hij GCSE Additional Science Chemistry 2 Higher Tier Chemistry 2H SPECIMEN MARK SCHEME Version 1.0

hij GCSE Additional Science Chemistry 2 Higher Tier Chemistry 2H SPECIMEN MARK SCHEME Version.0 Copyright 20 AQA and its licensors. All rights reserved. The Assessment and Qualifications Alliance (AQA)

### CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

### 12.1 How do sub-atomic particles help us to understand the structure of substances?

12.1 How do sub-atomic particles help us to understand the structure of substances? Simple particle theory is developed in this unit to include atomic structure and bonding. The arrangement of electrons

### Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

### 3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

### Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented below. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the other

### CHAPTER NOTES CHAPTER 16. Covalent Bonding

CHAPTER NOTES CHAPTER 16 Covalent Bonding Goals : To gain an understanding of : NOTES: 1. Valence electron and electron dot notation. 2. Stable electron configurations. 3. Covalent bonding. 4. Polarity

### Lab Manual Supplement

Objectives 1. Learn about the structures of covalent compounds and polyatomic ions. 2. Draw Lewis structures based on valence electrons and the octet rule. 3. Construct 3-dimensional models of molecules

### Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms 1. Electromagnetic radiation travels through vacuum at a speed of m/s. (a). 6.626 x 26 (b). 4186 (c). 3.00 x 8 (d). It depends on wavelength Explanation: The speed

### Chemistry Assessment Unit AS 1

Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2014 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry AC112

### Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

### Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

### Chapter 7: The Quantum-Mechanical Model of the Atom

C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Suggested Chapter 7 Problems: 37, 39,

### Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

### A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

### Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

### 1. Which of the following salts form coloured solutions when dissolved in water? D. I, II, III and IV (Total 1 mark)

IB Chemistry HL Topic 3 Questions 1 Which of the following salts form coloured solutions when dissolved in water? I ScCL 3 II FeCl 3 III NiCl 2 IV ZnCl 2 A I and II only B II and III only C III and IV

### Atoms. Chemistry 100. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 2

Chemistry 100 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 2 Atoms Classifications of Matter: Elements An Element is a substance (for example,

### Paper 1 (7405/1): Inorganic and Physical Chemistry Mark scheme

AQA Qualifications A-level Chemistry Paper (7405/): Inorganic and Physical Chemistry Mark scheme 7405 Specimen paper Version 0.5 MARK SCHEME A-level Chemistry Specimen paper 0. This question is marked

### - thus the electrons are free to change their energies within the 3s band

Allowed and Forbidden Energy Bands - allowed energy bands associated with different atomic orbitals may overlap, as in (a) - the regions between allowed energy bands are called forbidden bands or band

### A. X-ray diffraction B. elemental analysis C. band gap energy measurement based on absorption of light D. none of the above

LED Review Questions 1. Consider two samples in the form of powders: sample A is a physical mixture comprising equal moles of pure Ge and pure Si; sample B is a solid solution of composition Si0.5Ge0.5.

### 8/19/2011. Periodic Trends and Lewis Dot Structures. Review PERIODIC Table

Periodic Trends and Lewis Dot Structures Chapter 11 Review PERIODIC Table Recall, Mendeleev and Meyer organized the ordering the periodic table based on a combination of three components: 1. Atomic Number

### In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

### Chapter 11 Atoms, Energy and Electron Configurations Objectives

Objectives 1. To review Rutherford s model of the atom 2. To explore the nature of electromagnetic radiation 3. To see how atoms emit light A. Rutherford s Atom.but there is a problem here!! Using Rutherford

### UNIT-3 Classification of elements and periodicity in properties

UNIT-3 Classification of elements and periodicity in properties One mark questions:. For the triad of elements A, B and C if the atomic weights of A and C are 7 and 39. Predict the atomic weight of B..

### Chapter 8. Chemical Bonding. Introduction. Molecular and Ionic Compounds. Chapter 8 Topics. Ionic and Covalent. Ionic and Covalent

Introduction Chapter 8 Chemical Bonding How and why to atoms come together (bond) to form compounds? Why do different compounds have such different properties? What do molecules look like in 3 dimensions?

### Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

### DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

### Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

### CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

### OC42 Recall that ionic bonding is an attraction between positive and negative ions; describe the bonding in NaCl and MgO as examples

Chemistry: 7. Ionic and Covalent Bonding Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OC41 Understand how atoms of elements combine

### Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

### Bonding. Metallic Ionic Covalent. (Elements) (Compounds) (Elements and Compounds)

CfE Higher Chemistry Unit One Chemical Changes and Structure Chapter Four Bonding in Compounds Types Of Bonding In Compounds Bonding Metallic Ionic Covalent (Elements) (Compounds) (Elements and Compounds)

### Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding

Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 26 No. Learning Outcome Understanding? 1 2 The bonding types of the first twenty elements; metallic

### Atomic Structure and the Periodic Table. Chapter 3.5

Atomic Structure and the Periodic Table Chapter 3.5 The Periodic Table The elements of the periodic table are arranged according to the way electrons arrange themselves around the nuclei of atoms Electron

### AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016

AAHS-CHEMISTRY FINAL EXAM PREP-REVIEW GUIDE MAY-JUNE 2014 DR. GRAY CLASS OF 2016 UNIT I: (CHAPTER 1-Zumdahl text) The Nature of Science and Chemistry 1. Explain why knowledge of chemistry is central to

### Chemistry 105, Chapter 7 Exercises

hemistry 15, hapter 7 Exercises Types of Bonds 1. Using the periodic table classify the bonds in the following compounds as ionic or covalent. If covalent, classify the bond as polar or not. Mg2 4 i2 a(3)2

### Covalent Bonding And Molecular Geometry

ovalent Bonding And Molecular Geometry Questions: 1.ow can the valence electrons of an atom be represented? 2.ow do atoms achieve an octet? 3.ow are electrons shared in a molecule? 4.ow can the geometries

### Chemistry 1210 AU13 Checklist

Chemistry 1210 AU13 Checklist Before the first lecture you need to register for the following programs: Mastering Chemistry Learning Catalytics Lecture #1: August 22 nd, 2013 Syllabus overview, course

### The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

### Unit 5 Lesson 4 Ionic, Covalent, and Metallic Bonding. Copyright Houghton Mifflin Harcourt Publishing Company

Opposites Attract What is an ion? An atom has a neutral charge because it has an equal number of electrons and protons. An ion is a particle with a positive or negative charge. An ion forms when an atom

### Chapter 8: Bonding General Concepts. Valence Electrons. Representative Elements & Lewis Dot Structures

Chapter 8: Bonding General Concepts Valence Electrons 8.1 Chemical Bond Formation 8.2 Covalent Bonding (Lewis Dot Structures) 8.3 Charge Distribution in Covalent Compounds 8.4 Resonance 8.5 Molecular Shapes

### Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence

### Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

### Answers to Practise Questions (Basic) Atomic Structure and Bonding

Answers to Practise Questions (Basic) Atomic Structure and Bonding Practise questions (Basic) are designed to ensure that students are aware of the basic concepts of the topic. This should be the first

### Multiple Choice (4 points each): Answer on blue form; be sure to code in your name and ID.

Multiple Choice (4 points each): Answer on blue form; be sure to code in your name and ID. 1. The Bohr model of the atom works reasonably well in the calculation of energy levels in hydrogen. What other

### Exercises: Exercise 1: Safety Contract Students complete a safety contract in order to eliminate, prevent, and be aware of possible hazards.

Lab 1: Introduction to Laboratory and Safety Procedures Learning Objectives: Understand the importance of safety in the chemistry laboratory; Learn the chemistry safety rules; Understand what to do in

### Topic 1. Atomic Structure and Periodic Properties

Topic 1 1-1 Atomic Structure and Periodic Properties Atomic Structure 1-2 History Rutherford s experiments Bohr model > Interpretation of hydrogen atom spectra Wave - particle duality Wave mechanics Heisenberg

### PERIOD 3 ELEMENTS AND THEIR COMPOUNDS

Period 3 1 PERIOD 3 ELEMENTS AND THEIR COMPOUNDS Introduction the first two periods in the periodic table are not typical the first contains only two elements (H, He) the second (Li - Ne) contains the

### (v.e. = 7) and S

Chapter 6 Chemical Bonding Diatomic Molecules & Lewis Structures - Diatomic molecules include: H, N, O, F, Cl, Br, or I - Lewis proposed that electrons are shared between neighboring atoms and thereby

### Chapter 7: Electrons in Atoms. Electromagnetic Radiation

Chapter 7: Electrons in Atoms Dr. Chris Kozak Memorial University of Newfoundland, Canada 1 Electromagnetic Radiation Electric and magnetic fields propagate as waves through empty space or through a medium.

### Atomic Structure Ron Robertson

Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

### Laboratory 11: Molecular Compounds and Lewis Structures

Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

### Prepare well for this topic!!

1 Bonding There is almost always a chemical bonding question. Since this is such an important topic, you should be prepared for any and all bonding questions. Prepare well for this topic!! Some suggestions

### Doped Semiconductors. Dr. Katarzyna Skorupska

Doped Semiconductors Dr. Katarzyna Skorupska 1 Doped semiconductors Increasing the conductivity of semiconductors by incorporation of foreign atoms requires increase of the concentration of mobile charge

### Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

### Effect of unshared pairs on molecular geometry

Chapter 7 covalent bonding Introduction Lewis dot structures are misleading, for example, could easily represent that the electrons are in a fixed position between the 2 nuclei. The more correct designation

### Molecular Compounds. Chapter 5. Covalent (Molecular) Compounds

Molecular Compounds Chapter 5 Covalent (Molecular) Compounds Covalent Compound- a compound that contains atoms that are held together by covalent bonds Covalent Bond- the force of attraction between atoms

### Lewis Structure Exercise

Lewis Structure Exercise A Lewis structure shows how the valence electrons are arranged and indicates the bonding between atoms in a molecule. We represent the elements by their symbols. The shared electron

### DO PHYSICS ONLINE. conduction band. ~ 6 ev. Fig. 1. Energy band diagram for diamond (insulator) and silicon (semiconductor).

DO PHYSIS ONLINE FROM IDEAS TO IMPLEMENTATION 9.4.3 ATOMS TO TRANSISTORS SEMIONDUTORS ENERGY BANDS Diamond is a very good insulator. The electronic configuration in the ground state is 1s 2 2s 2 2. It

### Exampro GCSE Chemistry

Exampro GCSE Chemistry C Chapter higher Name: Class: Author: Date: Time: 56 Marks: 56 Comments: Page of 8 Q. The hip joint sometimes has to be replaced. Early replacement hip joints were made from stainless

### Chapter 5 Chemical Compounds. An Introduction to Chemistry by Mark Bishop

Chapter 5 Chemical Compounds An Introduction to Chemistry by Mark Bishop Chapter Map Elements, Compounds, and Mixtures Element: A substance that cannot be chemically converted into simpler substances;

### Chemistry Assessment Unit AS 1

Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2012 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry AC112

### Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

### Emission and absorption spectra

Emission and absorption spectra Emission spectra You have learnt previously about the structure of an atom. The electrons surrounding the atomic nucleus are arranged in a series of levels of increasing

### Chemical Bonding. Elements of the Lewis Theory. More Lewis Theory. Electron Dot Diagrams. Lewis Structures, Polarity and Bond Classification

Elements of the Lewis Theory Chemical Bonding Lewis Structures, Polarity and Bond Classification 1. Valence electrons play a fundamental role in chemical bonding 2. Sometimes bonding involves the TRANSFER

### Periodic Table Trends

Name Date Period Periodic Table Trends (Ionization Energy and Electronegativity) Ionization Energy The required to an electron from a gaseous atom or ion. Period Trend: As the atomic number increases,

### CHEMSITRY NOTES Chapter 13. Electrons in Atoms

CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.

### Chapter 10 - Liquids and Solids

Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces A. Dipole-Dipole Forces 1. Attraction between molecules with dipole moments a. Maximizes (+) ----- ( - ) interactions b. Minimizes (+) ----- (

### From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

### F. ELECTRONIC SPECTRA OF COORDINATION COMPOUNDS

Introduction: F. ELECTRONIC SPECTRA OF COORDINATION COMPOUNDS Transition metal compounds display a wide variety of colors and many of these compounds are used as artist's pigments (e.g., copper phthalocyanine,

### GRADE 11 PHYSICAL SCIENCES SESSION 3: CHEMICAL BONDING. Key Concepts. X-planation

GRADE 11 PHYSICAL SCIENCES SESSION 3: CHEMICAL BONDING Key Concepts In this session we will focus on summarising what you need to know about: Bonding Covalent bonding Electronegativity in covalent bonding