A MODEL FOR ISCHAEMIC HEART DISEASE AND STROKE III: APPLICATIONS. By T. Chatterjee, A. S. Macdonald and H. R. Waters. abstract.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A MODEL FOR ISCHAEMIC HEART DISEASE AND STROKE III: APPLICATIONS. By T. Chatterjee, A. S. Macdonald and H. R. Waters. abstract."

Transcription

1 1 A MODEL FOR ISCHAEMIC HEART DISEASE AND STROKE III: APPLICATIONS By T. Chatterjee, A. S. Macdonald and H. R. Waters abstract This is the third in a series of three papers. In the first paper we describe a comprehensive stochastic model of an individual s lifetime that includes diagnosis with ischaemic heart disease and stroke and also the development of the major risk factors for these conditions. The second paper discusses in some detail models for changes in body mass index (BMI) and also the effects of these changes, in particular the current trend towards increasing prevalence of obesity, on diabetes, cardiovascular diseases and expected future lifetime. This paper is devoted to the following applications of the model described in the first paper: (a) quantifying the effects of smoking and of changes in smoking habits, and, (b) quantifying the effects of treatment with statins (drugs designed to lower cholesterol). keywords Diabetes, Framingham Heart Study, hypercholesterolaemia, hypertension, ischaemic heart disease, Markov model, mortality, smoking, statins, stroke.

2 2 1. Introduction This paper is the third in a series of three papers. In the first paper, Chatterjee et al. (2007a), we describe the structure and parameterisation of a stochastic model for an individual s lifetime, incorporating the occurrence of ischaemic heart disease (IHD) and stroke and the development of the following major risk factors for these events: (a) Age, (b) Sex, (c) Smoking, (d) Body Mass Index (BMI), (e) Diabetes, (f) Hypertension, and, (g) Hypercholesterolaemia. The model is a continuous-time, finite-state-space Markov model. Age is the continuous variable which plays the rôle of time. Sex and Smoking are deterministic factors, so that we assume we know an individual s smoking status throughout his/her life. The remaining risk factors, (d) to (g), are discretised into a small number of categories between which our individual can move. In the second paper in the series, Chatterjee et al. (2007b), we discuss in detail three models for changes in an individual s BMI and the effects of these changes on the prevalence of diabetes and cardiovascular diseases and on life expectancy. These models, labelled Models I, II and III, can be summarised as follows: Model I: This is parameterised using data from the Framingham Heart Study, Offspring & Spouses Cohort (OS) data, with the parameters adjusted so that the model produces prevalence rates for BMI categories at adult ages which match those of the population of England in 2003 as given by Sproston & Primatesta (2004). Model I does not allow for changes in the prevalence of obesity over calendar time. Model II: This is an adjusted version of Model I which allows for the intensities of moving to higher categories of BMI to increase for 20 years starting from a given time point. The rate of increase is chosen to match the increase in obesity in England from 1994 to Model III: This is the same as Model II except that there is no time limit on increases in the transition intensities. The models predict future levels of obesity in increasing order, with Model III being the most extreme; starting with 20 year old males in 2003, Model III predicts that over 96% of those who survive to age 80 will be obese. The models predict, in the order I then II then III, increasing prevalence of diabetes and cardiovascular diseases and also decreasing future life expectancy. However, while the effects on the prevalence of diabetes are significant, the effects on cardiovascular diseases and future life expectancy are much less significant. See Chatterjee et al. (2007b) for details. In this paper we discuss applications of the model specified in the first paper, Chatterjee et al. (2007a) to: (a) quantifying the effects of smoking and of changes in smoking habits, and, (b) quantifying the effects of treatment with statins (drugs designed to lower cholesterol).

3 3 The effects in which we are interested are the prevalence of ischaemic heart disease (IHD) and stroke and future life expectancy. The model used in this paper incorporates Model I for changes in categories of BMI, rather than Models II or III. Since our main focus here is on IHD, stroke and future life expectancy, the choice of BMI model has little effect on our results and conclusions. In Section 2 we review the rôle of smoking in our model, calculate the prevalence of IHD and stroke for individuals with different smoking profiles and then calculate the effects on these quantities of smokers giving up smoking at given future ages. These last calculations are particularly relevant in view of recent bans on smoking in enclosed public places introduced in the Republic of Ireland (2004), Scotland (2006), England and Wales (2007) and in other territories. Hypercholesterolaemia is a major risk factor for IHD. See Stanner (2005). Statins are a class of drug designed to lower the level of cholesterol. They were first licenced in the UK in the late 1980s and increasingly prescribed through the 1990s into the present century. In Section 3 we describe the effect of statins on hypercholesterolaemia and hence on IHD. In Section 4 we discuss briefly current thresholds for recommending treatment for hypercholesterolaemia and in Section 5 we show results quantifying the effect of prescribing statins. Acknowledgements are given at the end of this paper. The full list of references for all three papers is included at the end of Chatterjee et al. (2007a). Further details of the research underlying this paper and its two companion papers can be found in Chatterjee (2007). 2. Smoking, IHD, stroke and future life expectancy 2.1 The effect of smoking on IHD, stroke and mortality Our model for an individual s future lifetime, as set out in Chatterjee et al (2007a), incorporates smoking in a number of different ways: (a) Smoking is a direct risk factor for myocardial infarction (MI). Current smokers have a relative risk of MI times that of those who have never smoked. (b) Smoking is a direct risk factor for hard stroke (HS), but not for transient ischaemic attack (TIA). Current smokers have a relative risk of HS times that of those who have never smoked. (c) Smoking is not a direct risk factor for diabetes, hypertension or hypercholesterolaemia. (d) Smoking does have a small effect on BMI: giving up smoking tends to increase BMI and resuming smoking tends to decrease BMI. (e) Independently of its effect on MI and HS, smoking is a direct risk factor for mortality. Current smokers have a relative risk of dying times that of those who have never smoked. (f) The effects on MI, HS and mortality do not depend on sex, the number of cigarettes smoked or the number of years the individual smoked. See Chatterjee et al. (2007a) for details. The literature contains the following, not wholly consistent, points which, on balance, support our model in relation to the effect of smoking on IHD and stroke:

4 4 (i) The effects of smoking are both long and short term. Giving up smoking should, in principle, eliminate almost immediately the acute effects, but the atherosclerotic damage persists even after quitting. See Negri et al. (1994) and Lightwood and Glantz (1997). (ii) The odds ratio of acute MI for current smokers relative to non-smokers is 3.4. See Negri et al. (1994). (iii) The odds ratios for MI or coronary death among current smokers are 2.71 for men and 4.70 for women, compared to individuals who have never smoked. See Dobson et al. (1991). (iv) Cook et al. (1986) state that there is no trend in risk of IHD or stroke with the number of cigarettes smoked per day. This view is consistent with Lightwood and Glantz (1997), who modelled the effect of smoking, and of quitting, without taking account of the number of cigarettes smoked. However, Negri et al. (1994) found that the risk estimates for former smokers are higher at younger ages and directly related to the number of cigarettes smoked. (v) Men who have given up smoking in the last 5 years have a risk of IHD virtually identical to current smokers. The risk goes down to about twice that of never-smokers for men who have given up smoking for more than 5 years. But this risk does not go down further even after a 20-year follow-up. See Cook et al. (1986). (vi) The odds ratios of MI or coronary death among ex-smokers are similar to those of current smokers for the first year and then they decrease. After about 3 years the risk is not significantly elevated beyond that for never-smokers. See Dobson et al. (1991). (vii) The odds ratio of acute MI for ex-smokers relative to never-smokers is 1.4 for subjects who have given up smoking for one year, 1.5 for two to five years and 1.1 for six to ten years. The relative risk tends to decrease with the time since quitting and to become close to that of never-smokers after 10 years without smoking. See Negri et al. (1994). 2.2 The effect of giving up smoking The model set out in Chatterjee et al. (2007a) deals with individuals who never smoke and those who continue to smoke for the rest of their lives. We need to model the effects on IHD, stroke and mortality of giving up smoking. Our model for the relative risk of MI for current and ex smokers, relative to those who have never smoked, is as follows: and the model for the relative risk of HS is: RR(t) = ( )e t/ (1) RR(t) = ( )e t/ (2) where t is the time in years since giving up smoking. These models have exactly the same form as models proposed by Lightwood and Glantz (1997) in respect of acute MI and stroke, though some of our parameter values are different. Note that: (a) These models do not depend on sex, age, number of years as a smoker or the number of cigarettes smoked each day. This agrees with Lightwood and Glantz s model, except that their model for MI does depend on sex.

5 5 (b) The parameters and are taken from Chatterjee et al. (2007a, Table 9); they are the relative risks for current smokers estimated from the Framingham data and appropriate to the OS cohort. Lightwood and Glantz s values are 2.88 (MI, males), 3.85 (MI females) and 2.80 (stroke). (c) The parameter 1.1 for the residual effect on the relative risk of MI and HS of having smoked has been chosen taking account of Lightwood and Glantz s own values, (1.17 (MI, males), 1.40 (MI, females) and 1.42 (stroke)), the values reported in points (v), (vi) and (vii) above, and our own values for the relative risk for ex smokers estimated from the Framingham data. These last values, which do not take account of time since giving up smoking, are (MI) and (HS). (d) The parameters and 1.35, which control the rate of decay of the relative risk, are taken directly from Lightwood and Glantz s model. Numerically, formulae (1) and (2) tell us that the relative risks of MI and HS for current and ex-smokers are: 1. independent of age, sex and all other explanatory variables, 2. higher by a factor (resp ) for current smokers in respect of MI (resp. HS), 3. ultimately higher by a factor 1.1 for ex-smokers who stopped smoking a long time ago, 4. higher by factors 2.346, and in respect of MI (resp , and for HS) for someone who stopped smoking 1, 2 or 3 years ago. Our model for the relative risk of mortality for current and ex-smokers is as follows: RR(t) = (exp(0.5689) 1.09)e t (3) Apart from the parameter exp(0.5689) (= ), which is the relative risk of mortality for current smokers and is taken from Chatterjee et al. (2007a, Table 11), this formula has been chosen by fitting a curve to data in Kawachi et al. (1993). Details can be found in Chatterjee (2007). 2.3 Trends in the prevalence of smoking Table 1 shows the prevalence of smoking in the UK for selected years, split by sex and age band. The prevalence of smoking in the UK has declined slowly from 1974 to Table 2 shows the prevalence of current and ex-smokers in the UK in 2003 split by sex and the age at which they started smoking. A feature of Table 2 is that it indicates that almost all smokers start smoking before age 25. Many countries have imposed a ban on smoking in enclosed public places, among them the Republic of Ireland (2004), Scotland (2006), Wales (2007) and England (2007). The effect of the ban on the prevalence of smoking in the Republic of Ireland, introduced on 29 March 2004, can be seen in figures produced by The Office for Tobacco Control, OTC (2007). These figures, 12 month moving averages, show that the overall prevalence of smoking fell from around 25.5% when the ban was introduced, to a low point of just over 23% in February 2005, from where it has risen and stabilised at about 24.4% in June The effects on some age groups are very different from the overall pattern. The prevalence of smoking among those aged 15 to 18 rose sharply from February 2006 to 21.5% in June 2007 it had been a little over 18% in April For those aged 71+ the prevalence of smoking has dropped from around 13% when the ban was introduced to less than 10% in June 2007.

6 6 Table 1: Prevalence of smoking (%) in the UK. Source: Rickards (2003). Age Male and over All aged 16 and over Female and over All aged 16 and over Table 2: Percentages of smokers and ex-smokers in 2003 in the UK, classified by age at which they started smoking regularly. Source: Rickards (2003). Age Current Smoker Ex Smoker Male Under and over 5 4 Female Under and over 7 8 It is clearly of interest to use our model to investigate the effect of smoking, particularly giving up smoking, on expected future lifetime and on the prevalence of IHD and stroke.

7 7 2.4 Numerical results Table 3 shows values for the expected future lifetime and the expected future Event free lifetime for males and females, starting from ages 20 and 40 for different smoking profiles. These profiles are Non-smokers (people who never smoke at any time), Current smokers (people who smoke from before age 20 and continue as smokers for their remaining lifetime) and Given up smoking (people who smoke from before age 20, give up smoking at the age indicated and then never smoke again). Event free future lifetime is the time until the diagnosis of IHD or HS or death, whichever occurs first. Table 4 shows the prevalence of IHD, HS and IHD or HS at ages 60 and 80 for starting ages 20 and 40 and for different smoking profiles. For both Tables 3 and 4 the starting population has an HSE 2003 profile (see Chatterjee et al. (2007a, Section 12.2) with the extra condition that for the Event free calculations in Table 3 and all the calculations in Table 4, they have not been diagnosed with either IHD or HS before the starting age of 20 or 40. Tables 3 and 4 show that: (a) Smoking reduces expected future lifetime (EFL) and expected future Event free lifetime considerably. For a male aged 20 the difference in EFL is 7.1 years and for a female aged 20 it is 6.3 years. (b) The prevalence of IHD and stroke at ages 60 and 80 is considerably greater for smokers than for those who never smoke. These facts are well known. What is perhaps more interesting is that giving up smoking, no matter how late in life, can significantly implove EFL and reduce the probability of IHD and/or stroke. For example, for females age 80 who smoked from before age 20 until they were 60 and then gave up, the percentage with IHD and/or stroke is 21.1, but among those still alive at age 80 who continued smoking until at least age 80, the percentage is 29.3.

8 8 Table 3: Effect of giving up smoking at different ages. Expected future lifetime from Expected future Event free lifetime Age 20 Age 40 Age 20 Age 40 Smoking profile Male Female Male Female Male Female Male Female Non smoker Given up smoking at age Current smoker

9 9 Table 4: Effect on prevalence of giving up smoking at different ages. Age 20 Age 40 Age 20 Age 40 Smoking profile Male Female Male Female Male Female Male Female Prevalence of IHD at age 60 Prevalence of IHD at age 80 Non smoker Given up smoking at age Current smoker Prevalence of stroke at age 60 Prevalence of stroke at age 80 Non smoker Given up smoking at age Current smoker Prevalence of IHD/stroke at age 60 Prevalence of IHD/stroke at age 80 Non smoker Given up smoking at age Current smoker

10 10 3. Statins Statins are drugs designed to lower cholesterol, in particular low density lipoprotein (LDL). They were first licenced for use in the UK in 1987 and have been developed at intervals since then, with one of the most recent, rosuvastatin, being licenced in the UK in They have attracted considerable attention in recent years in both the popular press and the medical literature. For example: A new pill for all ills. The Independent 26 April Wider use of statins could save thousands of lives. The Independent 27 September Could the heart disease wonder drug save your life? The Mirror 26 January A statin is one of the components of the Polypill proposed by Wald and Law (2003) in an article entitled A strategy to reduce cardiovascular disease by more than 80% published in the British Medical Journal. This article was the basis for an Editorial in the same issue of BMJ entitled The most important BMJ for 50 years? (Smith (2003)). The dose of the statin proposed for the Polypill would reduce LDL by 1.8 mmol/l (Wald and Law (2003)). While this reduction in LDL takes place very quickly within about 6 months the effect on IHD takes longer. Based on a meta analysis, Law et al. (2003) claim that the effect on fatal and non fatal MI of this reduction in LDL is a reduction in the relative risk of MI, as shown in Table 5, and that this relative reduction does not depend on the starting concentration of LDL. It should be noted that most of the studies included in this meta analysis lasted less than 5 years. Reliable data on the long term effects of statins, in particular for the most recently developed statins, are not yet available. Table 5: Percentage reduction in risk of fatal and non-fatal MI by duration of treatment. % Reduction in risk for Duration of treatment a reduction in LDL of 1.8 mmol/l 1st year 19 2nd year 39 3rd-5th years 51 6th and subsequent years 55 Law et al. (2003) also claim that statins have beneficial effects on stroke, with an immediate and lasting reduction of 17% in the relative risk of stroke for a 1.8 mmol/l reduction in LDL. This is interesting because hypercholesterolaemia is not a direct risk factor for stroke, see Chatterjee et al. (2007a, Section 9), though there is evidence in the literature that statins have benefits beyond lowering LDL. See Vaughan et al. (1996), Palinski (2001) and Wannamethee et al. (2000).

11 11 4. Treatment thresholds for hypercholesterolaemia Various thresholds have been proposed, and are used, to determine when to prescribe statins. These treatment thresholds are typically based on the concentration of LDL, the presence of other risk factors, for example smoking and diabetes, and the calculated risk of IHD over a given time period. See McElduff et al. (2006) for a survey of these protocols. McElduff et al. (2006) surveyed 1653 men aged between 49 and 65 to determine what percentage would be eligible for treatment with statins given each of five protocols. The answers ranged from 14% to 77%, with all but one protocol covering 58% or more of the surveyed population. Wald and Law (2003) propose that the Polypill should be taken by everyone over age 55. This has some justification since age is a major risk factor for IHD and stroke and since there are beneficial effects from taking statins whatever the initial concentration of LDL. A UK Government adviser, Professor Roger Boyle, has been reported as saying there are benefits in giving statins to all men over age 50 and all women over age 60 (Times (2007)), although he is also reported as saying that people are not yet ready for mass medication. 5. The effects of treatment with statins 5.1 Numerical results In this section we use the model described in the first paper in this series, Chatterjee et al. (2007a), to quantify the effect of statins on future expected lifetime and future expected event free lifetime, i.e. expected time until the first of IHD, stroke or death. To simplify the presentation, we use age as the threshold for treatment with statins. Calculations based on other thresholds can be found in Chatterjee (2007). We will assume initially that the effect of treatment with statins from any age is a reduction in the intensity of MI as shown in Table 5 and a reduction of 17% in the intensity of HS. The figures in Table 6 show the future expected lifetimes and future expected event free lifetimes from age 20 for males/females, non smokers/smokers assuming statins are not available ( Untreated ) and then assuming statins are taken by everyone reaching the different ages indicated ( Treated at age... ). The difference between the Treated at age... and Untreated figures measures the beneficial effect of statins. The starting point for these calculations is an HSE 2003 profile (assuming no prior IHD or stroke in the case of the event free calculations). The figures in Table 6 show that the benefits from taking statins are greater for men than for women and greater for smokers than for non smokers, i.e. greater for those at greater risk of IHD and stroke. The figures in Table 7 show the effects from age 50 of treatment with statins on future expected lifetime and future expected event free lifetime for different starting profiles relating to diabetes, hypercholesterolaemia and hypertension. In each case Low refers to the lowest and High to the highest category of the risk factor, as defined in Chatterjee et al. (2007a, Section 2). The starting point is an HSE 2003 profile in all respects except for the three risk factors and for the smoking pattern, as shown. These figures show in general terms that the benefits of statins are greater if the risk of IHD or stroke is higher.

12 12 Table 6: Effect of treatment with statins on expected future lifetime and expected future Event free lifetime from age 20 by age of treatment. Future Expected future lifetime from age 20 Male Female Never Smoked Current Smoker Never Smoked Current Smoker Treated from age Treated from age Treated from age Treated from age Treated from age Untreated Expected future event free lifetime from age 20 Male Female Never Smoked Current Smoker Never Smoked Current Smoker Treated from age Treated from age Treated from age Treated from age Treated from age Untreated

13 13 Table 7: Effect of treatment with statins on expected future lifetime and expected future event free lifetime for individuals with different risk profiles from age 50. Expected future lifetime from age 50 Expected future event free lifetime from age 50 Male Female Male Female Never Current Never Current Never Current Never Current Diab. H Chol. H tens. Smoked Smoker Smoked Smoker Smoked Smoker Smoked Smoker Treated Low Low Low Untreated Difference Treated Low Low High Untreated Difference Treated Low High Low Untreated Difference Treated High Low Low Untreated Difference Treated Low High High Untreated Difference Treated High Low High Untreated Difference Treated High High Low Untreated Difference Treated High High High Untreated Difference

14 Sensitivity testing In the first paper in this series, Chatterjee et al. (2007a, Section 13), we discussed the uncertainty of values for expected future lifetime, where this uncertainty arises from the variability of the estimates of the many parameters in the model described in that paper. For example, the standard deviation associated with the value of 58.6 in Table 6 for the Untreated expected future lifetime from age 20 for a male who never smokes is 0.6. See Chatterjee et al. (2007a, Table 15). The estimated expected future lifetime from age 20 for males treated with statins from age 50, 59.2 (Table 6), is thus within one standard error of the estimated Untreated expected future lifetime. This prompts questions about the statistical significance of this increase in expected future lifetime. However, by using the same sets of simulated parameters to calculate the Untreated and Treated from age 50 expected future lifetimes, we can estimate the standard error of the estimated difference, 0.6 years, directly. The standard error of this difference is 0.08 years. Further details can be found in Chatterjee (2007). The standard deviation of the difference between the Treated from age... and Untreated future lifetimes discussed in the previous paragraph takes account only of the variability of the parameters of our model set out in Chatterjee et al. (2007a). In particular, it does not take account of any uncertainty relating to the reduction in the intensity of MI as set out in Table 5 or the figure of 17% for the reduction in the intensity of stroke resulting from treatment with statins. These estimates of the reduction in intensities are key parameters in assessing the effects of statins and we can assess their numerical significance by scenario testing arbitrarily assuming the reductions will be 30% higher (High scenario) or 30% lower (Low scenario) than the values shown in Table 5. These revised estimates are shown in Table 8, with the values for MI from Table 5 shown as the Standard scenario. Table 8: Percentage reduction in risk by duration of treatment High and Low scenarios. % Reduction in risk Event Duration of treatment High scenario Standard Low scenario Myocardial 1st year Infarction 2nd year rd-5th years th and subsequent years Stroke All durations Figures for expected future lifetime and expected future event free lifetime from age 50 using these three different scenarios for the effect of statins are shown in Table 9. The Treated figures assume everyone is treated with statins from age 50. It can be seen from Table 9 that moving from the Low to the High scenario approximately doubles the increase in expected future ( Event free ) lifetime from age 50 in every case.

15 15 Table 9: Sensitivity testing for the effect of treatment with statins on expected future lifetime and expected future event free lifetime from age 50. Expected future lifetime from age 50 Expected future Event free lifetime from age 50 Male Female Male Female Never Current Never Current Never Current Never Current Smoked Smoker Smoked Smoker Smoked Smoker Smoked Smoker Treated High scenario Untreated Difference Treated Standard scenario Untreated Difference Treated Low scenario Untreated Difference

16 16 6. Conclusions Since reliable data on the long term benefits of statins are not yet available, figures coming from models such as ours which incorporate assumptions about these long term effects will necessarily be revised in the future when more reliable data do become available. Nevertheless, it seems clear from the figures presented in Section 5 that statins will have a significant impact on future life expectancy for some time to come. It is a sobering observation that even with our more optimistic assumption about the effect of statins, their effect on future life expectancy is considerably less than the effect for smokers of giving up smoking, cf Table 9 ( High scenario ) and Table 3.

Underwriting Critical Illness Insurance: A model for coronary heart disease and stroke

Underwriting Critical Illness Insurance: A model for coronary heart disease and stroke Underwriting Critical Illness Insurance: A model for coronary heart disease and stroke Presented to the 6th International Congress on Insurance: Mathematics and Economics. July 2002. Lisbon, Portugal.

More information

What is meant by "randomization"? (Select the one best answer.)

What is meant by randomization? (Select the one best answer.) Preview: Post-class quiz 5 - Clinical Trials Question 1 What is meant by "randomization"? (Select the one best answer.) Question 2 A. Selection of subjects at random. B. Randomization is a method of allocating

More information

UNIVERSITY OF BIRMINGHAM AND UNIVERSITY OF YORK HEALTH ECONOMICS CONSORTIUM (NICE EXTERNAL CONTRACTOR) Health economic report on piloted indicator(s)

UNIVERSITY OF BIRMINGHAM AND UNIVERSITY OF YORK HEALTH ECONOMICS CONSORTIUM (NICE EXTERNAL CONTRACTOR) Health economic report on piloted indicator(s) UNIVERSITY OF BIRMINGHAM AND UNIVERSITY OF YORK HEALTH ECONOMICS CONSORTIUM (NICE EXTERNAL CONTRACTOR) Health economic report on piloted indicator(s) Pilot QOF indicator: The percentage of patients 79

More information

Risk Engines in Diabetes

Risk Engines in Diabetes Risk Engines in Diabetes Martin Bland Prof. of Health Statistics University of York http://www-users.york.ac.uk/~mb55/msc/ What is a risk engine? A fancy name for a prediction of risk from the characteristics

More information

Quantifying Life expectancy in people with Type 2 diabetes

Quantifying Life expectancy in people with Type 2 diabetes School of Public Health University of Sydney Quantifying Life expectancy in people with Type 2 diabetes Alison Hayes School of Public Health University of Sydney The evidence Life expectancy reduced by

More information

Daily. Weekly. Less than weekly. Ex-smoker. Never smoked

Daily. Weekly. Less than weekly. Ex-smoker. Never smoked 3. Tobacco smoking Smoking is a major contributor to mortality and ill-health of Australians. In Australia, approximately 19,000 deaths annually are attributable to smoking-related causes. In 1997 98,

More information

Ethnic Minorities, Refugees and Migrant Communities: physical activity and health

Ethnic Minorities, Refugees and Migrant Communities: physical activity and health Ethnic Minorities, Refugees and Migrant Communities: physical activity and health July 2007 Introduction This briefing paper was put together by Sporting Equals. Sporting Equals exists to address racial

More information

Now we ve weighed up your application for our protection products, it s only fair we talk you through our assessment process. More than anything, we

Now we ve weighed up your application for our protection products, it s only fair we talk you through our assessment process. More than anything, we how we assess your application UNDERWRITING EXPLAINED. Now we ve weighed up your application for our protection products, it s only fair we talk you through our assessment process. More than anything,

More information

Cardiovascular disease Key contact/author: Dr Veena de Souza, Consultant in Public Health, Buckinghamshire County Council

Cardiovascular disease Key contact/author: Dr Veena de Souza, Consultant in Public Health, Buckinghamshire County Council Cardiovascular disease Key contact/author: Dr Veena de Souza, Consultant in Public Health, Buckinghamshire County Council Introduction Cardiovascular disease (CVD) includes heart disease and stroke. It

More information

Absolute cardiovascular disease risk assessment

Absolute cardiovascular disease risk assessment Quick reference guide for health professionals Absolute cardiovascular disease risk assessment This quick reference guide is a summary of the key steps involved in assessing absolute cardiovascular risk

More information

The National Cardiovascular Intelligence Network Cardiovascular disease key facts. Coronary heart disease (CHD) and heart failure

The National Cardiovascular Intelligence Network Cardiovascular disease key facts. Coronary heart disease (CHD) and heart failure Fact sheet number 12 The National Cardiovascular Intelligence Network Cardiovascular disease key facts Coronary heart disease (CHD) and heart failure This fact sheet is one in a series which outlines some

More information

Fewer people with coronary heart disease are being diagnosed as compared to the expected figures.

Fewer people with coronary heart disease are being diagnosed as compared to the expected figures. JSNA Coronary heart disease 1) Key points 2) Introduction 3) National picture 4) Local picture of CHD prevalence 5) Mortality from coronary heart disease in Suffolk County 6) Trends in mortality rates

More information

National Life Tables, United Kingdom: 2012 2014

National Life Tables, United Kingdom: 2012 2014 Statistical bulletin National Life Tables, United Kingdom: 2012 2014 Trends for the UK and constituent countries in the average number of years people will live beyond their current age measured by "period

More information

International Task Force for Prevention Of Coronary Heart Disease. Clinical management of risk factors. coronary heart disease (CHD) and stroke

International Task Force for Prevention Of Coronary Heart Disease. Clinical management of risk factors. coronary heart disease (CHD) and stroke International Task Force for Prevention Of Coronary Heart Disease Clinical management of risk factors of coronary heart disease and stroke Economic analyses of primary prevention of coronary heart disease

More information

Obesity and the facts

Obesity and the facts Obesity and the facts An analysis of data from the Health Survey for England Conducted by the Social Issues Research Centre February 2005 Social Issues Research Centre 28 St Clements Street Oxford OX4

More information

ROY CASTLE LUNG CANCER FOUNDATION. Smoking Gun Armed Forces Look After Your Lungs Project Report

ROY CASTLE LUNG CANCER FOUNDATION. Smoking Gun Armed Forces Look After Your Lungs Project Report Smoking Gun Armed Forces Look After Your Lungs Project Report Project Advisory Group Lt Col Tony Rock, Army Headquarters Staff lead for Health Promotion Eileen Streets, Director of Tobacco Control, Roy

More information

National study. Closing the gap. Tackling cardiovascular disease and health inequalities by prescribing statins and stop smoking services

National study. Closing the gap. Tackling cardiovascular disease and health inequalities by prescribing statins and stop smoking services National study Closing the gap Tackling cardiovascular disease and health inequalities by prescribing statins and stop smoking services September 2009 About the Care Quality Commission The Care Quality

More information

NUTS! The Story of My Life. Prof. Joan Sabaté Department of Nutrition Loma Linda University

NUTS! The Story of My Life. Prof. Joan Sabaté Department of Nutrition Loma Linda University NUTS! The Story of My Life Prof. Joan Sabaté Department of Nutrition Loma Linda University Dr. Joan Sabate Chair, Nutrition, School of Public Health, Loma Linda University CA From Spain, Dr. Sabaté is

More information

Body Mass Index as a measure of obesity

Body Mass Index as a measure of obesity Body Mass Index as a measure of obesity June 2009 Executive summary Body Mass Index (BMI) is a person s weight in kilograms divided by the square of their height in metres. It is one of the most commonly

More information

ADVANCE: a factorial randomised trial of blood pressure lowering and intensive glucose control in 11,140 patients with type 2 diabetes

ADVANCE: a factorial randomised trial of blood pressure lowering and intensive glucose control in 11,140 patients with type 2 diabetes ADVANCE: a factorial randomised trial of blood pressure lowering and intensive glucose control in 11,140 patients with type 2 diabetes Effects of a fixed combination of the ACE inhibitor, perindopril,

More information

Hypertension Profile. NHS Coastal West Sussex CCG. Background

Hypertension Profile. NHS Coastal West Sussex CCG. Background Hypertension Profile NHS Coastal West Sussex Background Diagnosis and control of in NHS Coastal West Sussex * This profile compares NHS Coastal West Sussex with data for, a group of similar s and the South

More information

Design and principal results

Design and principal results International Task Force for Prevention Of Coronary Heart Disease Coronary heart disease and stroke: Risk factors and global risk Slide Kit 1 (Prospective Cardiovascular Münster Heart Study) Design and

More information

Role of elevated heart rate in the development of cardiovascular disease in hypertension

Role of elevated heart rate in the development of cardiovascular disease in hypertension ONLINE SUPPLEMENT Role of elevated heart rate in the development of cardiovascular disease in By Palatini P Department of Clinical and Experimental Medicine University of Padova, Padua, Italy Running title:

More information

AMODEL FOR CORONARY HEART DISEASE AND STROKE WITH APPLICATIONS TO CRITICAL ILLNESS INSURANCE UNDERWRITING I: THE MODEL

AMODEL FOR CORONARY HEART DISEASE AND STROKE WITH APPLICATIONS TO CRITICAL ILLNESS INSURANCE UNDERWRITING I: THE MODEL AMODEL FOR CORONARY HEART DISEASE AND STROKE WITH APPLICATIONS TO CRITICAL ILLNESS INSURANCE UNDERWRITING I: THE MODEL Angus S. Macdonald,* Howard R. Waters, and Chessman T. Wekwete ABSTRACT In Part I

More information

Deaths in Older Adults in England

Deaths in Older Adults in England O B S E R V A T O R Y National End of Life Care Programme Improving end of life care October 21 S O U T H W E S T P U B L I C H E A L T H www.endoflifecare-intelligence.org.uk 1 Foreword This report, the

More information

Chronic Disease and Health Care Spending Among the Elderly

Chronic Disease and Health Care Spending Among the Elderly Chronic Disease and Health Care Spending Among the Elderly Jay Bhattacharya, MD, PhD for Dana Goldman and the RAND group on medical care expenditure forecasting Chronic Disease Plays an Increasingly Important

More information

Pricing the Critical Illness Risk: The Continuous Challenge.

Pricing the Critical Illness Risk: The Continuous Challenge. Pricing the Critical Illness Risk: The Continuous Challenge. To be presented at the 6 th Global Conference of Actuaries, New Delhi 18 19 February 2004 Andres Webersinke, ACTUARY (DAV), FASSA, FASI 9 RAFFLES

More information

Critical Illness Insurance

Critical Illness Insurance Critical Illness Insurance The Actuaries Club of the Southwest November, 11 2004 Presented By: Steve Pummer, Towers Perrin Agenda Background Product Design Pricing Risk Management The Regulatory Environment

More information

By submitting this essay, I attest that it is my own work, completed in accordance with University regulations. Sudhakar Nuti

By submitting this essay, I attest that it is my own work, completed in accordance with University regulations. Sudhakar Nuti 1 HLTH 230: Global Health: Challenges and Responses Professor Richard Skolnik Teaching Fellow: Nidhi Parekh By submitting this essay, I attest that it is my own work, completed in accordance with University

More information

Trend tables. Health Survey for England. A survey carried out on behalf of the Health and Social Care Information Centre. Joint Health Surveys Unit

Trend tables. Health Survey for England. A survey carried out on behalf of the Health and Social Care Information Centre. Joint Health Surveys Unit Health Survey for England 2013 Trend tables 2 A survey carried out on behalf of the Health and Social Care Information Centre Joint Health Surveys Unit Department of Epidemiology and Public Health, UCL

More information

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE SCOPE

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE SCOPE 1 NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE Guideline title SCOPE Hypertension: clinical management of primary hypertension in adults 1.1 Short title Hypertension (partial update) 2 The remit

More information

Optimal levels of alcohol consumption for men and women at different ages, and the all-cause mortality attributable to drinking

Optimal levels of alcohol consumption for men and women at different ages, and the all-cause mortality attributable to drinking Optimal levels of alcohol consumption for men and women at different ages, and the all-cause mortality attributable to drinking Ian R. White, Dan R. Altmann and Kiran Nanchahal 1 1. Summary Background

More information

African Americans & Cardiovascular Diseases

African Americans & Cardiovascular Diseases Statistical Fact Sheet 2013 Update African Americans & Cardiovascular Diseases Cardiovascular Disease (CVD) (ICD/10 codes I00-I99, Q20-Q28) (ICD/9 codes 390-459, 745-747) Among non-hispanic blacks age

More information

Child Weight. According to the HSE, in 2010, obesity prevalence among year olds was 18.3% (Table 2).

Child Weight. According to the HSE, in 2010, obesity prevalence among year olds was 18.3% (Table 2). NOO data factsheet Child Weight July 2012 Key points Obesity among 2 10 year olds rose from 10.1% in 1995 to 14.6% in 2010 according to Health Survey for England (HSE) figures. There are growing indications

More information

PRESCRIBING GUIDELINES FOR LIPID LOWERING TREATMENTS for SECONDARY PREVENTION

PRESCRIBING GUIDELINES FOR LIPID LOWERING TREATMENTS for SECONDARY PREVENTION Hull & East Riding Prescribing Committee PRESCRIBING GUIDELINES FOR LIPID LOWERING TREATMENTS for SECONDARY PREVENTION For guidance on Primary Prevention please see NICE guidance http://www.nice.org.uk/guidance/cg181

More information

STATEMENT ON ESTIMATING THE MORTALITY BURDEN OF PARTICULATE AIR POLLUTION AT THE LOCAL LEVEL

STATEMENT ON ESTIMATING THE MORTALITY BURDEN OF PARTICULATE AIR POLLUTION AT THE LOCAL LEVEL COMMITTEE ON THE MEDICAL EFFECTS OF AIR POLLUTANTS STATEMENT ON ESTIMATING THE MORTALITY BURDEN OF PARTICULATE AIR POLLUTION AT THE LOCAL LEVEL SUMMARY 1. COMEAP's report 1 on the effects of long-term

More information

Scottish Diabetes Survey 2014. Scottish Diabetes Survey Monitoring Group

Scottish Diabetes Survey 2014. Scottish Diabetes Survey Monitoring Group Scottish Diabetes Survey 2014 Scottish Diabetes Survey Monitoring Group Contents Table of Contents Contents... 2 Foreword... 4 Executive Summary... 6 Prevalence... 8 Undiagnosed diabetes... 21 Duration

More information

Article. Heart health and cholesterol levels of Canadians, 2007 to 2009. Component of Statistics Canada Catalogue no. 82-625-X Health Fact Sheets

Article. Heart health and cholesterol levels of Canadians, 2007 to 2009. Component of Statistics Canada Catalogue no. 82-625-X Health Fact Sheets Component of Statistics Canada Catalogue no. 82-625-X Health Fact Sheets Article Heart health and cholesterol levels of Canadians, 2007 to 2009 March How to obtain more information For information about

More information

Measures of disease frequency

Measures of disease frequency Measures of disease frequency Madhukar Pai, MD, PhD McGill University, Montreal Email: madhukar.pai@mcgill.ca 1 Overview Big picture Measures of Disease frequency Measures of Association (i.e. Effect)

More information

Chronic diseases in low and middle income countries: more research or more action? Shah Ebrahim London School of Hygiene & Tropical Medicine

Chronic diseases in low and middle income countries: more research or more action? Shah Ebrahim London School of Hygiene & Tropical Medicine Chronic diseases in low and middle income countries: more research or more action? Shah Ebrahim London School of Hygiene & Tropical Medicine More action needed Overview Growing burden of chronic diseases

More information

Statistical Bulletin. National Life Tables, United Kingdom, 2011-2013. Key Points. Summary. Introduction

Statistical Bulletin. National Life Tables, United Kingdom, 2011-2013. Key Points. Summary. Introduction Statistical Bulletin National Life Tables, United Kingdom, 2011-2013 Coverage: UK Date: 25 September 2014 Geographical Area: Country Theme: Population Key Points A newborn baby boy could expect to live

More information

Chapter 2: Health in Wales and the United Kingdom

Chapter 2: Health in Wales and the United Kingdom Chapter 2: Health in Wales and the United Kingdom This section uses statistics from a range of sources to compare health outcomes in Wales with the remainder of the United Kingdom. Population trends Annual

More information

Spirometry, COPD and lung cancer

Spirometry, COPD and lung cancer Spirometry, COPD and lung cancer Associate Professor Robert Young BMedSc, MBChB, DPhil (Oxon), FRACP, FRCP University of Auckland, New Zealand Spirometry for those with smoking and dust exposures Risk

More information

Culture and experience Health

Culture and experience Health 48 Culture and experience Health Health The health of a population reflects both the lives of citizens and the health system's ability to prevent and cure diseases. With regard to health and welfare, there

More information

Expert Commentary. A response to the recent JAMA meta analysis on omega 3 supplementation and cardiovascular events

Expert Commentary. A response to the recent JAMA meta analysis on omega 3 supplementation and cardiovascular events Expert Commentary A response to the recent JAMA meta analysis on omega 3 supplementation and cardiovascular events Dr. Bruce J. Holub, Ph.D., Professor Emeritus, University of Guelph Expert Commentary:

More information

NHS Diabetes Prevention Programme (NHS DPP) Non-diabetic hyperglycaemia. Produced by: National Cardiovascular Intelligence Network (NCVIN)

NHS Diabetes Prevention Programme (NHS DPP) Non-diabetic hyperglycaemia. Produced by: National Cardiovascular Intelligence Network (NCVIN) NHS Diabetes Prevention Programme (NHS DPP) Non-diabetic hyperglycaemia Produced by: National Cardiovascular Intelligence Network (NCVIN) Date: August 2015 About Public Health England Public Health England

More information

What are the PH interventions the NHS should adopt?

What are the PH interventions the NHS should adopt? What are the PH interventions the NHS should adopt? South West Clinical Senate 15 th January, 2015 Debbie Stark, PHE Healthcare Public Health Consultant Kevin Elliston: PHE Consultant in Health Improvement

More information

Cardiovascular disease profile

Cardiovascular disease profile Cardiovascular disease profile Cardiovascular risk factors March 2015 Background This chapter of the Cardiovascular disease profiles focuses on risk factors for cardiovascular disease and is produced by

More information

Relative Risk Tool Documentation - September 8, 2016 2016

Relative Risk Tool Documentation - September 8, 2016 2016 Relative Risk Tool Documentation - September 8, 2016 2016 8 September 2016 Report of the Society of Actuaries Underwriting Criteria Team Table of Contents 1 Overview... 2 2 Limitations of the RR Tool...

More information

UK under pressure. A national study of blood pressure by Lloydspharmacy

UK under pressure. A national study of blood pressure by Lloydspharmacy UK under pressure A national study of blood pressure by Lloydspharmacy 2 Foreword Lloydspharmacy conducted a piece of research earlier this year to find out to what extent UK adults are leading healthy

More information

Who typically has Metabolic Syndrome? According to the American Heart Association, three groups of people often have metabolic syndrome:

Who typically has Metabolic Syndrome? According to the American Heart Association, three groups of people often have metabolic syndrome: Metabolic Syndrome By Seth Bilazarian, MD, FACC, FSCAI, RPVI Clinical and Intervential Cardiologist What is the Metabolic Syndrome? The Metabolic Syndrome is a collection of five problems that greatly

More information

Article in Review. Citations to date: 67!

Article in Review. Citations to date: 67! Journal Club Week 1 Doctor, I have migraine with aura, am I more likely to die of cardiovascular disease?!!!!!!!!!!!!!! Samantha Warhurst! Med3000 Student! ! Article in Review Gudmundsson, L. S., Scher,

More information

Chapter 7: Strengthen the Role & Impact of Ill Health Prevention Diabetes

Chapter 7: Strengthen the Role & Impact of Ill Health Prevention Diabetes Chapter 7: Strengthen the Role & Impact of Ill Health Prevention Diabetes Lead author: Dr Sapna Chauhan Introduction Diabetes is a major public health issue. There are currently around 3.8 million people

More information

in Singapore and provide valuable inputs for the the Ministry of Health conducts periodic, population-

in Singapore and provide valuable inputs for the the Ministry of Health conducts periodic, population- 5 Main Report H E A LT H SURVEY Introduction 1 Introduction N AT I O N A L Background The Epidemiology and Disease Control Division of in Singapore and provide valuable inputs for the the Ministry of

More information

WorkSmart WorkSmart myhealth WorkSmart A1C LDL TrigLyCeriDes CoTinine ToTAL hdl ToTAL ChoLesTeroL ChoLesTeroL-hDL ratio

WorkSmart WorkSmart myhealth WorkSmart A1C LDL TrigLyCeriDes CoTinine ToTAL hdl ToTAL ChoLesTeroL ChoLesTeroL-hDL ratio is designed for the workplace looking for a single, comprehensive set of tests that establish baseline laboratory values for wellness and disease management programs. The Test Package describes the normal

More information

Executive Summary and Questions and Answers

Executive Summary and Questions and Answers Menopausal Hormone Therapy and Health Outcomes During the Intervention and Extended Poststopping Phase of the Women s Health Initiative Randomized Trials (Manson et al., 2013) Table of Contents Executive

More information

INFORMATION PAPER ON DIABETES IN SINGAPORE KEY FACTS

INFORMATION PAPER ON DIABETES IN SINGAPORE KEY FACTS KEY FACTS Diabetes is on the rise, and is among the top 10 causes of death in Singapore. Indians are most likely to have diabetes, followed by the Malays and Chinese. The risk of diabetes can be reduced

More information

Cardiovascular Endpoints

Cardiovascular Endpoints The Malmö Diet and Cancer Study Department of Clinical Sciences Skåne University Hospital, Malmö Lund University The Malmö Diet and Cancer Study CV-cohort Cardiovascular Endpoints End of follow-up: 30

More information

UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA DOCTORAL SCHOOL DOCTORATE THESIS. - Summary

UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA DOCTORAL SCHOOL DOCTORATE THESIS. - Summary UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA DOCTORAL SCHOOL DOCTORATE THESIS - Summary CHRONIC COMPLICATIONS IN PATIENTS WITH TYPE 1 DIABETES MELLITUS - Epidemiological study - PhD Manager: Professor PhD.

More information

Prognostic impact of uric acid in patients with stable coronary artery disease

Prognostic impact of uric acid in patients with stable coronary artery disease Prognostic impact of uric acid in patients with stable coronary artery disease Gjin Ndrepepa, Siegmund Braun, Martin Hadamitzky, Massimiliano Fusaro, Hans-Ullrich Haase, Kathrin A. Birkmeier, Albert Schomig,

More information

MANAGEMENT OF LIPID DISORDERS: IMPLICATIONS OF THE NEW GUIDELINES

MANAGEMENT OF LIPID DISORDERS: IMPLICATIONS OF THE NEW GUIDELINES MANAGEMENT OF LIPID DISORDERS: IMPLICATIONS OF THE NEW GUIDELINES Robert B. Baron MD MS Professor and Associate Dean UCSF School of Medicine Declaration of full disclosure: No conflict of interest EXPLAINING

More information

UNDERWRITING HIGH BLOOD PRESSURE (HYPERTENSION).

UNDERWRITING HIGH BLOOD PRESSURE (HYPERTENSION). UNDERWRITING OUTCOMES EXPLAINED UNDERWRITING HIGH BLOOD PRESSURE (HYPERTENSION). One in three adults in the UK has high blood. This guide explains what effect the condition has on our underwriting decisions

More information

Malmö Preventive Project. Cardiovascular Endpoints

Malmö Preventive Project. Cardiovascular Endpoints Malmö Preventive Project Department of Clinical Sciences Malmö University Hospital Lund University Malmö Preventive Project Cardiovascular Endpoints End of follow-up: 31 Dec 2008 * Report: 21 June 2010

More information

RR833. The joint effect of asbestos exposure and smoking on the risk of lung cancer mortality for asbestos workers (1971-2005)

RR833. The joint effect of asbestos exposure and smoking on the risk of lung cancer mortality for asbestos workers (1971-2005) Health and Safety Executive The joint effect of asbestos exposure and smoking on the risk of lung cancer mortality for asbestos workers (1971-2005) Prepared by the Health and Safety Laboratory for the

More information

Malmö Preventive Project. Cardiovascular Endpoints

Malmö Preventive Project. Cardiovascular Endpoints Malmö Preventive Project Department of Clinical Sciences Skåne University Hospital, Malmö Lund University Malmö Preventive Project Cardiovascular Endpoints End of follow-up: 30 June 2009 Report: 7 October

More information

Scottish Diabetes Survey 2013. Scottish Diabetes Survey Monitoring Group

Scottish Diabetes Survey 2013. Scottish Diabetes Survey Monitoring Group Scottish Diabetes Survey 2013 Scottish Diabetes Survey Monitoring Group Contents Contents... 2 Foreword... 4 Executive Summary... 6 Prevalence... 8 Undiagnosed diabetes... 18 Duration of Diabetes... 18

More information

Tuberculosis, tobacco and COPD: Colliding Epidemics

Tuberculosis, tobacco and COPD: Colliding Epidemics Tuberculosis, tobacco and COPD: Colliding Epidemics Gonzalo G. Alvarez MD, MPH, FRCPC Assistant Professor of Medicine University of Ottawa at The Ottawa Hospital Division of Respirology and Infectious

More information

Measurement in Epidemiology: Frequency, Association, and Impact

Measurement in Epidemiology: Frequency, Association, and Impact Measurement in Epidemiology: Frequency, Association, and Impact Mayfong Mayxay M.D., Ph.D. (Trop Med) GFMER - WHO - UNFPA - LAO PDR Training Course in Reproductive Health Research Vientiane, 12 October

More information

Primary Prevention of Cardiovascular Disease with a Mediterranean diet

Primary Prevention of Cardiovascular Disease with a Mediterranean diet Primary Prevention of Cardiovascular Disease with a Mediterranean diet Alejandro Vicente Carrillo, Brynja Ingadottir, Anne Fältström, Evelyn Lundin, Micaela Tjäderborn GROUP 2 Background The traditional

More information

Understanding diabetes Do the recent trials help?

Understanding diabetes Do the recent trials help? Understanding diabetes Do the recent trials help? Dr Geoffrey Robb Consultant Physician and Diabetologist CMO RGA UK Services and Partnership Assurance AMUS 25 th March 2010 The security of experience.

More information

National Insurance Fund - Long-term Financial Estimates

National Insurance Fund - Long-term Financial Estimates Social Security Administration Act 1992 National Insurance Fund - Long-term Financial Estimates Report by the Government Actuary on the Quinquennial Review for the period ending 5 April 1995 under Section

More information

DISCLOSURES RISK ASSESSMENT. Stroke and Heart Disease -Is there a Link Beyond Risk Factors? Daniel Lackland, MD

DISCLOSURES RISK ASSESSMENT. Stroke and Heart Disease -Is there a Link Beyond Risk Factors? Daniel Lackland, MD STROKE AND HEART DISEASE IS THERE A LINK BEYOND RISK FACTORS? D AN IE L T. L AC K L AN D DISCLOSURES Member of NHLBI Risk Assessment Workgroup RISK ASSESSMENT Count major risk factors For patients with

More information

National Quality and Outcomes Framework Statistics for England 2006/07

National Quality and Outcomes Framework Statistics for England 2006/07 National Quality and Outcomes Framework Statistics for England 26/7 This bulletin presents a summary of data from the national Quality and Outcomes Framework (QOF) during 26/7. The QOF was first implemented

More information

Health Passport. Your Journey to Wellness. Health Fair ID#

Health Passport. Your Journey to Wellness. Health Fair ID# Health Passport Your Journey to Wellness Health Fair ID# Body Mass Index What is BMI? Your body mass index, or BMI, shows the amount of fat in your body. BMI is calculated using height, weight, and waist

More information

Does smoking impact your mortality?

Does smoking impact your mortality? An estimated 25% of the medically underwritten, assured population can be classified as smokers Does smoking impact your mortality? Introduction Your smoking habits influence the premium that you pay for

More information

The American Cancer Society Cancer Prevention Study I: 12-Year Followup

The American Cancer Society Cancer Prevention Study I: 12-Year Followup Chapter 3 The American Cancer Society Cancer Prevention Study I: 12-Year Followup of 1 Million Men and Women David M. Burns, Thomas G. Shanks, Won Choi, Michael J. Thun, Clark W. Heath, Jr., and Lawrence

More information

NICE made the decision not to commission a cost effective review, or de novo economic analysis for this guideline for the following reasons:

NICE made the decision not to commission a cost effective review, or de novo economic analysis for this guideline for the following reasons: Maintaining a healthy weight and preventing excess weight gain in children and adults. Cost effectiveness considerations from a population modelling viewpoint. Introduction The Centre for Public Health

More information

Determinants of mortality

Determinants of mortality International Task Force for Prevention Of Coronary Heart Disease Coronary heart disease and stroke: Risk factors and global risk Slide Kit 4 (Prospective Cardiovascular Münster Heart Study) Determinants

More information

SUMMARY OF CHANGES TO QOF 2015/16 - ENGLAND CLINICAL

SUMMARY OF CHANGES TO QOF 2015/16 - ENGLAND CLINICAL SUMMARY OF CHANGES TO QOF 2015/1 - ENGLAND KEY No change Retired/replaced Wording and/or change Point or threshold change Indicator ID change 14/15 QOF ID 15/1 QOF ID NICE ID Indicator wording Changes

More information

REACH Risk Evaluation to Achieve Cardiovascular Health

REACH Risk Evaluation to Achieve Cardiovascular Health Dyslipidemia and type 1 diabetes mellitus History: A 15-year-old girl is seen in the endocrinology clinic for a routine follow-up visit for type 1 diabetes. She was diagnosed with diabetes at 12 years

More information

THE NHS HEALTH CHECK AND INSURANCE FREQUENTLY ASKED QUESTIONS

THE NHS HEALTH CHECK AND INSURANCE FREQUENTLY ASKED QUESTIONS THE NHS HEALTH CHECK AND INSURANCE FREQUENTLY ASKED QUESTIONS Introduction The following document has been produced by the Department of Health in partnership with the Association of British Insurers,

More information

Adult Obesity and Socioeconomic Status

Adult Obesity and Socioeconomic Status NOO data factsheet Adult Obesity and Socioeconomic Status September 2012 Key points The relationship between obesity prevalence and socioeconomic status can be examined in different ways. This briefing

More information

Chronic Diseases. Between 2005 and 2007 there were no significant changes in any of the adult behaviors reported through the BRFSS.

Chronic Diseases. Between 2005 and 2007 there were no significant changes in any of the adult behaviors reported through the BRFSS. Chronic Diseases Chronic diseases and conditions, such as heart disease, cancer, diabetes and obesity, are the leading causes of death and disability in the United States. Chronic diseases account for

More information

Cohort Studies. Sukon Kanchanaraksa, PhD Johns Hopkins University

Cohort Studies. Sukon Kanchanaraksa, PhD Johns Hopkins University This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

EXPANDING THE EVIDENCE BASE IN OUTCOMES RESEARCH: USING LINKED ELECTRONIC MEDICAL RECORDS (EMR) AND CLAIMS DATA

EXPANDING THE EVIDENCE BASE IN OUTCOMES RESEARCH: USING LINKED ELECTRONIC MEDICAL RECORDS (EMR) AND CLAIMS DATA EXPANDING THE EVIDENCE BASE IN OUTCOMES RESEARCH: USING LINKED ELECTRONIC MEDICAL RECORDS (EMR) AND CLAIMS DATA A CASE STUDY EXAMINING RISK FACTORS AND COSTS OF UNCONTROLLED HYPERTENSION ISPOR 2013 WORKSHOP

More information

Heart Health and Stroke

Heart Health and Stroke Heart Health and Stroke The first and third leading causes of death in the United States are heart disease and cerebrovascular accident (stroke). Most of cardiovascular disease morbidity is the result

More information

Is the Apparent Cardioprotective Effect of Recent Alcohol Consumption Due to Confounding by Prodromal Symptoms?

Is the Apparent Cardioprotective Effect of Recent Alcohol Consumption Due to Confounding by Prodromal Symptoms? American Journal of Epidemiology Copyright 2000 by The Johns Hopkfns University School of Hygiene and Public Health Allrightsreserved Vol. 151, No. 12 Printed In USA. Is the Apparent Cardioprotective Effect

More information

High Blood Cholesterol

High Blood Cholesterol National Cholesterol Education Program ATP III Guidelines At-A-Glance Quick Desk Reference 1 Step 1 2 Step 2 3 Step 3 Determine lipoprotein levels obtain complete lipoprotein profile after 9- to 12-hour

More information

COMPRESSION OF MORBIDITY: NEW INSIGHTS IN THE ROLE OF LIFESTYLE FACTORS JOHAN MACKENBACH & WILMA NUSSELDER DEPARTMENT OF PUBLIC HEALTH ERASMUS MC

COMPRESSION OF MORBIDITY: NEW INSIGHTS IN THE ROLE OF LIFESTYLE FACTORS JOHAN MACKENBACH & WILMA NUSSELDER DEPARTMENT OF PUBLIC HEALTH ERASMUS MC COMPRESSION OF MORBIDITY: NEW INSIGHTS IN THE ROLE OF LIFESTYLE FACTORS JOHAN MACKENBACH & WILMA NUSSELDER DEPARTMENT OF PUBLIC HEALTH ERASMUS MC FRIES JF. Aging, natural death, and the compression of

More information

Exercise Answers. Exercise 3.1 1. B 2. C 3. A 4. B 5. A

Exercise Answers. Exercise 3.1 1. B 2. C 3. A 4. B 5. A Exercise Answers Exercise 3.1 1. B 2. C 3. A 4. B 5. A Exercise 3.2 1. A; denominator is size of population at start of study, numerator is number of deaths among that population. 2. B; denominator is

More information

Social Smoking by University of California, Santa Cruz Students

Social Smoking by University of California, Santa Cruz Students Social Smoking by University of California, Santa Cruz Students Mike Males University of California, Santa Cruz Abstract While many health interests worry about persistently high rates of cigarette smoking

More information

16. OESOPHAGEAL CANCER

16. OESOPHAGEAL CANCER 16. OESOPHAGEAL CANCER 16.1. SUMMARY Oesophageal cancer was the thirteenth most common cancer in Ireland, accounting for 1.8% of all malignant neoplasms, excluding non-melanoma skin cancer, in women and

More information

Critical Illness Insurance. Simplified Second Chance 6 covered illnesses and surgeries

Critical Illness Insurance. Simplified Second Chance 6 covered illnesses and surgeries Critical Illness Insurance Simplified Second Chance 6 covered illnesses and surgeries Simplified Second Chance Covers added expenses that come along with a critical illness Being diagnosed with cancer,

More information

Th s Health and Wellbeing Needs

Th s Health and Wellbeing Needs Hull Clinical Commissioning Group l l u H f o y r o t S e Th s Health and Wellbeing Needs and it A Summary of Hull's Joint Strategic Needs Assessment 2012 Together we can influence the outcome of this

More information

The Burden of Cardiovascular Disease in North Carolina September 2012 Update

The Burden of Cardiovascular Disease in North Carolina September 2012 Update The Burden of Cardiovascular Disease in North Carolina September 2012 Update Samuel N. Tchwenko, MD, MPH Heart Disease & Stroke Prevention Branch Chronic Disease & Injury Section Division of Public Health

More information

EUROASPIRE II. European Action on Secondary and Primary Prevention through Intervention to Reduce Events

EUROASPIRE II. European Action on Secondary and Primary Prevention through Intervention to Reduce Events II European Action on Secondary and Primary Prevention through Intervention to Reduce Events Euro Heart Survey Programme European Society of Cardiology-ESC 1 2 Priorities of Coronary Heart Disease Prevention

More information

Journal Club: Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy by the AIM-HIGH Investigators

Journal Club: Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy by the AIM-HIGH Investigators Journal Club: Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy by the AIM-HIGH Investigators Shaikha Al Naimi Doctor of Pharmacy Student College of Pharmacy Qatar University

More information

Appendix: Description of the DIETRON model

Appendix: Description of the DIETRON model Appendix: Description of the DIETRON model Much of the description of the DIETRON model that appears in this appendix is taken from an earlier publication outlining the development of the model (Scarborough

More information

Diabetes in the United Kingdom: Analysis of QRESEARCH data

Diabetes in the United Kingdom: Analysis of QRESEARCH data Diabetes in the United Kingdom: Analysis of QRESEARCH data Authors: Professor Julia Hippisley-Cox Ronan Ryan Professor of Clinical Epidemiology and General Practice Research Fellow/Program Institution

More information

Knowledge and Attitude Regarding Cigarette Smoking Among UG Students

Knowledge and Attitude Regarding Cigarette Smoking Among UG Students IOSR Journal of Nursing and Health Science (IOSR-JNHS) e-issn: 2320 1959.p- ISSN: 2320 1940 Volume 3, Issue 6 Ver. II (Nov.-Dec. 2014), PP 49-54 Knowledge and Attitude Regarding Cigarette Smoking Among

More information