Strong acids and bases


 Emil Thornton
 2 years ago
 Views:
Transcription
1 Monoprotic AcidBse Equiliri (CH ) ϒ Chpter monoprotic cids A monoprotic cid cn donte one proton. This chpter includes uffers; wy to fi the ph. ϒ Chpter 11 polyprotic cids A polyprotic cid cn donte multiple protons. This chpter is just n etension of chpter. ϒ Chpter 1 cid se titrtions. Strong cids nd ses Accounting for ctivity, clculte the ph of 0. M HCl. HCl is strong cid, so it totlly dissocites. ϒ Tle 6 ϒ The concentrtion of H will e 0. M. Solution: ϒ The ionic strength of 0. M HCl is 0. M, t which the ctivity coefficient of H is 0.83 (Tle 81). ϒ The ph is log A H ϒ ph = log[h ]γ H = log(0.)(0.83)=1.08 If you know [H ], you cn lwys find [OH  ] {or vice vers}. ϒ Becuse [H ][OH  ] = w = ϒ AND ph poh =
2 Strong cids nd ses We cn neglect the concentrtion of H nd OH  due to the utoprotolysis of wter only if the etr H or OH  is much greter thn 7. Wht is the ph of M M HCl? HCl is strong cid, so it totlly dissocites. ϒ You memorized tle 6 didn t you? ϒ The concentrtion of H will e 8 PLUS the H from wter utoprotolysis. ϒ An ctivity correction cn e neglected here ecuse the ionic strength is very smll. Solution: [H ][OH  ] = w ± ( ) 4(1)( 1.0 " ) Let e our unknown OH  = (1) concentrtion. 8 7 = 9.6 " M or 1.1 " M ( 8 )() = Rerrnge Reject the negtive solution. ( 8 ) ( ) = 0 ph = log[h ] = log{ } = Use qudrtic formul to solve for : Wek cids nd ses {review} Wek cid dissocition: Implies [H ][A ] = [HA] Wek se dissocition: ϒ Rememer, se is proton cceptor. Just ecuse you see OH  doesn t imply se. Alwys B H O$"# BH HA $"# H A [BH ][ OH ] = [B] = OH ϒ The conjugte se of wek cid is wek se. ϒ The conjugte cid of wek se is wek cid. w
3 Wekcid equiliri Consider wek cid HA tht hs given. Find the ph of the solution: Wht re the pertinent rections? HA $"# H A Wht is the chrge lnce? w H ϒ [H ]=[A  ] [OH  O $"# H OH ] Wht is the mss lnce? ϒ Let s cll the forml concentrtion F. Forml concentrtion is the totl numer of moles of compound dissolved in liter. The forml concentrtion of wek cid is the totl mount of HA plced in the solution. ϒ F = [A  ] [HA] Equiliri: [H ][A ] = [HA] w = [H ][ OH ] Wekcid equiliri Even though clled wek, ny respectle cid will give n [H ] concentrtion much greter thn the [H ] concentrtion due to wter utoprotolysis. ϒ In other words, if the [H ] from the cid dissocition is much greter thn the [H ] from the wter dissocition then [A  ] will e much greter thn [OH  ]. Becuse the etr [H ] cme from the HA dissocition. ϒ The chrge lnce eqution reduces to [H ] [A  ]. ϒ This reduces cuic eqution to qudrtic eqution. I hve troule solving cuic equtions. Let [H ] =, then: ϒ Chrge lnce sys tht [H ] [A  ] =. ϒ AND mss lnce sys tht [HA] = F [A] = F. Plugging these results into the cid dissocition equiliri gives: [H ][A ] ( )( ) = = = [HA] F F 3
4 Wekcid equiliri When deling with wek cid, you should immeditely relize tht [H ] [A  ] ϒ Unless the cid is very dilute or too wek. [H ][A ] ( )( ) = = = [HA] F F ϒ This results in using the qudrtic formul ϒ In solution of wek cid, [H ] is derived lmost entirely from the wek cid, not from the H 0 dissocition. Unless the cid is very dilute or too wek. Wekcid equiliri: A possile pproimtion. The qudrtic formul cn lwys e used to solve wek cid prolems. ϒ Unless the cid is very dilute or too wek. However, the prolem is even esier if you cn neglect from the denomintor. = F " This cn ONLY e done if is MUCH smller thn [HA]. ϒ How do I know if is much smller thn [HA]? Mke the pproimtion nd solve the prolem. If your nswer supports your ssumption then your nswer is fine. Suppose you re given tht [HA] is 0.1 M nd you find [A  ] to e 16, then you re sfe to sy tht = [A  ] << [HA]. F 4
5 Frction of dissocition The frction of dissocition, α, is defined s the frction of n cid HA in the form of A . " = [A ] = =  [A ] [HA] (F ) F  Wekse equiliri The tretment of wek ses is lmost the sme s tht of wek cids. We suppose tht nerly ll of the OH  comes from the rection of B H 0 nd little comes from the dissocition of wter. The forml concentrtion of se will e: [B] = F  [BH ] = F ϒ ecuse F = [B] [BH ] B H O$"# BH [BH ][ OH ] = [B] OH 5
6 Wekse equiliri emple Find the ph of 0. M mmoni. {It s not 13.} Pertinent rections: NH 3 H O Φ NH 4 OH  H O Φ H OH  Woops, we hve no tles in our tet. ϒ But, = w, nd for NH 4 is listed in our tle t the ck of the ook. ϒ = w /. To find the ph of 0. M NH 3, we set up nd solve the eqution [NH4 ][OH ] w 5 = = = = 1.75" [NH3] 5.70" ϒ If we let = [NH 4 ], the lso = [OH  ] through stoichiometry. ϒ Also, [NH 3 ] = F where F = 0. M. ( )( ) 5 = = 1.75" F Wekse equiliri emple continued Find the ph of 0. M mmoni. {It s not 13.} Let s ssume << 0.1 to void qudrtic eqution. 5 = 1.75" = 1.75" 6 3 [OH ] = = 1.75" = 1.3" M ϒ is not << 11, so we should proly not mke tht ssumption. Using the qudrtic formul. = " = (1.75 )( 0.1 " ) = (1.75 )( 0.1) " ( )( 1.75 ) " 6 ( )( 1.75 )" (1.75 ) = " ± = 5 6 (1.75" ) 4(1)( 1.75" ) (1) 3 = 1.31" M or 1.3(throwout negtive solution) We get slightly different nswer, ut the difference is in our first uncertin digit. We would hve een fine mking the ssumption fter ll 6
7 Wekse equiliri emple continued Find the ph of 0. M mmoni. {It s not 13.} Find the ph now tht we know [OH  ] = = M. poh = log( ) =.88 ph = poh = = 11.1 The solution is less sic thn if the mmoni ws totlly dissocited. 7
Homework #6 Chapter 7 Homework Acids and Bases
Homework #6 Chpter 7 Homework Acids nd Bses 18. ) H O(l) H 3O (q) OH (q) H 3 O OH Or H O(l) H (q) OH (q) H OH ) HCN(q) H O(l) H 3O (q) CN (q) H 3 O HCN CN Or HCN(q) H (q) CN (q) H CN HCN c) NH 3(q) H O(l)
More informationWell say we were dealing with a weak acid K a = 1x10, and had a formal concentration of.1m. What is the % dissociation of the acid?
Chpter 9 Buffers Problems 2, 5, 7, 8, 9, 12, 15, 17,19 A Buffer is solution tht resists chnges in ph when cids or bses re dded or when the solution is diluted. Buffers re importnt in Biochemistry becuse
More informationFundamentals of Analytical Chemistry
Homework Fundmentls of Anlyticl hemistry 70,, 4, 8, 0, 7 hpter 5 Polyfunctionl Acids nd Bses Acids tht cn donte more thn proton per molecule Strong cid H SO 4 Severl wek cids Well behved dissocition For
More informationAcidBase Equilibria. 18.1 AcidBase Definitions
AcidBse Equiliri Acids shrp, sour tste; Bses sopy, itter tste Neutrliztion (proton trnsfer) rections cid se slt wter (or other products) Proton (H ) strongly hydrted in wter H(H O) n Hydronium ion H O
More informationSolutions for the problems about Calculation of ph in the case of monoprotic acids and bases. 1. What is the ph of a 0.1 M acetic acid solution?
Solutions for the prolems out Clcultion of ph in the cse of monoprotic cids nd ses 1. Wht is the ph of 0.1 M cetic cid solution? Acetic cid is wek cid with = 1.86 5 nd in this cse c wek cid >>>, tht is
More information10.5 Graphing Quadratic Functions
0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions
More informationChapter 9: Quadratic Equations
Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.
More informationAppendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
More informationREVIEW QUESTIONS Chapter 16
Chemistry 102 ANSWER EY REVIEW QUESTIONS Chpter 16 1. A buffer is prepred by dding 20.0 g of cetic cid (HC 2 H O 2 ) nd 20.0 g of sodium cette (NC 2 H O 2 ) in enough wter to prepre 2.00 L of solution.
More informationChapter 14. Acid and Bases. What is an Acid? Acids & Bases. Acids & Bases
hpter 1 Acids & Bses Acid nd Bses Acid nd Bses Acid nd Bses Wht is n Acid? YS NO Acids & Bses There re mny different wys of defining cids nd ses. There is no cler consensus s to the proper definitions
More informationACIDBASE BASICS Stephen Wright, Ph.D. Dept of Physiology
Foundtions Lerning Objectives for the selflerning module on ACIDBASE Bsics 1. Define ph. 2. Clculte the hydrogen ion concentrtion from ph nd vice vers. 3. List the mjor body buffer systems. ACIDBASE
More informationP.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn
33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of
More informationAnswer, Key Homework 8 David McIntyre 1
Answer, Key Homework 8 Dvid McIntyre 1 This printout should hve 17 questions, check tht it is complete. Multiplechoice questions my continue on the net column or pge: find ll choices before mking your
More informationThe Quadratic Formula and the Discriminant
99 The Qudrtic Formul nd the Discriminnt Objectives Solve qudrtic equtions by using the Qudrtic Formul. Determine the number of solutions of qudrtic eqution by using the discriminnt. Vocbulry discriminnt
More informationQuadratic Equations  1
Alger Module A60 Qudrtic Equtions  1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions  1 Sttement of Prerequisite
More informationACIDS, BASES AND SALTS Water (H2O) is made of two ions H + (aq) hydrogen ion OH  (aq) hydroxide ion
ACIDS, BASES AND SALTS Wter () is mde of two ions + (q) hydrogen ion  (q) hydroxide ion 1 Acids substnces tht increse + (q) conc.  definition of Arrhenius cid Strong cids  strong electrolytes, i. e.,
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More informationChapter 6 Solving equations
Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign
More informationIn this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.
Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationAnswer, Key Homework 10 David McIntyre 1
Answer, Key Homework 10 Dvid McIntyre 1 This printout should hve 22 questions, check tht it is complete. Multiplechoice questions my continue on the next column or pge: find ll choices efore mking your
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More informationSection 74 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
More informationAntiderivatives/Indefinite Integrals of Basic Functions
Antiderivtives/Indefinite Integrls of Bsic Functions Power Rule: x n+ x n n + + C, dx = ln x + C, if n if n = In prticulr, this mens tht dx = ln x + C x nd x 0 dx = dx = dx = x + C Integrl of Constnt:
More informationUnit 6: Exponents and Radicals
Eponents nd Rdicls : The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N):  counting numers. {,,,,, } Whole Numers (W):  counting numers with 0. {0,,,,,, } Integers (I): 
More informationMultiplication and Division  Left to Right. Addition and Subtraction  Left to Right.
Order of Opertions r of Opertions Alger P lese Prenthesis  Do ll grouped opertions first. E cuse Eponents  Second M D er Multipliction nd Division  Left to Right. A unt S hniqu Addition nd Sutrction
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationnot to be republished NCERT POLYNOMIALS CHAPTER 2 (A) Main Concepts and Results (B) Multiple Choice Questions
POLYNOMIALS (A) Min Concepts nd Results Geometricl mening of zeroes of polynomil: The zeroes of polynomil p(x) re precisely the xcoordintes of the points where the grph of y = p(x) intersects the xxis.
More informationPure C4. Revision Notes
Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd
More informationOr more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
More information4 Geometry: Shapes. 4.1 Circumference and area of a circle. FM Functional Maths AU (AO2) Assessing Understanding PS (AO3) Problem Solving HOMEWORK 4A
Geometry: Shpes. Circumference nd re of circle HOMEWORK D C 3 5 6 7 8 9 0 3 U Find the circumference of ech of the following circles, round off your nswers to dp. Dimeter 3 cm Rdius c Rdius 8 m d Dimeter
More informationQuadratic Equations. Math 99 N1 Chapter 8
Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree
More informationSolving Linear Equations  Formulas
1. Solving Liner Equtions  Formuls Ojective: Solve liner formuls for given vrile. Solving formuls is much like solving generl liner equtions. The only difference is we will hve severl vriles in the prolem
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationAssuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;
B26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndomnumer genertor supplied s stndrd with ll computer systems Stn KellyBootle,
More informationRegular Sets and Expressions
Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite
More informationExponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.
Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:
More information1 Numerical Solution to Quadratic Equations
cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll
More information1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply?
Assignment 3: Bohr s model nd lser fundmentls 1. In the Bohr model, compre the mgnitudes of the electron s kinetic nd potentil energies in orit. Wht does this imply? When n electron moves in n orit, the
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationExponents base exponent power exponentiation
Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More information1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.
More informationIntegration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
More informationBasic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }
ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All
More informationr 2 F ds W = r 1 qe ds = q
Chpter 4 The Electric Potentil 4.1 The Importnt Stuff 4.1.1 Electricl Potentil Energy A chrge q moving in constnt electric field E experiences force F = qe from tht field. Also, s we know from our study
More information4.0 5Minute Review: Rational Functions
mth 130 dy 4: working with limits 1 40 5Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two
More informationMathematics Higher Level
Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:
More informationTests for One Poisson Mean
Chpter 412 Tests for One Poisson Men Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson distribution
More informationFormal Languages and Automata Exam
Forml Lnguges nd Automt Exm Fculty of Computers & Informtion Deprtment: Computer Science Grde: Third Course code: CSC 34 Totl Mrk: 8 Dte: 23//2 Time: 3 hours Answer the following questions: ) Consider
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More informationSalt Hydrolysis 28 PHYSICAL CHEMISTRY CHAPTER WHAT IS HYDROLYSIS?
976 8 8 PHYSICAL CHEMISTRY 8 Slt Hydrolysis CHAPTER CONTENTS WHAT IS HYDROLYSIS? BRONSTEDLOWRY CONCEPT OF HYDROLYSIS Wy NCl solution is neutrl? EXAMPLES OF HYDROLYSIS Slts of Wek cids nd Strong ses Slts
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More informationAlgorithms Chapter 4 Recurrences
Algorithms Chpter 4 Recurrences Outline The substitution method The recursion tree method The mster method Instructor: Ching Chi Lin 林清池助理教授 chingchilin@gmilcom Deprtment of Computer Science nd Engineering
More informationTreatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the ttest is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the ttest cn be used to compre the mens of only
More informationSPECIAL PRODUCTS AND FACTORIZATION
MODULE  Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come
More informationNet Change and Displacement
mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationMA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!
MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationWorksheet 24: Optimization
Worksheet 4: Optimiztion Russell Buehler b.r@berkeley.edu 1. Let P 100I I +I+4. For wht vlues of I is P mximum? P 100I I + I + 4 Tking the derivtive, www.xkcd.com P (I + I + 4)(100) 100I(I + 1) (I + I
More informationThe area of the larger square is: IF it s a right triangle, THEN + =
8.1 Pythgoren Theorem nd 2D Applitions The Pythgoren Theorem sttes tht IF tringle is right tringle, THEN the sum of the squres of the lengths of the legs equls the squre of the hypotenuse lengths. Tht
More information11. PYTHAGORAS THEOREM
11. PYTHAGORAS THEOREM 111 Along the Nile 2 112 Proofs of Pythgors theorem 3 113 Finding sides nd ngles 5 114 Semiirles 7 115 Surds 8 116 Chlking hndll ourt 9 117 Pythgors prolems 10 118 Designing
More informationVersion 001 CIRCUITS holland (1290) 1
Version CRCUTS hollnd (9) This printout should hve questions Multiplechoice questions my continue on the next column or pge find ll choices efore nswering AP M 99 MC points The power dissipted in wire
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra
SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting
More informationCurve Sketching. 96 Chapter 5 Curve Sketching
96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of
More informationSolutions to Section 1
Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this
More information5.6 POSITIVE INTEGRAL EXPONENTS
54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section
More informationWritten Homework 6 Solutions
Written Homework 6 Solutions Section.10 0. Explin in terms of liner pproximtions or differentils why the pproximtion is resonble: 1.01) 6 1.06 Solution: First strt by finding the liner pproximtion of f
More informationMaths Assessment Year 4: Number and Place Value
Nme: Mths Assessment Yer 4: Numer nd Plce Vlue 1. Count in multiples of 6, 7, 9, 25 nd 1 000; find 1 000 more or less thn given numer. 2. Find 1,000 more or less thn given numer. 3. Count ckwrds through
More informationCOMPLEX FRACTIONS. section. Simplifying Complex Fractions
58 (66) Chpter 6 Rtionl Epressions undles tht they cn ttch while working together for 0 hours. 00 600 6 FIGURE FOR EXERCISE 9 95. Selling. George sells one gzine suscription every 0 inutes, wheres Theres
More informationSect 8.3 Triangles and Hexagons
13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed twodimensionl geometric figure consisting of t lest three line segments for its
More informationSection A4 Rational Expressions: Basic Operations
A Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr opentopped bo is to be constructed out of 9 by 6inch sheets of thin crdbord by cutting inch squres out of ech corner nd bending the
More informationBayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the
More informationChapter. Contents: A Constructing decimal numbers
Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting
More informationSequences and Series
Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationWeek 11  Inductance
Week  Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n
More informationbaby on the way, quit today
for mumstobe bby on the wy, quit tody WHAT YOU NEED TO KNOW bout smoking nd pregnncy uitting smoking is the best thing you cn do for your bby We know tht it cn be difficult to quit smoking. But we lso
More informationThe remaining two sides of the right triangle are called the legs of the right triangle.
10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right
More informationModule 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives
More informationVariable Dry Run (for Python)
Vrile Dr Run (for Pthon) Age group: Ailities ssumed: Time: Size of group: Focus Vriles Assignment Sequencing Progrmming 7 dult Ver simple progrmming, sic understnding of ssignment nd vriles 2050 minutes
More informationIntroduction to Mathematical Reasoning, Saylor 111
Frction versus rtionl number. Wht s the difference? It s not n esy question. In fct, the difference is somewht like the difference between set of words on one hnd nd sentence on the other. A symbol is
More informationYour Thoughts. Does the moment of inertia play a part in determining the amount of time it takes an object to get to the bottom of an incline.
Your Thoughts Suppose bll rolls down rmp with coefficient of friction just big enough to keep the bll from slipping. An identicl bll rolls down n identicl rmp with coefficient of friction of. Do both blls
More informationCONIC SECTIONS. Chapter 11
CONIC SECTIONS Chpter 11 11.1 Overview 11.1.1 Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig. 11.1). Fig. 11.1 Suppose we
More informationRate and Activation Energy of the Iodination of Acetone
nd Activtion Energ of the Iodintion of Acetone rl N. eer Dte of Eperiment: //00 Florence F. Ls (prtner) Abstrct: The rte, rte lw nd ctivtion energ of the iodintion of cetone re detered b observing the
More informationTheory of Forces. Forces and Motion
his eek extbook  Red Chpter 4, 5 Competent roblem Solver  Chpter 4 relb Computer Quiz ht s on the next Quiz? Check out smple quiz on web by hurs. ht you missed on first quiz Kinemtics  Everything
More informationCS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001
CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic
More informationHomework Assignment 1 Solutions
Dept. of Mth. Sci., WPI MA 1034 Anlysis 4 Bogdn Doytchinov, Term D01 Homework Assignment 1 Solutions 1. Find n eqution of sphere tht hs center t the point (5, 3, 6) nd touches the yzplne. Solution. The
More informationMechanics Cycle 1 Chapter 5. Chapter 5
Chpter 5 Contct orces: ree Body Digrms nd Idel Ropes Pushes nd Pulls in 1D, nd Newton s Second Lw Neglecting riction ree Body Digrms Tension Along Idel Ropes (i.e., Mssless Ropes) Newton s Third Lw Bodies
More information2 DIODE CLIPPING and CLAMPING CIRCUITS
2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of
More informationPROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * challenge questions
PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * hllenge questions e The ll will strike the ground 1.0 s fter it is struk. Then v x = 20 m s 1 nd v y = 0 + (9.8 m s 2 )(1.0 s) = 9.8 m s 1 The speed
More informationLecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
More informationHomework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
More information