Chapter 16 Evolution of Populations Genes and Variation Biology Mr. Hines

Size: px
Start display at page:

Download "Chapter 16 Evolution of Populations. 16.1 Genes and Variation Biology Mr. Hines"

Transcription

1 Chapter 16 Evolution of Populations 16.1 Genes and Variation Biology Mr. Hines

2 Figure 1-21 Levels of Organization Section 1-3 Levels of organization Biosphere Ecosystem The part of Earth that contains all ecosystems Community and its nonliving surroundings Biosphere Community Populations that live together in a defined area Hawk, snake, bison, prairie dog, grass, stream, rocks, air Population Group of organisms of one type that live in the same area Hawk, snake, bison, prairie dog, grass Bison herd

3 Darwin s handicap Throughout Darwin s studies of evolution he had a handicap he new nothing about genetics since Mendell s work was unknown to him. 2 problems for Darwin 1. He had no idea how traits could be inherited (genes) 2. He had no idea about how variation appeared. (mutations)

4 Mendell and Darwin s work were merged in the 1930s. Here are the answers to Darwin s handicaps. 1. Genes control heritable traits 2. Mutations in genes cause variation This chapter will explain evolution at a level Darwin never knew genetics meets evolution

5 How common is genetic variation? We know that all genes have 2 forms (alleles) Remember from earlier, alleles are the possible outcomes from a cross big feet/little feet (Ff) All living things have different alleles which can cause variation. This kind of information can seem invisible because you need to be a molecular geneticist to see it.

6 Living things are between 4 and 15 percent heterozygous (2 different alleles)

7 Variation and Gene Pools Genetic variation is studied in populations. A population is a group of individuals of the same species that interbreed. Animals in a population usually live together within a habitat. The tortoises on Hood island live together within the same habitat, they breed, and are therefore a population. Tortoises on other islands are not part of the population of hood island.

8 Members of a population share a common gene pool. A gene pool consists of all genes, including all the different alleles, that are present in a population. Relative frequency of an allele is the number of times that the allele will appear in the gene pool. Relative frequency is usually represented by a percent.

9 For example, the relative frequency of the gene for long neck might be 95% on Hood island. This means that there is a 95% chance that offspring on hood island will have a long neck.

10 Mouse gene frequency example In a population of mice, there are black and brown mice. Black is dominant B brown is recessive - b

11 Calculate the relative frequency of brown mice and black mice (page 394)

12

13 Count this up on the other board and demonstrate there will be 20 black and 30 brown. Divide each allele count by the total allele count This shows that there are more brown mice than black mice how? Since black is dominant?

14 Go to gene pools 146

15 Go to gene pools 146

16 Important fact the relative gene frequency has nothing to do with whether the gene is dominant or recessive. The dominant gene might not be fit for that environment. Black mice might get spotted by a predator in a brown habitat.

17

18 What would happen to the gene pool if all black mice were eaten. The relative gene frequency of black mice would fall to zero therefore never again will mice be black (in that population). This is an example of how a gene frequency can change. All mice would be brown (in that population) In genetic terms, evolution is any change in the relative frequency of alleles in a population.

19 In genetic terms, evolution is any change in the relative frequency of alleles in a population

20 Sources of genetic variation There are 2 main sources of genetic variation. 1. Mutations 2. Gene shuffling

21 Mutations A mutation is any change in a sequence of DNA. Mutations occur as a result of 1. mistakes during replication 2. Toxic chemicals in the environment 3. Radiation

22 Mutations do not always affect an animal s phenotype. Some mutations will cause a change in an animal s phenotype. This change might alter its ability to survive in 2 ways. 1. Beneficial mutation 2. Harmful mutation

23 Gene shuffling If you and your siblings have the same parents, and therefore the same genes, why do you look different? Gene shuffling is caused by sexual reproduction. Why do we need two organisms to create life why not just have all females? Sexual reproduction keeps the genes shuffling and changing throughout time. Just think if the black mice never had an alternative color there would be no mice.

24 Sexual reproduction causes gene shuffling by 2 ways. 1. Chromosomes of a homologous pair move independently during meiosis II (creation of gametes) 2. Crossing over in meiosis this increases the amount of genotypes that can appear.

25 Crossing over in Prophase 1

26 Metaphase I

27 Sexual reproduction shuffles genes similar to one shuffling a deck of cards. All of the cards are always the same, but each time a hand is dealt to a player, it will be different. The gene pool rarely changes unless a trait is selected, by nature, to die.

28 Single gene and polygenic traits The number of phenotypes produced for a given trait depends on how many genes control the trait.

29 Single gene traits Single gene traits are phenotypes that have only 2 alleles. It is one or the other sort of like a coin you get heads or tails. Widows peak is a single gene trait. You get widows peak or a strait hairline no other options.

30

31 Widow s peak is a dominant gene Does this mean that widow s peak is more common? Here is the gene frequency for widow s peak vs no widow s peak.

32 Many traits are controlled by many genes. This is called polygenic traits. Height in humans is polygenic. This would explain why height varies greatly among humans.

33

34

Section Review 15-1 1.

Section Review 15-1 1. Section Review 15-1 1. Beagle 2. theory of evolution 3. varied 4. Darwin s curiosity might have led him to make many observations and ask questions about the natural world. His analytical nature may have

More information

Evolution of Populations

Evolution of Populations Evolution of Populations Evolution Q: How can populations evolve to form new species? 17.1 How do genes make evolution possible? WHAT I KNOW SAMPLE ANSWER: There are different variations of the same gene.

More information

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date Chapter 16 Summary Evolution of Populations 16 1 Genes and Variation Darwin s original ideas can now be understood in genetic terms. Beginning with variation, we now know that traits are controlled by

More information

Intro to Genetics The Work of Gregor Mendel

Intro to Genetics The Work of Gregor Mendel Intro to Genetics 11.1 The Work of Gregor Mendel Austrian Monk Mendel Born in 1822 in the Czech Republic Studied at University of Vienna Math and Science Worked in a monastery and school for 14 years In

More information

Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes

Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15

Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Biology 1406 - Notes for exam 5 - Population genetics Ch 13, 14, 15 Species - group of individuals that are capable of interbreeding and producing fertile offspring; genetically similar 13.7, 14.2 Population

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

Copyright 2014 Edmentum - All rights reserved.

Copyright 2014 Edmentum - All rights reserved. Study Island Copyright 2014 Edmentum - All rights reserved. Generation Date: 04/03/2014 Generated By: Cheryl Shelton Title: Grade 9 Life Science 1. The cell theory states: all living things are composed

More information

Population Genetics (Outline)

Population Genetics (Outline) Population Genetics (Outline) Definition of terms of population genetics: population, species, gene, pool, gene flow Calculation of genotypic of homozygous dominant, recessive, or heterozygous individuals,

More information

Chapter 11. Classical (Mendelian) Genetics

Chapter 11. Classical (Mendelian) Genetics Chapter 11 Classical (Mendelian) Genetics The study of how genes bring about characteristics, or traits, in living things and how those characteristics are inherited. Genetics Geneticist A scientist who

More information

Chapter 21 Active Reading Guide The Evolution of Populations

Chapter 21 Active Reading Guide The Evolution of Populations Name: Roksana Korbi AP Biology Chapter 21 Active Reading Guide The Evolution of Populations This chapter begins with the idea that we focused on as we closed Chapter 19: Individuals do not evolve! Populations

More information

Genetics & Inheritance

Genetics & Inheritance Genetics & Inheritance Part 1 Earth Day Creature! Genetics Terminology Genes are DNA sequences that contain instructions for building proteins or RNA molecules with enzymatic functions. Chromosomes are

More information

Key Questions. How is evolution defined in genetic terms?

Key Questions. How is evolution defined in genetic terms? Getting Started Objectives 17.1.1 Define evolution in genetic terms. 17.1.2 Identify the main sources of genetic variation in a population. 17.1.3 State what determines the number of phenotypes for a trait.

More information

Gregor Mendel & Genetics. Principles of Science Mr. Porter

Gregor Mendel & Genetics. Principles of Science Mr. Porter Gregor Mendel & Genetics Principles of Science Mr. Porter Gregor Mendel: The Father of Genetics Gregor Mendel - a 19th century monk from eastern Europe, was the first to study how traits are passed. Genetics

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Chapter 10 Active Reading Guide Meiosis and Sexual Life Cycles

Chapter 10 Active Reading Guide Meiosis and Sexual Life Cycles Name: AP Biology Mr. Croft Chapter 10 Active Reading Guide Meiosis and Sexual Life Cycles Section 1 1. Let s begin with a review of several terms that you may already know. Define: gene: locus: gamete:

More information

Population Genetics: Changes in the Gene Pool and Gene Frequency

Population Genetics: Changes in the Gene Pool and Gene Frequency Biology 11 Name: Population Genetics: Changes in the Gene Pool and Gene Frequency Evolution through natural selection describes how populations change over time but it is not the only way that populations

More information

LAB #6: Mendelian Genetics

LAB #6: Mendelian Genetics LAB #6: Mendelian Genetics Lab Manual Exercise 13 Genotype & Phenotype Genotype refers to particular genes an individual carries Phenotype refers to an individual s observable traits Cannot always determine

More information

Ninja Sea Turtles Lab A simulation of population genetics

Ninja Sea Turtles Lab A simulation of population genetics Name Date I. Introduction Ninja Sea Turtles Lab A simulation of population genetics Created by Amanda Tsoi Somerville High School, MA Which type of population will survive better: a group that has a lot

More information

2. Which hereditary rule explains why a self-fertilizing parent that is heterozygous for the A locus (Aa) can produce offspring that are AA or aa?

2. Which hereditary rule explains why a self-fertilizing parent that is heterozygous for the A locus (Aa) can produce offspring that are AA or aa? Heredity 1. Technology Enhanced Questions are not available in Word format. 2. Which hereditary rule explains why a self-fertilizing parent that is heterozygous for the A locus (Aa) can produce offspring

More information

Chapter 23: The Evolution of Populations

Chapter 23: The Evolution of Populations Name Period This chapter begins with the idea that we focused on as we closed the last chapter: Individuals do not evolve! Populations evolve. The Overview looks at the work of Peter and Rosemary Grant

More information

CH 11 Gregor Mendel, Probability, and Punnett Squares

CH 11 Gregor Mendel, Probability, and Punnett Squares CH 11 Gregor Mendel, Probability, and Punnett Squares Vocabulary: Genetics True-breeding Trait Hybrid Gene Allele Segregation Gamete Probability Punnett Square Homozygous Heterozygous Phenotype Genotype

More information

Name Date Class. In your textbook, read about genes, chromosomes, and numbers. Gamete (n)

Name Date Class. In your textbook, read about genes, chromosomes, and numbers. Gamete (n) Chapter Mendel and Meiosis, continued Reinforcement and Study Guide Section.2 Meiosis In your textbook, read about genes, chromosomes, and numbers. Examine the table. Then answer the questions. Chromosome

More information

11.1 The Work of Gregor Mendel

11.1 The Work of Gregor Mendel 11.1 The Work of Gregor Mendel Lesson Objectives Describe Mendel s studies and conclusions about inheritance. Describe what happens during segregation. Lesson Summary The Experiments of Gregor Mendel The

More information

The Mendelian Genetics of Corn

The Mendelian Genetics of Corn The Mendelian Genetics of Corn (Adapted from Mendelian Genetics for Corn by Carolina Biological Supply Company) Objectives: In this laboratory investigation, you will: a. Use corn to study genetic crosses.

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

CH. 15: Darwin s Theory of Evolution. Directions: READ ch. 15 in your textbook and use the note outline to help you answer the questions below.

CH. 15: Darwin s Theory of Evolution. Directions: READ ch. 15 in your textbook and use the note outline to help you answer the questions below. CH. 15: Darwin s Theory of Evolution Directions: READ ch. 15 in your textbook and use the note outline to help you answer the questions below. 1. What is a theory? 2. Describe some of the ideas that influenced

More information

Chapter 11 Genetics. STATE FRAMEWORKS 3. Genetics

Chapter 11 Genetics. STATE FRAMEWORKS 3. Genetics STATE FRAMEWORKS 3. Genetics Chapter 11 Genetics Central Concepts: Genes allow for the storage and transmission of genetic information. They are a set of instructions encoded in the nucleotide sequence

More information

Introduction to Genetics

Introduction to Genetics Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

Genetics & The Work of Mendel (Ch. 14)

Genetics & The Work of Mendel (Ch. 14) Genetics & The Work of Mendel (Ch. 14) Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

Overview of meiosis: Two consecutive cell divisions *meiosis I *meiosis II. AKA: Reduction-Division

Overview of meiosis: Two consecutive cell divisions *meiosis I *meiosis II. AKA: Reduction-Division Overview of meiosis: Two consecutive cell divisions *meiosis I *meiosis II AKA: Reduction-Division Life Cycle Mistakes in Meiosis Aneuploidy an abnormal set of chromosomes. Down syndrome, which involves

More information

Assessment Schedule 2014 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Statement

Assessment Schedule 2014 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Statement NCEA Level 2 Biology (91157) 2014 page 1 of 5 Assessment Schedule 2014 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Statement NCEA Level 2 Biology (91157) 2014 page

More information

Name Period. 3. How many rounds of DNA replication and cell division occur during meiosis?

Name Period. 3. How many rounds of DNA replication and cell division occur during meiosis? Name Period GENERAL BIOLOGY Second Semester Study Guide Chapters 3, 4, 5, 6, 11, 14, 16, 17, 18 and 19. SEXUAL REPRODUCTION AND MEIOSIS 1. What is the purpose of meiosis? 2. Distinguish between diploid

More information

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide.

Cell Division. Use Target Reading Skills. This section explains how cells grow and divide. Cell Processes and Energy Name Date Class Cell Processes and Energy Guided Reading and Study Cell Division This section explains how cells grow and divide. Use Target Reading Skills As you read, make a

More information

Genetics. The study of heredity. discovered the. Gregor Mendel (1860 s) garden peas.

Genetics. The study of heredity. discovered the. Gregor Mendel (1860 s) garden peas. GENETICS Genetics The study of heredity. Gregor Mendel (1860 s) discovered the fundamental principles of genetics by breeding garden peas. Genetics Alleles 1. Alternative forms of genes. 2. Units that

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

Assessment Schedule 2012 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948)

Assessment Schedule 2012 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) NCEA Level 1 Science (90948) 2012 page 1 of 5 Assessment Schedule 2012 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) Assessment Criteria ONE (a) (b) DNA contains

More information

What is Genetics? Genetics is the scientific study of heredity

What is Genetics? Genetics is the scientific study of heredity What is Genetics? Genetics is the scientific study of heredity What is a Trait? A trait is a specific characteristic that varies from one individual to another. Examples: Brown hair, blue eyes, tall, curly

More information

Genetics & The Work of Mendel. AP Biology 12/5/12

Genetics & The Work of Mendel. AP Biology 12/5/12 Genetics & The Work of Mendel 12/5/12 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas u used experimental method

More information

Population and Community Dynamics

Population and Community Dynamics Population and Community Dynamics Part 1. Genetic Diversity in Populations Pages 676 to 701 Part 2. Population Growth and Interactions Pages 702 to 745 Review Evolution by Natural Selection new variants

More information

Introduction to genetics

Introduction to genetics Introduction to genetics Biology chapter 11 Mr. Hines 11.1 The work of Gregor Mendel What makes you unique? A. Nearly all living things are unique in some way. B. Humans for example all have different

More information

Furry Family Pre-Test Questions

Furry Family Pre-Test Questions Furry Family Pre-Test Questions Name: Period: Date: 1) When will a recessive trait show its effect? a. Even if no recessive genes for that trait are present b. In the presence of one recessive gene c.

More information

HA Introduction to Genetics Practice Exam

HA Introduction to Genetics Practice Exam HA Introduction to Genetics Practice Exam True/False Indicate whether the statement is true or false. 1. Genetics is the branch of biology that involves the study of how different traits are transmitted

More information

How Populations Evolve

How Populations Evolve How Populations Evolve Darwin and the Origin of the Species Charles Darwin published On the Origin of Species by Means of Natural Selection, November 24, 1859. Darwin presented two main concepts: Life

More information

9.1: Mechanisms of Evolution and Their Effect on Populations pg. 350-359

9.1: Mechanisms of Evolution and Their Effect on Populations pg. 350-359 9.1: Mechanisms of Evolution and Their Effect on Populations pg. 350-359 Key Terms: gene flow, non-random mating, genetic drift, founder effect, bottleneck effect, stabilizing selection, directional selection

More information

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple.

Complex Inheritance. Mendel observed monogenic traits and no linked genes It s not usually that simple. Complex Inheritance Mendel observed monogenic traits and no linked genes It s not usually that simple. Other Types of Inheritance Incomplete Dominance The phenotype of the heterozygote is intermediate

More information

A. Multiple alleles B. Polygenic traits C. Incomplete dominance D. Autosomal inheritance

A. Multiple alleles B. Polygenic traits C. Incomplete dominance D. Autosomal inheritance 1. When neither allele is dominant, so that a heterzygote has a phenotype that is a blending of each of the homozygous phenotypes (such as one red color allele and one white color allele producing pink

More information

Evolution (18%) 11 Items Sample Test Prep Questions

Evolution (18%) 11 Items Sample Test Prep Questions Evolution (18%) 11 Items Sample Test Prep Questions Grade 7 (Evolution) 3.a Students know both genetic variation and environmental factors are causes of evolution and diversity of organisms. (pg. 109 Science

More information

11.1 KEY CONCEPT A population shares a common gene pool.

11.1 KEY CONCEPT A population shares a common gene pool. 11.1 KEY CONCEPT A population shares a common gene pool. Why it s beneficial: Genetic variation leads to phenotypic variation. It increases the chance that some individuals will survive Phenotypic variation

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

CHAPTER 13 MEIOSIS AND SEXUAL LIFE CYCLES. Section C: Origins of Genetic Variation

CHAPTER 13 MEIOSIS AND SEXUAL LIFE CYCLES. Section C: Origins of Genetic Variation CHAPTER 13 MEIOSIS AND SEXUAL LIFE CYCLES Section C: Origins of Genetic Variation 1. Sexual life cycles produce genetic variation among offspring 2. Evolutionary adaptation depends on a population s genetic

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Chapter 13: Meiosis and Sexual Life Cycles Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know.

More information

Foundations of Genetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Foundations of Genetics. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display Foundations of Genetics 8.1 Mendel and the Garden Pea The tendency for traits to be passed from parent to offspring is called heredity Gregor Mendel (1822-1884) The first person to systematically study

More information

CALIFORNIA LIFE SCIENCE STANDARDS TEST GRADE 10 (Blueprint adopted by the State Board of Education 1/04)

CALIFORNIA LIFE SCIENCE STANDARDS TEST GRADE 10 (Blueprint adopted by the State Board of Education 1/04) GRADE 0 (Blueprint adopted by the State Board of Education /04) CELL BIOLOGY 0 items 7%. All living organisms are composed of cells, from just one to many trillions, whose details usually are visible only

More information

Mendel explained how a dominant allele can mask the presence of a recessive allele.

Mendel explained how a dominant allele can mask the presence of a recessive allele. Section 2: Mendel explained how a dominant allele can mask the presence of a recessive allele. K What I Know W What I Want to Find Out L What I Learned Essential Questions What is the significance of Mendel

More information

Exploring Mendelian Genetics Biology Mr. Hines

Exploring Mendelian Genetics Biology Mr. Hines Exploring Mendelian Genetics 11.3 Biology Mr. Hines What happens when you consider more than one gene when you Independent assortment cross 2 parents? Mendel performed more experiments with the pea plants

More information

Non-Disjunction Review. tent/animations/content/mistakesmei osis/mistakesmeiosis.html

Non-Disjunction Review.  tent/animations/content/mistakesmei osis/mistakesmeiosis.html Non-Disjunction Review http://www.sumanasinc.com/webcon tent/animations/content/mistakesmei osis/mistakesmeiosis.html Lesson# 1.6- Genetic Diversity and Heredity Gregor Mendel (1822-1884) Pioneer of genetics

More information

Chapter 18. Genes and Medical Genetics

Chapter 18. Genes and Medical Genetics 1 Chapter 18 Genes and Medical Genetics 2 1 Outline Genotype vs. Phenotype Dominant vs. Recessive Traits Punnett Squares Autosomal Recessive Disorders Autosomal Dominant Disorders Pedigree Charts Multiple

More information

The Huntington Library, Art Collections, and Botanical Gardens

The Huntington Library, Art Collections, and Botanical Gardens The Huntington Library, Art Collections, and Botanical Gardens The Daily Variety Overview Students will examine the differences between wild-type and mutant lines of the same species of plant as a basis

More information

LAB 11 Natural Selection (version 2)

LAB 11 Natural Selection (version 2) LAB 11 Natural Selection (version 2) Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you

More information

PREPARATION FOR END OF COURSE BIOLOGY EXAM

PREPARATION FOR END OF COURSE BIOLOGY EXAM Page 1/11 1/26/2011 PREPARATION FOR END OF COURSE BIOLOGY EXAM OPEN ENDED QUESTIONS Page 2/11 1/26/2011 END OF COURSE BIOLOGY TEST PREP - BIOLOGY 1. Please answer the question using the diagram above:

More information

CAMPBELL BIOLOGY. Chapter 13

CAMPBELL BIOLOGY. Chapter 13 Lecture 10 Population Genetics CAMPBELL BIOLOGY Chapter 13 Hox Genes Control development Hox genes need to be highly regulated to get expressed at the right time and correct level to orchestrate mammalian

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Background A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

Today: Mendelian Genetics Discussion/Notes

Today: Mendelian Genetics Discussion/Notes Monday, March 28, 2016 LT: I can describe the molecular process by which organisms pass on physical and behavioral traits to offspring Entry Task: What is heredity? Today: Mendelian Genetics Discussion/Notes

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157)

Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157) NCEA Level 2 Biology (91157) 2013 page 1 of 5 Assessment Schedule 2013 Biology: Demonstrate understanding of genetic variation and change (91157) Assessment Criteria with with Excellence Demonstrate understanding

More information

A hypothetical organism has 10 chromosomes for each of its body cells (somatic cells).

A hypothetical organism has 10 chromosomes for each of its body cells (somatic cells). Station 1 A hypothetical organism has 10 chromosomes for each of its body cells (somatic cells). a. Skin cells are continuously being rubbed off and replaced. How many chromosomes will be contained in

More information

X Biology I. Unit 1-7: Genetics

X Biology I. Unit 1-7: Genetics NOTE/STUDY GUIDE: Unit 1-7, Genetics X Biology I, Mr. Doc Miller, M.Ed. North Central High School Name: ID#: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE X Biology I Unit 1-7: Genetics Additional resources

More information

Mendelian Genetics. Standard B-4.6

Mendelian Genetics. Standard B-4.6 Mendelian Genetics Standard B-4.6 Predict inherited traits by suing the principles of Mendelian genetics (including segregation, independent assortment, and dominance). Genetics: alleles Key Concepts Law

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

Chapter 6. Meiosis and Mendel

Chapter 6. Meiosis and Mendel Chapter 6 Meiosis and Mendel 1 6.1 Two groups of Cells 1) Somatic Cells body cells Can NOT pass DNA on to offspring 2) Gametes sex cells Develop from germ cells in reproductive organs DNA IS passed on

More information

Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948)

Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) NCEA Level 1 Science (90948) 2013 page 1 of 7 Assessment Schedule 2013 Science: Demonstrate understanding of biological ideas relating to genetic variation (90948) Evidence Statement Expected Coverage

More information

Name Date: Doc #: EVOLUTION QUESTIONS ANSWER KEY

Name Date: Doc #: EVOLUTION QUESTIONS ANSWER KEY Name Date: Doc #: EVOLUTION QUESTIONS ANSWER KEY Answer the following questions in complete sentences. Your answer should be in your own words and should be complete thoughts, however may use your notes

More information

Problem Set 1 10:35 AM January 14, 2011

Problem Set 1 10:35 AM January 14, 2011 BIO322: Genetics Douglas J. Burks Department of Biology Wilmington College of Ohio Problem Set 1 Due @ 10:35 AM January 14, 2011 Chapter 2: Problems 1, 4, 9, 11, 15, 16, 23, 25, 29, and 31. Problem #1.

More information

Allele Frequencies: Changing. Chapter 15

Allele Frequencies: Changing. Chapter 15 Allele Frequencies: Changing Chapter 15 Changing Allele Frequencies 1. Mutation introduces new alleles into population 2. Natural Selection specific alleles are more likely to be passed down because they

More information

GENETICS AND MENDEL 2/15/2013. Mendel s Experiment. Genetic Terms. How is each group the same? How is each group different?

GENETICS AND MENDEL 2/15/2013. Mendel s Experiment. Genetic Terms. How is each group the same? How is each group different? GENETICS AND MENDEL How is each group the same? How is each group different? Heredity transmission of traits from parents to offspring Genetics study of heredity HISTORY OF DISCOVERERY OF HEREDITY Up to

More information

Single-Gene Inheritance (Learning Objectives) Review the presence of homologous chromosomes in diploid organisms that reproduce sexually, the

Single-Gene Inheritance (Learning Objectives) Review the presence of homologous chromosomes in diploid organisms that reproduce sexually, the Single-Gene Inheritance (Learning Objectives) Review the presence of homologous chromosomes in diploid organisms that reproduce sexually, the definitions of karyotype, autosomes and sex chromosomes. Recognize

More information

TEST NAME: Genetics unit test TEST ID: GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment

TEST NAME: Genetics unit test TEST ID: GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment TEST NAME: Genetics unit test TEST ID: 437885 GRADE:07 SUBJECT:Life and Physical Sciences TEST CATEGORY: School Assessment Genetics unit test Page 1 of 12 Student: Class: Date: 1. There are four blood

More information

Meiosis produces haploid gametes.

Meiosis produces haploid gametes. Section 1: produces haploid gametes. K What I Know W What I Want to Find Out L What I Learned Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of

More information

Evolution and Darwin

Evolution and Darwin Evolution and Darwin Evolution The processes that have transformed life on earth from it s earliest forms to the vast diversity that characterizes it today. A change in the genes!!!!!!!! Old Theories of

More information

Chapter 2: Traits and How They Change

Chapter 2: Traits and How They Change Table of Contents Chapter 2: Traits and How They Change Section 2: Genetics Heredity x Genetics Mendel s experiments Punnett Square REVIEW: Genes are sections of DNA Genes have different Alleles A gene

More information

Mendelian Genetics. Lab Exercise 13. Contents. Objectives. Introduction

Mendelian Genetics. Lab Exercise 13. Contents. Objectives. Introduction Lab Exercise Mendelian Genetics Contents Objectives 1 Introduction 1 Activity.1 Forming Gametes 2 Activity.2 Monohybrid Cross 3 Activity.3 Dihybrid Cross 4 Activity.4 Gene Linkage 5 Resutls Section 8 Objectives

More information

Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE

Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE Collated questions Demonstrate understanding of biological ideas relating to genetic variation DNA STRUCTURE THE ROLE OF DNA IN INHERITANCE (2013:2) (a) Use the diagram above to help you explain the relationship

More information

Genetics Notes Part 1 Mendelian Genetics aka Simple Inheritance

Genetics Notes Part 1 Mendelian Genetics aka Simple Inheritance Name: Per: Date: Genetics Notes Part 1 Mendelian Genetics aka Simple Inheritance I. Gregor Johan Mendel: 1822-1884 A. B. Responsible for the Laws governing C. Austrian D. Studied the inheritance of traits

More information

Biology 1 Exam #3 Spring 2016

Biology 1 Exam #3 Spring 2016 Biology 1 Exam #3 Spring 2016 Student Name Lab Session Welcome to the third exam, worth 100 points. Please read and follow all directions carefully. You may have only your exam, scantron, and writing utensil

More information

Workshop on Microevolution

Workshop on Microevolution Workshop on Microevolution by Dana Krempels I. Discuss the meaning of: a. species f. heritable traits (consider "nature vs. nurture") b. population g. lethal alleles c. gene pool h. adaptive, maladaptive,

More information

Chapter 14. Genetics

Chapter 14. Genetics Chapter 14 Genetics Introduction Pre 1800s blending hypothesis 1850s Gregor Mendel Pisum sativum what makes pea good genetic model? - - - - Pea character (gene) = Pea trait (allele) = self fertilization

More information

MENDELIAN GENETICS AND χ 2. Teacher Packet

MENDELIAN GENETICS AND χ 2. Teacher Packet AP * BIOLOGY MENDELIAN GENETICS AND χ 2 Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production of this material.

More information

Pre-Lab #5: Inheritance

Pre-Lab #5: Inheritance Pre-Lab #5: Inheritance Name 1. Define the following terms: Monohybrid Cross (see Part I) Allele Frequency (see Part II) 2. Describe how you will mate in Part 1 of this lab. 3. What is the allele frequency

More information

Name Period Date GENETICS

Name Period Date GENETICS Name Period Date GENETICS I. GREGOR MENDEL founder of genetics (crossed pea plants to study heredity = passing on of traits) 1. GENES make up chromosomes a. 2 genes (ALLELES) for every trait (1 from each

More information

Biology Performance Level Descriptors

Biology Performance Level Descriptors Limited A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Biology. A student at this level has an emerging ability to describe genetic patterns of

More information

16.4 Evidence of Evolution

16.4 Evidence of Evolution 16.4 Evidence of Evolution Lesson Objectives Explain how geologic distribution of species relates to their evolutionary history. Explain how fossils and the fossil record document the descent of modern

More information

AP BIOLOGY EVOLUTION ESSAY EXAM (RAVEN CHAPTERS 21, 22, 23)

AP BIOLOGY EVOLUTION ESSAY EXAM (RAVEN CHAPTERS 21, 22, 23) Period Date AP BIOLOGY EVOLUTION ESSAY EXAM (RAVEN CHAPTERS 21, 22, 23) 1. Charles Darwin proposed that evolution by natural selection was the basis for the differences that he saw in similar organisms

More information

Keystone Review Practice Test Module B Continuity and Unity of Life

Keystone Review Practice Test Module B Continuity and Unity of Life Keystone Review Practice Test Module B Continuity and Unity of Life 1. Which event most likely occurs next in mitosis? a. The chromatin condenses. b. The nuclear envelope dissolves. c. The chromosomes

More information

Lab #4: Genetics & Inheritance Pre-Lab Exercise

Lab #4: Genetics & Inheritance Pre-Lab Exercise Lab #4: Genetics & Inheritance Pre-Lab Exercise Name 1. Define the following terms: a. Genetic trait: b. Gene: c. Allele: d. Genotype: e. Phenotype: f. Homozygous g. Heterozygous h. Dominant: i. Recessive:

More information

Genetics & Inheritance Lab Pre-Lab Exercise

Genetics & Inheritance Lab Pre-Lab Exercise Genetics & Inheritance Lab Pre-Lab Exercise Name 1. Define the following terms: a. Genetic trait: b. Gene: c. Allele: d. Genotype: e. Phenotype: f. Homozygous g. Heterozygous h. Dominant: i. Recessive:

More information

Biology Final Exam Review

Biology Final Exam Review 1 Biology Final Exam Review The Scientific Method 1) An educated guess is a: a) Hypothesis b) Data c) Experiment d) Conclusion Match the vocab words to their definition. 2) Independent Variable a. Being

More information

Genetic and Evolutionary Foundations of Behavior. Quick Question. Darwin s Theory 2/10/2012. Chapter 3

Genetic and Evolutionary Foundations of Behavior. Quick Question. Darwin s Theory 2/10/2012. Chapter 3 Genetic and Evolutionary Foundations of Behavior Chapter 3 Gray, Psychology, 6e Worth Publishers 2010 Quick Question What do you know about Darwin? Come up with as many things as possible. Darwin s Theory

More information

Miller & Levine Biology Foundation Edition, 2014

Miller & Levine Biology Foundation Edition, 2014 A Correlation of Miller & Levine Biology To the Oklahoma Academic Standards A Correlation of, BIOLOGY I HS-LS1-1 From Molecules to Organisms: Structures and Processes HS-LS1-1 Students who demonstrate

More information

Mr. Storie 10F Science Reproduction Unit Review. Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS:

Mr. Storie 10F Science Reproduction Unit Review. Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: Reproduction Review YOU ARE EXPECTED TO KNOW THE MEANING OF ALL THE FOLLOWING TERMS: CHROMOSOME GENE DNA TRAIT HEREDITY INTERPHASE MITOSIS CYTOKINESIS ASEXUAL BINARY FISSION CELL CYCLE GENETIC DIVERSITY

More information