# RC, RL and RLC circuits

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in hese circuis when volages are suddenly applied or removed. To change he volage suddenly, a funcion generaor will be used. In order o observe hese rapid changes we will use an oscilloscope. 1. The square wave generaor Inroducion We can quickly charge and discharge a capacior by using a funcion generaor se o generae a square wave. The oupu of his volage source is shown in Figure T Figure 1: Oupu of square-wave generaor One conrol on he generaor les you vary he ampliude, 0. You can change he ime period over which he cycle repeas iself, T, by adjusing he repeiion frequency f = 1/T. The generaor is no an ideal volage source because i has an inernal resisance 50Ω. Thus, for purpose of analysis, he square-wave generaor may be replaced by he wo circuis shown in Figure 2. When he volage is on, he circui is a baery wih an EMF of 0 vols in series wih a 50Ω resisor. When he volage is off, he circui is simply a 50Ω resisor. R R 0 + On Of f Figure 2: Square-wave generaor equivalen circui 1

2 Procedure To learn how o operae he oscilloscope and funcion generaor, se he funcion generaor for square wave oupu and connec he generaor o he verical inpu of he oscilloscope. Adjus he oscilloscope o obain each of he paerns shown in Figure 3. Try changing he ampliude and repeiion frequency of he generaor and observe wha corresponding changes are needed in he oscilloscope conrols o keep he race on he screen he same. Now se he funcion generaor o a frequency of abou 100 Hz. Observe he paern and adjus he frequency unil he period T = 10.0 ms. Funcion Generaor Oscilloscope Figure 3: Observing he oupu of he square-wave generaor 2. Resisance-capaciance circuis Inroducion We have previously sudied he behavior of capaciors and looked a he way a capacior discharges hrough a resisor. Theory (see exbook) shows ha for a capacior, C, charging hough a resisor, R, he volage across he capacior,, varies wih ime according o ( ) ( - RC = 0 1- e ) (1) where 0 is he final seady-sae volage. When he same capacior discharges hrough he same resisor, ( ) - RC = 0 e (2) The produc of he resisance and capaciance, RC, governs he ime scale wih which he changes ake place. For his reason i is called he ime consan, which we call τ (au). I can be found indirecly by measuring he ime required for he volage o fall o 0 /2 (see Figure 4 below). This ime inerval is called he half-life, T 1/2, and is given by he equaion T 1/2 = (ln2)τ, so T 1 2 T1 2 = = (3) ln

3 / T 1/2 Figure 4: Discharge of a capacior Procedure Assemble he circui shown in Figure 5. R = 10 k C = 0.1 F Funcion Generaor Figure 5: Invesigaing an RC circui Oscilloscope Wih iniial values R = 10 kω, C = 0.1 µf, and f = 100 Hz, observe one period of he charge and discharge of he capacior. Make sure he repeiion frequency is low enough so ha he volage across he capacior has ime o reach is final values, 0 and 0. Figure 6 shows one complee cycle of he inpu square-wave ha is being applied across he resisor and capacior. Superimpose on he square-wave a skech of he waveform you observed, which illusraes he volage across he capacior as a funcion of ime. Figure 6: Capacior volage vs. ime 3

4 Wha is he larges volage, 0, across he capacior? Wha is he larges charge, q 0, on he capacior? 0 = q 0 = Use he ohmmeer o measure R. (Recall ha a resisor should be removed from he circui before you measure is resisance wih an ohmmeer.) R = To measure T 1/2 change oscilloscope gain (vols/cm) and sweep rae (ms/cm) unil you have a large paern on he screen, like he paern shown in Figure 7a. Make sure he sweep speed is in he calibraed posiion so he ime can be read off he x- axis. Cener he paern on he screen so ha he horizonal axis is in he cener of he paern. Tha is, so ha he waveform exends equal disances above and below he axis. Move he waveform o he righ unil he sar of he discharge of he capacior is on he verical axis as shown in Figure 7b. The half-life is jus he horizonal disance shown on Figure 7b. Figure 7a and b: Measuring he half-life Measure he half-life, T 1/2, and from his compue he ime consan τ using Equaion 3. Make sure o include unis wih your resuls T 1/2 = τ = 4

5 You have jus deermined his circui s ime consan from he capacior discharging curve. Theoreically, he ime consan is given by he produc of he resisance and capaciance in he circui, RC. Compue RC from componen values. Show your calculaion in he space below. Noe ha, as described above, he square-wave generaor has an inernal resisance of 50Ω. Thus, he oal resisance hrough which he RC circui charges and discharges is R + 50Ω. τ = When his calculaion is carried ou using ohms for resisance and Farads for capaciance, he produc has unis of seconds. Use dimensional analysis o show ha his is indeed he case. Wihin he uncerainies of he olerances (10%) of he resisor and capacior, do your measuremens suppor he equaion τ = RC? (If here is more han 20% disagreemen, consul your insrucor.) Alhough you have been old ha he inernal resisance of he funcion generaor is 50Ω, le s say we had kep his piece of informaion from you. Wihou using an ohmmeer, ouline a procedure for measuring he inernal resisance of your funcion generaor. 5

6 Adjus he funcion generaor o ry differen values of f and hence, T, while keeping τ fixed by no changing eiher R or C. On he lef graph below skech wha you saw when he period T of he square wave was much less han he ime consan, τ. On he righ graph below skech wha you saw when he period T of he square wave was much greaer han he ime consan. >> T = T = << T = T = 3. Resisance-inducance circuis Inroducion In his secion we conduc a similar sudy of a circui conaining a resisor and an inducor, L. Consider he circui shown in Figure 8 below. The ex shows ha if we sar wih he baery conneced o he LR circui, afer a long ime he curren reaches a seady-sae value, i 0 = 0 /R. R 0 L Figure 8: A model circui wih an inducor and resisor If we call = 0 he ime when we suddenly hrow he swich o remove he baery, allowing curren o flow o ground, hen curren changes wih ime according o he equaion ( ) -( R/L) i = i0 e (4) If, a a new = 0, we hrow he swich so he baery is conneced, he curren increases according o he equaion ( ) ( -( R/L) i = i0 1- e ) (5) The ime consan for boh equaions is L/R and 6

7 T 1 L 2 = = (6) R We can find he curren as a funcion of ime by measuring he volage across he resisor wih he oscilloscope and using he relaionship i() = ()/R. Noe ha wha we would see firs is he growh of curren given by Equaion 5, where he final curren depends on he square-wave ampliude 0. Then, when he square wave drops o zero, he curren decays according o Equaion 4. The ime consan should be he same in boh cases. Procedure Se up he circui shown in Figure 9 below. L = 25 mh R = 1 k Funcion Generaor Oscilloscope Figure 9: Invesigaing he LR circui Wih iniial values R = 1kΩ and L = 25mH, se he oscilloscope o view one period of exponenial growh and decay. Again, make sure ha f is low enough for he curren o reach is final values, i 0 and 0. Sar wih f = 5 khz. Superimpose a skech of he waveform you observe on he single cycle of he inpu square-wave shown below. Wha is he larges curren hrough he inducor? i 0 = Measure he half-life. From his value, compue he ime consan. T 1/2 = τ = 7

8 Measure he value of R and he dc resisance of he inducor wih an ohmmeer. Finally add he inernal resisance of he square-wave generaor o obain he oal resisance. Compue he value of L/R from he componens values. R (of resisor) = R (of inducor) = R (of funcion generaor) = R (oal) = τ = L/R = Wihin he uncerainies of he manufacuring olerances (10%) of he resisor and inducance, do your measuremens suppor he equaion = L/R? When his calculaion is carried ou using ohms for resisance and Henries for inducance, he raio has unis of seconds. Use dimensional analysis o show ha his is indeed he case. Adjus he funcion generaor o ry differen values of f and hence, T, while keeping τ fixed by no changing eiher R or L. On he lef graph below skech wha you saw when he period T of he square wave was much less han he ime consan, τ. On he righ graph below skech wha you saw when he period T of he square wave was much greaer han he ime consan. 8

9 >> T = T = << T = T = 4. Resisance-inducance-capaciance circuis Inroducion As discussed in he exbook, a circui conaining an inducor and a capacior, an LC circui, is an elecrical analog o a simple harmonic oscillaor, consising of a block on a spring fasened o a rigid wall. L C k M Figure 10: LC Circui and is analog, a mechanical SHM Sysem In he same way ha, in he mechanical sysem, energy can be in he form of kineic energy of he block of mass M, or poenial energy of he spring wih spring consan k; in 1 2 he LC circui energy can reside in he magneic field of he inducor U = 2 Li, or he 1 2 elecric field of he capacior, U = 2 q C. Boh he curren and he charge hen change in a sinusoidal manner. The frequency of he oscillaion is given by 1 0 = (7) LC All circuis have some resisance, and in he same way fricional forces damp mechanical SHM, resisance causes energy loss (i 2 R) which makes he charge decay in ime. ( ) - q q e cos( ) (8) = 0 1 ( ) = 0 1 (9) 9

10 where τ = 2L/R or T = ln2(2l R) = 0.693(2L ) (10) 1 2 R For large τ he sysem is underdamped and he charge oscillaes, aking a long ime o reurn o zero. 2 2 Noe from Equaion 9 ha when 0 = 1, 1, which appears in he argumen of he cosine funcion of Equaion 8, is zero a all imes. This condiion is called criical damping. Criical damping occurs when R = 2 L C. When he resisor is larger han he criical value he sysem is overdamped. The charge acually akes longer o reurn o zero han in he criically damped case. The decaying oscillaions in he LRC circui can be observed using he same echnique as used o observe exponenial decay. Again, a square-wave generaor produces he same effec as a baery swiched on and off periodically. The oscilloscope measures he volage across C as a funcion of ime. a. Observing oscillaions in a RLC circui Procedure Assemble he circui of Figure 11. Use a small value of R, say, 47Ω. Be sure o reduce he signal generaor frequency o 100 Hz or below so you can see he enire damped oscillaion. R L = 25 mh C = 0.1 F Funcion Generaor Oscilloscope Figure 11: Invesigaing he LRC circui Measure he period and calculae he frequency of he oscillaions. (The period is NOT 0.01 s = 1/100 Hz, he repeiion frequency of he square wave.) Measured period = Calculaed f 1 = = f = Calculae 0 from componen values. 0 =1 LC = 10

11 Compare he 1 you measured wih 0 ha you calculaed from componen values. In heory, 1, he damped frequency, is only slighly less han 0, he undamped frequency, making his a valid comparison of heory wih experimen. b. Criical damping and overdamping in a RLC circui Procedure Noe ha in he equaions for his circui, R represens he sum of he resisance of he inducor, he inernal resisance of he square-wave generaor, 50Ω, and he resisance of he resisor. To sudy criical damping and overdamping, remove your fixed resisor and pu in is place a 5-kΩ variable resisor. Sar wih he variable resisor se o a small value of R. For small R you should see he oscillaions ha are characerisic of underdamping. On he firs graph below skech he waveform ha appears on he oscilloscope. Increase R unil criical damping is reached; ha is, unil he oscillaions disappear. Skech his curve on he middle graph above. Use he ohmmeer o measure he value of he variable resisor a criical damping. (Don forge o disconnec he variable resisor from he circui when measuring is resisance.) R (variable resisor a criical damping) = Calculae he oal resisance in he circui a criical damping by adding he dc resisance of he inducor and 50Ω for he funcion generaor o he resul above. R (oal a criical damping) = Compare his value of he circui resisance a criical damping o he prediced value for criical damping, R = 2 L C. 11

12 Wha happens o he waveform when he resisance is larger han he criicaldamping value? Skech your resuls on he righmos graph above. c. Underdamping in a RLC circui Inroducion When he circui is underdamped, Equaion (8) applies. This means ha he ampliude of he oscillaion will decay exponenially, wih he ime consan for he decay being: 2L (11) R Recall ha when an exponenial decay is ploed on a semi-log scale he resuling graph is a sraigh line wih a slope equal o -1/. You can find he slope of a line on a semi-log graph by idenifying he wo end poins of he line. Noe he ime and volage a each poin 1 and 1, 2 and 2. Calculae he naural log of he wo volages. Then, ln( 2 ) ln( 1 ) 1 slope 2 1 The following seps describe how o measure he ime consan of he decay of he oscillaions. (12) Procedure Adjus he variable resisor so ha he circui is underdamped and oscillaes abou seven or eigh imes before he oscillaions become oo small o be easily seen on he oscilloscope. Cener he oscillaion paern verically on he screen so ha when he oscillaions have decayed he line on he oscilloscope coincides wih he ime axis. In he able below record he volage of each oscillaion peak, and he corresponding ime for each peak. When your able is complee you should have six or seven ses of daa recorded. Peak Heigh () Time ( ) Table 1 12

13 Creae a semi-log graph of your daa. (You can use Excel o creae a semi-log graph.) Following he procedure described above, deermine he ime consan for your circui. This is your experimenal value for he ime consan. Show your calculaion and resul here. τ experimen = Remove he variable resisor from he circui and measure is resisance. Add his value o he resisance of he square-wave generaor (50 ohms) and he resisance of he inducor o ge he oal resisance of your circui. Show your calculaion and resul here. R oal = Using Equaion (11) calculae he heoreical decay ime consan for your circui. Show your work. τ heory = Compare his heoreical value o he experimenal value you found above. They should agree wihin en or weny percen. If hey do no, consul your insrucor. 13

### CHARGE AND DISCHARGE OF A CAPACITOR

REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

### Chabot College Physics Lab RC Circuits Scott Hildreth

Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

### 9. Capacitor and Resistor Circuits

ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

### 11. Properties of alternating currents of LCR-electric circuits

WS. Properies of alernaing currens of L-elecric circuis. Inroducion So-called passive elecric componens, such as ohmic resisors (), capaciors () and inducors (L), are widely used in various areas of science

### RC Circuit and Time Constant

ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisor-capacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he

### Using RCtime to Measure Resistance

Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

### Inductance and Transient Circuits

Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

### RC (Resistor-Capacitor) Circuits. AP Physics C

(Resisor-Capacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED

### Chapter 7. Response of First-Order RL and RC Circuits

Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

### Capacitors and inductors

Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS

EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67 - FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1 - RANIEN Uni conen 2 Undersand he ransien behaviour of resisor-capacior (R) and resisor-inducor (RL) D circuis

### Circuit Types. () i( t) ( )

Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

### PHYS245 Lab: RC circuits

PHYS245 Lab: C circuis Purpose: Undersand he charging and discharging ransien processes of a capacior Display he charging and discharging process using an oscilloscope Undersand he physical meaning of

### Chapter 2: Principles of steady-state converter analysis

Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

### 4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F

efore you begin: Use black pencil. Wrie and bubble your SU ID Number a boom lef. Fill bubbles fully and erase cleanly if you wish o change! 20 Quesions, each quesion is 10 poins. Each quesion has a mos

### Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

### Graphing the Von Bertalanffy Growth Equation

file: d:\b173-2013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and

### Rotational Inertia of a Point Mass

Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha

### Physics 111 Fall 2007 Electric Currents and DC Circuits

Physics 111 Fall 007 Elecric Currens and DC Circuis 1 Wha is he average curren when all he sodium channels on a 100 µm pach of muscle membrane open ogeher for 1 ms? Assume a densiy of 0 sodium channels

### Fourier series. Learning outcomes

Fourier series 23 Conens. Periodic funcions 2. Represening ic funcions by Fourier Series 3. Even and odd funcions 4. Convergence 5. Half-range series 6. The complex form 7. Applicaion of Fourier series

### 1. The graph shows the variation with time t of the velocity v of an object.

1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially

### cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

### Acceleration Lab Teacher s Guide

Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion

### Full-wave rectification, bulk capacitor calculations Chris Basso January 2009

ull-wave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal

### State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University

Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween

### 23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes

Even and Odd Funcions 23.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl

### Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa

### Voltage level shifting

rek Applicaion Noe Number 1 r. Maciej A. Noras Absrac A brief descripion of volage shifing circuis. 1 Inroducion In applicaions requiring a unipolar A volage signal, he signal may be delivered from a bi-polar

### Week #9 - The Integral Section 5.1

Week #9 - The Inegral Secion 5.1 From Calculus, Single Variable by Hughes-Halle, Gleason, McCallum e. al. Copyrigh 005 by John Wiley & Sons, Inc. This maerial is used by permission of John Wiley & Sons,

### Signal Processing and Linear Systems I

Sanford Universiy Summer 214-215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 14-15, Gibbons

### 23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes

Even and Odd Funcions 3.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl

### Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

### and Decay Functions f (t) = C(1± r) t / K, for t 0, where

MATH 116 Exponenial Growh and Decay Funcions Dr. Neal, Fall 2008 A funcion ha grows or decays exponenially has he form f () = C(1± r) / K, for 0, where C is he iniial amoun a ime 0: f (0) = C r is he rae

### Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

### Signal Rectification

9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal

### Laboratory #3 Diode Basics and Applications (I)

Laboraory #3 iode asics and pplicaions (I) I. Objecives 1. Undersand he basic properies of diodes. 2. Undersand he basic properies and operaional principles of some dioderecifier circuis. II. omponens

### Chapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr

Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i

### Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

### Understanding Sequential Circuit Timing

ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor

### Astable multivibrator using the 555 IC.(10)

Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion

### DC-DC Boost Converter with Constant Output Voltage for Grid Connected Photovoltaic Application System

DC-DC Boos Converer wih Consan Oupu Volage for Grid Conneced Phoovolaic Applicaion Sysem Pui-Weng Chan, Syafrudin Masri Universii Sains Malaysia E-mail: edmond_chan85@homail.com, syaf@eng.usm.my Absrac

### Chapter 2 Kinematics in One Dimension

Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

### Differential Equations and Linear Superposition

Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

### Pulse-Width Modulation Inverters

SECTION 3.6 INVERTERS 189 Pulse-Widh Modulaion Inverers Pulse-widh modulaion is he process of modifying he widh of he pulses in a pulse rain in direc proporion o a small conrol signal; he greaer he conrol

### 1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..

### Switching Regulator IC series Capacitor Calculation for Buck converter IC

Swiching Regulaor IC series Capacior Calculaion for Buck converer IC No.14027ECY02 This applicaion noe explains he calculaion of exernal capacior value for buck converer IC circui. Buck converer IIN IDD

### Brown University PHYS 0060 INDUCTANCE

Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide INTODUCTION INDUCTANCE Anyone who has ever grabbed an auomobile spark-plug wire a he wrong place, wih he engine running, has an appreciaion

### Making Use of Gate Charge Information in MOSFET and IGBT Data Sheets

Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have

### Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur

Module 3 - & -C Transiens esson 0 Sudy of DC ransiens in - and -C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series

### 11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

### Damped Harmonic Motion Closing Doors and Bumpy Rides

Prerequisies and Goal Damped Harmonic Moion Closing Doors and Bumpy Rides Andrew Forreser May 4, 21 Assuming you are familiar wih simple harmonic moion, is equaion of moion, and is soluions, we will now

### LAB 6: SIMPLE HARMONIC MOTION

1 Name Dae Day/Time of Lab Parner(s) Lab TA Objecives LAB 6: SIMPLE HARMONIC MOTION To undersand oscillaion in relaion o equilibrium of conservaive forces To manipulae he independen variables of oscillaion:

### CHAPTER 21: Electromagnetic Induction and Faraday s Law

HAT : lecromagneic nducion and Faraday s aw Answers o Quesions. The advanage of using many urns (N = large number) in Faraday s experimens is ha he emf and induced curren are proporional o N, which makes

### ECEN4618: Experiment #1 Timing circuits with the 555 timer

ECEN4618: Experimen #1 Timing circuis wih he 555 imer cæ 1998 Dragan Maksimović Deparmen of Elecrical and Compuer Engineering Universiy of Colorado, Boulder The purpose of his lab assignmen is o examine

### µ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ

Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high

### Basic Circuit Elements - Prof J R Lucas

Basic Circui Elemens - Prof J ucas An elecrical circui is an inerconnecion of elecrical circui elemens. These circui elemens can be caegorized ino wo ypes, namely acive elemens and passive elemens. Some

### Transient Analysis of First Order RC and RL circuits

Transien Analysis of Firs Order and iruis The irui shown on Figure 1 wih he swih open is haraerized by a pariular operaing ondiion. Sine he swih is open, no urren flows in he irui (i=0) and v=0. The volage

### 2 Electric Circuits Concepts Durham

Chaper 3 - Mehods Chaper 3 - Mehods... 3. nroducion... 2 3.2 Elecrical laws... 2 3.2. Definiions... 2 3.2.2 Kirchhoff... 2 3.2.3 Faraday... 3 3.2.4 Conservaion... 3 3.2.5 Power... 3 3.2.6 Complee... 4

### The Transport Equation

The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

### TLE 472x Family Stepper Motor Drivers. Current Control Method and Accuracy

Applicaion Noe, V 1.0, Augus 2001 ANPS063E TLE 472x Family Sepper Moor Drivers Curren Conrol Mehod and Accuracy by Frank Heinrichs Auomoive Power N e v e r s o p h i n k i n g. - 1 - TLE 472x sepper moor

### Fourier Series Approximation of a Square Wave

OpenSax-CNX module: m4 Fourier Series Approximaion of a Square Wave Don Johnson his work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License. Absrac Shows how o use Fourier

### 4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay

324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find

### ORDER INFORMATION TO pin 300 ~ 360mV AMC7150DLF 300 ~ 320mV AMC7150ADLF 320 ~ 340mV AMC7150BDLF 340 ~ 360mV AMC7150CDLF

www.addmek.com DESCRIPTI is a PWM power ED driver IC. The driving curren from few milliamps up o 1.5A. I allows high brighness power ED operaing a high efficiency from 4Vdc o 40Vdc. Up o 200KHz exernal

### ( ) in the following way. ( ) < 2

Sraigh Line Moion - Classwork Consider an obbec moving along a sraigh line eiher horizonally or verically. There are many such obbecs naural and man-made. Wrie down several of hem. Horizonal cars waer

### Economics 140A Hypothesis Testing in Regression Models

Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1

### Math 201 Lecture 12: Cauchy-Euler Equations

Mah 20 Lecure 2: Cauchy-Euler Equaions Feb., 202 Many examples here are aken from he exbook. The firs number in () refers o he problem number in he UA Cusom ediion, he second number in () refers o he problem

### AP1 Kinematics (A) (C) (B) (D) Answer: C

1. A ball is hrown verically upward from he ground. Which pair of graphs bes describes he moion of he ball as a funcion of ime while i is in he air? Neglec air resisance. y a v a (A) (C) y a v a (B) (D)

### Converter Topologies

High Sepup Raio DCDC Converer Topologies Par I Speaker: G. Spiazzi P. Teni,, L. Rosseo,, G. Spiazzi,, S. Buso,, P. Maavelli, L. Corradini Dep. of Informaion Engineering DEI Universiy of Padova Seminar

### Chapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m

Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m

### 5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.

5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()

### NOTES ON OSCILLOSCOPES

NOTES ON OSCILLOSCOPES NOTES ON... OSCILLOSCOPES... Oscilloscope... Analog and Digial... Analog Oscilloscopes... Cahode Ray Oscilloscope Principles... 5 Elecron Gun... 5 The Deflecion Sysem... 6 Displaying

### Lenz's Law. Definition from the book:

Lenz's Law Definiion from he book: The induced emf resuling from a changing magneic flux has a polariy ha leads o an induced curren whose direcion is such ha he induced magneic field opposes he original

### ENE 104 Electric Circuit Theory

Elecric Circui heory Lecure 0: AC Power Circui Analysis (ENE) Mon, 9 Mar 0 / (EE) Wed, 8 Mar 0 : Dejwoo KHAWPARSUH hp://websaff.ku.ac.h/~dejwoo.kha/ Objecives : Ch Page he insananeous power he average

### A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion

### Section 7.1 Angles and Their Measure

Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed

### Relative velocity in one dimension

Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies

### YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.

. Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure

### Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar

Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 0-7-380-7 Ifeachor

### HANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.

Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can

### Steps for D.C Analysis of MOSFET Circuits

10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.

### Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

### CAPACITANCE AND INDUCTANCE

CHAPTER 6 CAPACITANCE AND INDUCTANCE THE LEARNING GOALS FOR THIS CHAPTER ARE: Know how o use circui models for inducors and capaciors o calculae volage, curren, and power Be able o calculae sored energy

### TEACHER NOTES HIGH SCHOOL SCIENCE NSPIRED

Radioacive Daing Science Objecives Sudens will discover ha radioacive isoopes decay exponenially. Sudens will discover ha each radioacive isoope has a specific half-life. Sudens will develop mahemaical

### 11. Tire pressure. Here we always work with relative pressure. That s what everybody always does.

11. Tire pressure. The graph You have a hole in your ire. You pump i up o P=400 kilopascals (kpa) and over he nex few hours i goes down ill he ire is quie fla. Draw wha you hink he graph of ire pressure

### Chapter 8 Student Lecture Notes 8-1

Chaper Suden Lecure Noes - Chaper Goals QM: Business Saisics Chaper Analyzing and Forecasing -Series Daa Afer compleing his chaper, you should be able o: Idenify he componens presen in a ime series Develop

### THE PRESSURE DERIVATIVE

Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics THE PRESSURE DERIVATIVE The ressure derivaive has imoran diagnosic roeries. I is also imoran for making ye curve analysis more reliable.

### The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1

Business Condiions & Forecasing Exponenial Smoohing LECTURE 2 MOVING AVERAGES AND EXPONENTIAL SMOOTHING OVERVIEW This lecure inroduces ime-series smoohing forecasing mehods. Various models are discussed,

### UMR EMC Laboratory UMR EMC Laboratory Technical Report: TR

UMR EMC Laboraory UMR EMC Laboraory Dep. of Elecrical & Compuer Engineering 870 Miner Circle Universiy of Missouri Rolla Rolla, MO 65409-0040 UMR EMC Laboraory Technical Repor: TR0-8-00 Effec of Delay

### A Mathematical Description of MOSFET Behavior

10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical

### Part II Converter Dynamics and Control

Par II onverer Dynamics and onrol 7. A equivalen circui modeling 8. onverer ransfer funcions 9. onroller design 1. Inpu filer design 11. A and D equivalen circui modeling of he disconinuous conducion mode

### INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS

INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS Ilona Tregub, Olga Filina, Irina Kondakova Financial Universiy under he Governmen of he Russian Federaion 1. Phillips curve In economics,

### AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

### AP Calculus AB 2013 Scoring Guidelines

AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a mission-driven no-for-profi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was

### Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that

Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex

### SEMICONDUCTOR APPLICATION NOTE

SEMICONDUCTOR APPLICATION NOTE Order his documen by AN1542/D Prepared by: C. S. Mier Moorola Inc. Inpu filer design has been an inegral par of power supply designs. Wih he adven of inpu filers, he designer

### Morningstar Investor Return

Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

### FE Review Basic Circuits. William Hageman

FE eview Basic Circuis William Hageman -8-04 FE opics General FE 4. Elecriciy, Power, and Magneism 7 A. Elecrical fundamenals (e.g., charge, curren, volage, resisance, power, energy) B. Curren and volage

### LECTURE 9. C. Appendix

LECTURE 9 A. Buck-Boos Converer Design 1. Vol-Sec Balance: f(d), seadysae ransfer funcion 2. DC Operaing Poin via Charge Balance: I(D) in seady-sae 3. Ripple Volage / C Spec 4. Ripple Curren / L Spec 5.