Lab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response

Size: px
Start display at page:

Download "Lab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response"

Transcription

1 Capacitor and Inductor Transient Response Capacitor Theory Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all be represented by the following symbol. + v c (t) - Note the curved line in the symbol for the capacitor shown in Figure 1. You will sometimes see a capacitor symbolized by two parallel lines instead of one curved one. This is poor practice because that symbol is normally reserved for a relay. Many capacitors have a polarity associated with them. On a circuit diagram, this is sometimes symbolized with a small + next to the flat line. The curved line of the capacitor symbol is usually associated with the more negative voltage. It is critical that the polarity requirements of a capacitor are observed, or the capacitor is likely to fail in a violent, and possibly, explosive fashion. Capacitors also have a maximum voltage that can be applied across the terminals before the electrical insulation between the plates breaks down. Unlike resistors, which dissipate electrical energy in the form of heat, capacitors store energy in the form of an electric field. The amount of energy stored in the capacitor (in Joules) is given as 1 W CV 2 2 where C is the value of capacitance in Farads, and V is the voltage across the capacitor in Volts. The current and voltage in a capacitor (as seen in Fig. 1) are related by (1) dv i(t) C (2) dt t 1 and v(t) idtv(t 0). C (3) t 0 i c (t) Figure 1: Typical Capacitor Circuit Symbol. 1

2 One conclusion that can be drawn from the above integral is the fact that if a capacitor is charged to some initial voltage, it will remain at that voltage forever if there is nothing that provides a current path for discharge. Thus, for safety reasons, discharge capacitors with a resistor before touching any circuit with capacitors present. t=0 R V s C + v c (t) - i c (t) Figure 2: Capacitor Charging Circuit. Assuming the capacitor didn t have an initial voltage across it at t=0 when the switch is closed, the voltage across the capacitor in Fig. 2 over time is given as: v (t) V (1 e c s t/ τ ) (4) where,, is the time constant of the circuit. The time constant is given by: τ RC. (5) A time constant of a circuit is an important property of a circuit. It provides a useful measure of how fast a circuit responds to change. In the above equation, when the time is equal to one time constant, the exponential is raised to the power negative one.. It is customary to measure this point on the charge or discharge curve to determine experimentally. For two time constants, the power is negative two, and so on. After one time constant, the voltage across the capacitor is 63.2% of its final value and after five time constants has 99.3% of its final value. Similarly, we can solve for the current in Fig. 2 at any instant after the switch closes as: i (t) c Vs e R t/τ. (6) When the initial voltage on the capacitor is non-zero the voltage across the capacitor over time is given by: (t) s + - s e -t (7) Where: V 0 is the initial voltage across the capacitor and V S is the source voltage at time 0+. 2

3 i (t) - e -t (8) Equation 7 can be written in terms of the initial and final voltage across the cap. (t) ( )+ ( )- ( ) e -t (9) Where: ( ) is the initial voltage across the capacitor at time 0+ and ( ) is the final or steady state value of the source voltage. Inductor Theory Like resistors, inductors are also basic circuit elements. The impedance of an ideal inductor is given in equation 0. Like the capacitor the impedance of an ideal inductor is completely imaginary and like the capacitor the voltage across the inductor and the current through the inductor are not in phase. Also an ideal inductor has magnitude impedance at Hz and an magnitude impedance at Hz. The circuit symbol for an inductor is given in Figure 1. + v L (t) - (10) i L (t) Figure 1: Typical Inductor Circuit Symbol Unlike resistors, which dissipate electrical energy in the form of heat, Inductors store energy in the form of a magnetic field. The energy stored in an inductor is given as: where L is value of inductance in Henrys and I is the current in Amps flowing through the inductor. The voltage and current for an inductor are related by: (11) ( ) (12) and ( ) ( ) ( ) ( ) (13) 3

4 where ( ) is the initial current flowing in the inductor. One conclusion that can be drawn from the above integral is the fact that if an inductor has an initial current flowing through it the current will flow forever until it is dissipated through some resistance. Charging an inductor with a voltage source through a resistor is similar to charging a capacitor. The main difference is the exponential time constant dictates the current instead of the voltage. ( ) ( ) (14) Where and is the time constant of the circuit. t=0 R VS I L + V L - GND GND Figure 2: RL circuit time constant measurement. The time constant of the circuit shown in figure 2 is an important property of the circuit. It provides a useful measure of how fast a circuit responds to change. You may recall that a capacitor voltage changes by 63.2% from the initial to final voltage during 1 time constant. The inductor current also changes by 63.2% in one time constant. Similarly the voltage across the inductor is an exponential discharge. ( ) (15) Inductance is a fundamental circuit property like resistance and capacitance. A typical Inductor is made with wire wrapped to form a coil. The inductance is proportional to the square of the number of turns in the coil. Thus more turns of wire in the inductor results in more inductance. One of the primary ways to vary the inductance is to change the number of turns. The inductors in the lab are covered so you can t see the turns of wire. The turns of wire have an undesired property. The wire used to achieve the desired inductance has a resistance associated with it. We don t want resistance we want inductance. This parasitic resistance cannot usually be ignored. A typical model of 4

5 an inductor must then include this parasitic resistance. Such a model is shown in Figure 3. This parasitic resistance will dissipate power and we must consider this when using inductors. Inductor Model + R L i(t) = I m sin( t) L v(t) - Figure 3: Inductor with Parasitic Resistance. The model of the inductor including the parasitic resistance in Fig. 3 holds for most cases. 5

6 Instructional Objectives Analyze the transient response of a simple RC circuit. Analyze the transient response of a simple RL circuit. Procedure Parts needed for this lab: Use the R and C values from the Prelab, 1K resistor, a 100mH Inductor and 3 K resistor. That s it. For all experiments in this lab you will be using a bread-board and the Analog Discovery measurement system. Part 1: Measuring the transient response of an RC network. Before we actually measure the RC time constant there are a few things that need to be determined about the circuit and the measurement instruments. The theory section talks about the initial and final conditions of the voltage on the capacitor. We will investigate these conditions, since they influence the measured results. The initial conditions are not difficult to set or measure. To make it easy to measure τ we force the initial voltage across the capacitor to a known voltage. Then we can use Eq. 7 or 9 to measure τ with the scope. We are going to drive the RC with a very slow square wave. We do this so that the capacitor has time to get extremely close to the voltage that is driving the circuit. This defines the initial and final conditions for us because we wait long enough before the square wave repeats the waveform so it is almost like at time. Another issue we need to deal with is the influence the input impedance of the Analog Discovery has on our measurement since we will use it to measure the τ of the RC circuit. The A1+ and A1- or A2+ and A2- get connected across the resistor and across the capacitor so the input impedance will always be in parallel with the resistor or capacitor. 1. Measure the input impedance of the Analog Discovery A1+ to A1- and the impedance of R1 in figure 4? See following discussion as to how to do this. Analog Discovery input impedance Ω. Resistor value R1 Ω. The Analog Discovery has an active input impedance is 1MΩ. What does active mean? Usually most devices have an input impedance that is not just a resistor that you can measure. This is true for the Analog Discovery. Measure the ch1(1+, 1-) or ch2 (2+, 2-) with your DVM on te resistance setting. You get a value..ω Is it right? Most likely NO! So how do we find out what the input impedance is? For this lab we will 6

7 only consider the input resistance (DC) and not the input impedance which is frequency dependent. Consider the input of the Analog Discovery a black box. All you can do is measure the voltage across the input and the current into it. Then use Ohms law V/I=R to calculate the input impedance. Simple enough if you can measure the small signals to get an accurate measurement. You are in luck your DVM can just barely measure the current and easily measure the voltage. Give it a try using the following schematic and picture as a guide. Set the Analog discovery to output 5VDC from W1. Measure the W1 to GND voltage with the D M. We can t actually measure the voltage from 1+ to 1- because you need 2 meters to set this up. The ammeter will not influence this resistance measurement. The resistance of the meter is much much smaller than the input resistance of the Analog discovery. Now connect the DVM as shown in the circuit to measure the current going into the Analog Discovery. Don t forget to set the meter to ua and move the red lead to the right spot. W1 VDC, Input current ua. alculate the input resistance using these measured values. Z /I Ω How does this compare to the value you got when you simple measured the resistance across 1+ and 1- using the DVM? The input impedance discharges the capacitor while R1 charges it. Does this input impedance discharge the cap at a rate high enough to influence the measureable charging through R1? To determine this compare the R s. If the input impedance is >> than the charging R, R1, there won t be a problem unless you are trying to measure with incredible accuracy. 100:1 ratio is a 1% error. 1000:1 ratio is a 0.1% error. It all depends on the accuracy you need for your tests. 7

8 Do you need to worry about the input impedance when determining? 2. Measure the charging of a capacitor to determine : Build the circuit shown below. Figure 4: RC circuit. Setup the W1 source to put out a 0 to 4V (2V 2V OFFSET ) square wave at a frequency that has about 5 time at 4V and 5 time at 0. Set triggering to C2 Rising edge at about 2V Set the time base to xs/div which allows you to see a charging and discharging waveform on the same trace and which seems to show the initial and final voltages (Slow one). Time base = xs/div. Measure the initial and final voltages, V INIT, V FINAL across the capacitor. Make sure you are convinced the waveform is done rising or falling. Make the time base 10 to 20 times faster just to see what the waveform looks like when you don t wait long enough to find FINAL. 3. Use the cursors to measure the time constant Put cursor at the most negative across V C1, (V INIT ) right where the voltage starts rising. Change the Horizontal Time Base to xs/div to cover most of the screen with the initial to final event (Fast one). Time base = xs/div. Set the other cursor to the voltage which is ( ) 0.63 the way to V FINAL. This is 63% from V INIT to V FINAL = V INIT (V FINAL -V INIT ) V. From Eq. 9 above. Capture the resulting display for your report.. Figure 5 shows the display I captured. 8

9 Figure 5: Captured RC transient measurement. 4. Use the cursors to measure the time constant. Change the Horizontal time base to the (Slow one). Put one cursor at the most positive voltage across V C1, (V FINAL) where the voltage starts falling. Change the Horizontal Time Base back to the (Fast one). Set the other cursor to the voltage which is ( ) 0.63 the way to V INIT. This is 63% from V INIT to V FINAL = V INIT (V FINAL -V INIT ) V. From Eq. 9 above. Capture the resulting display for your report. =. 5. Measure the peak current values during charge and discharge. First measure V R. Pos, Neg. What is R Ω. Calulate I CHARGE I DISCHARGE. 6. Change R1 to 30.0K. The following steps are similar to steps 2-3. Setup the W1 source to put out a 0 to 4V (2V 2V OFFSET ) square wave. Set the frequency of the square wave such that the voltage across the capacitor has sufficient time to reach steady state 5 (Note that the frequency will have to be much lower than the frequency used in previous steps, because of the larger value of ) Set triggering to Ch2 Rising edge at about 2V. Set to the time base to cover most of the screen with the entire initial to final event. Measure the initial and final voltages, V INIT, V FINAL across the capacitor. 9

10 7. Use the cursors to measure the time constant. Change the Time Base to cover the initial to final event to sufficiently measure. Put one cursor at the most negative across V C, (V INIT ) right where the voltage starts rising. Set the other cursor to the voltage which is 0.63 the way to V FINAL as in step 3 above. Capture the resulting display for your report.. Part 2 Measuring the transient response of an RL network. 8. Measure the charging of an inductor to determine : Build the circuit shown below. Figure 5: RC circuit. Setup the W1 source to put out a 0 to 4V (2V P with 2V OFFSET ) square wave at a frequency that has about 5 time at 4V and 5 time at 0. Set triggering to C2 Rising edge at about 2V Set the time base to a xs/div. which allows you to see a charging and discharging waveform on the same trace and which seems to show the initial and final voltages (Slow one L). Measure the initial and final voltages, V INIT, V FINAL across the resistor. (Note that we are measuring resistor voltage since inductor resists change in current. Voltage across inductor changes instantaneously). 9. Use the cursors to measure the time constant. Put cursor at the most negative across V R1, (V INIT ) right where the voltage starts rising. 10

11 Change the Horizontal Time Base to cover most of the rising event on the screen. (Fast one L). Set the other cursor to the voltage which is ( ) 0.63 the way to V FINAL. This is 63% from V INIT to V FINAL = V INIT (V FINAL -V INIT ) V. From Eq. 9 above. Capture the resulting display for your report Use the cursors to measure the time constant. Change the Horizontal time base to (Slow one L). Put one cursor at the most positive voltage across V L1, (V FINAL) where the voltage starts falling. Change the Horizontal Time Base to (Fast one L). Set the other cursor to the voltage which is ( ) 0.63 the way to V INIT. This is 63% from V INIT to V FINAL = V INIT (V FINAL -V INIT ) V. From Eq. 9 above. Capture the resulting display for your report Measure the peak inductor voltage values during charge and discharge. First measure V L1. Pos, Neg. 12. Are the values of and close to the expected (theoratical) value? Why or why not? 11

Capacitors and Inductors Lab Guide

Capacitors and Inductors Lab Guide UNIVERSITY OF CALIFORNIA, BERKELEY EE100 Summer 2008 Lab 3 I. Introduction Capacitors and Inductors Lab Guide 1. Capacitors A capacitor is a passive electronic component that stores energy in the form

More information

Inductance and Capacitance

Inductance and Capacitance Unit 3 Inductance and Capacitance Inductors and capacitors are devices which store energy: Inductors store energy in magnetic fields eg., fields within a coil. According to Faraday s law, a timevarying

More information

The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI

The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere

More information

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science. HW7: Energy Storage Elements ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

More information

Capacitors Introduction

Capacitors Introduction Introduction This experiment introduces several new components. We will work with new equipment in this lab: the function generator and oscilloscope. A new circuit element, the capacitor will be used as

More information

RC Circuits. 1 Introduction. 2 Capacitors

RC Circuits. 1 Introduction. 2 Capacitors 1 RC Circuits Equipment DataStudio with 750 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 2x35 in. leads, 12 in. lead Reading Review operation of DataStudio oscilloscope. Review

More information

Overview. Fundamental Concepts in Electrical Engineering Lab4 - Transient Effects and Charge Storage in Capacitors

Overview. Fundamental Concepts in Electrical Engineering Lab4 - Transient Effects and Charge Storage in Capacitors Experiment Name: Charge_Storage_in_Capacitors Overview Fundamental Concepts in Electrical Engineering Lab4 - Transient Effects and Charge Storage in Capacitors Objectives Learn an intuitive and an analytical

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

More information

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.

More information

The Basic Inductor When a length of wire is formed onto a coil, it becomes a basic inductor. Magnetic lines of force around each loop in the winding

The Basic Inductor When a length of wire is formed onto a coil, it becomes a basic inductor. Magnetic lines of force around each loop in the winding The Basic Inductor When a length of wire is formed onto a coil, it becomes a basic inductor. Magnetic lines of force around each loop in the winding of the coil effectively add to the lines of force around

More information

HB, MS RL Circuits 1. RL Circuits. Equipment SWS, RLC circuit board, 2 voltage sensors (no alligator clips), 2 leads (35 in)

HB, MS RL Circuits 1. RL Circuits. Equipment SWS, RLC circuit board, 2 voltage sensors (no alligator clips), 2 leads (35 in) HB, MS 12-06-2010 RL Circuits 1 RL Circuits Equipment SWS, RLC circuit board, 2 voltage sensors (no alligator clips), 2 leads (35 in) Reading Review operation of oscilloscope, signal generator, and power

More information

LR Circuits INTRODUCTION DISCUSSION OF PRINCIPLES

LR Circuits INTRODUCTION DISCUSSION OF PRINCIPLES LR Circuits INTRODUCTION The English physicist Michael Faraday 1 found in 1831 that when the current through a coil 2 changes, the coil produces a changing magnetic field (in addition to the field of the

More information

REVIEW QUESTIONS. Figure 6.43 For Review Question 6.6.

REVIEW QUESTIONS. Figure 6.43 For Review Question 6.6. REVIEW QUESTIONS 6.1 What charge is on a 5-F capacitor when it is connected across a 12-V source? (a) 6 C (b) 3 C (c) 24 C (d) 12 C 6.2 Capacitance is measured in: (a) coulombs (b) joules (c) henrys (d)

More information

Inductors and Capacitors

Inductors and Capacitors Inductors and Capacitors Inductor is a Coil of wire wrapped around a supporting (mag or non mag) core Inductor behavior related to magnetic field Current (movement of charge) is source of the magnetic

More information

ECE207 Electrical Engineering Fall Lab 1 Nodal Analysis, Capacitor and Inductor Models

ECE207 Electrical Engineering Fall Lab 1 Nodal Analysis, Capacitor and Inductor Models Lab 1 Nodal Analysis, Capacitor and Inductor Models Objectives: At the conclusion of this lab, students should be able to: use the NI mydaq to power a circuit using the power supply and function generator

More information

ECE 2006 Circuit Analysis Rev AC VOLTAGE AND CURRENT CALCULATIONS

ECE 2006 Circuit Analysis Rev AC VOLTAGE AND CURRENT CALCULATIONS 10. AC CIRCUITS 2.1 AC VOLTAGE AND CURRENT CALCULATIONS 2.1.1 OBJECTIVE To study sinusoidal voltages and currents in order to understand frequency, period, effective value, instantaneous power and average

More information

Chapter 2. Characterizing Components Using Lab Tools and LTSpice

Chapter 2. Characterizing Components Using Lab Tools and LTSpice Chapter 2 Characterizing Components Using Lab Tools and LTSpice 17 CHAPTER 2. CHARACTERIZING COMPONENTS USING LAB TOOLS AND LTSPICE 2.1 Pre-Lab The answers to the following questions are due at the beginning

More information

RC CIRCUIT. Figure 1. A simple capacitor circuit. OBJECTIVES: 1) Observe the charge up and decay of the voltage on a capacitor.

RC CIRCUIT. Figure 1. A simple capacitor circuit. OBJECTIVES: 1) Observe the charge up and decay of the voltage on a capacitor. OBJECTIVES: APPARATUS: RC CIRCUIT 1) Observe the charge up and decay of the voltage on a capacitor. 2) Measure the time constant for the decay, τ = RC. 3) Observe that the sum of the voltage on the resistor

More information

Class #12: Experiment The Exponential Function in Circuits, Pt 1

Class #12: Experiment The Exponential Function in Circuits, Pt 1 Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits

More information

ET 304a Laboratory 8 Capacitive Reactance, Inductive Reactance and Series Impedance

ET 304a Laboratory 8 Capacitive Reactance, Inductive Reactance and Series Impedance ET 304a Laboratory 8 Capacitive Reactance, Inductive Reactance and Series Impedance Purpose: Experimentally verify the formulas for capacitive and inductive reactance. Observe how frequency affects the

More information

The Oscilloscope. No Prelab

The Oscilloscope. No Prelab The No Prelab The oscilloscope is one of the most versatile tools in the laboratory. The oscilloscope can be used as a D.C. voltmeter, A.C. voltmeter, a timing instrument, and a frequency meter. The oscilloscope

More information

Basic Electrical Theory

Basic Electrical Theory Basic Electrical Theory Impedance PJM State & Member Training Dept. PJM 2014 10/24/2013 Objectives Identify the components of Impedance in AC Circuits Calculate the total Impedance in AC Circuits Identify

More information

First Order Circuits. EENG223 Circuit Theory I

First Order Circuits. EENG223 Circuit Theory I First Order Circuits EENG223 Circuit Theory I First Order Circuits A first-order circuit can only contain one energy storage element (a capacitor or an inductor). The circuit will also contain resistance.

More information

Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

Lab 7: LRC Circuits. Purpose. Equipment. Principles

Lab 7: LRC Circuits. Purpose. Equipment. Principles Lab 7: LRC Circuits Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the frequency response of inductors, resistors and capacitors

More information

Chapter 6. Inductance, Capacitance, and Mutual Inductance

Chapter 6. Inductance, Capacitance, and Mutual Inductance Chapter 6. Inductance, Capacitance, and Mutual Inductance By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical Engineering, K.N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/electriccircuits1.htm

More information

Chapter 3. Simulation of Non-Ideal Components in LTSpice

Chapter 3. Simulation of Non-Ideal Components in LTSpice Chapter 3 Simulation of Non-Ideal Components in LTSpice 27 CHAPTER 3. SIMULATION OF NON-IDEAL COMPONENTS IN LTSPICE 3.1 Pre-Lab The answers to the following questions are due at the beginning of the lab.

More information

Transformers, Reactance, Resonance and Impedance. Transformers and Turns Ratios Capacitive and Inductive Reactance Resonance and Impedance Matching

Transformers, Reactance, Resonance and Impedance. Transformers and Turns Ratios Capacitive and Inductive Reactance Resonance and Impedance Matching Transformers, Reactance, Resonance and Impedance Transformers and Turns Ratios Capacitive and Inductive Reactance Resonance and Impedance Matching Review Two types of current: AC Charge movement alternates

More information

Experiment 7 AC Circuits

Experiment 7 AC Circuits Experiment 7 AC Circuits "Look for knowledge not in books but in things themselves." W. Gilbert (1540-1603) OBJECTIVES To study some circuit elements and a simple AC circuit. THEORY All useful circuits

More information

LRC Circuits. Purpose. Principles PHYS 2211L LAB 7

LRC Circuits. Purpose. Principles PHYS 2211L LAB 7 Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven

More information

Lab 7 RC Series Circuits Time Dependence

Lab 7 RC Series Circuits Time Dependence Lab 7 RC Series Circuits Time Dependence What You Need To Know: The Physics A capacitor is a device for storing charge. The capacitance C of a capacitor depends only on the geometry and material make up

More information

Experiment 12: AC Circuits - RLC Circuit

Experiment 12: AC Circuits - RLC Circuit Experiment 12: AC Circuits - LC Circuit Introduction An inductor (L) is an important component of circuits, on the same level as resistors () and the capacitors (C). The inductor is based on the principle

More information

Intro to Power Lab Concepts

Intro to Power Lab Concepts 1 Intro to Power Lab Concepts Created by the University of Illinois at Urbana-Champaign TCIPG PMU Research Group 1 Table of Contents 1. PRE-LAB DC Power-----------------------------------------------------------------------------------

More information

EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS

EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS OBJECTIVES To understand the theory of operation of the clipping and clamping diode circuits. To design wave shapes that meet different circuits needs.

More information

8 RC Decay. Introduction:

8 RC Decay. Introduction: 8 RC Decay Introduction: A capacitor is a device for storing charge and energy. It consists of two conductors insulated from each other. A typical capacitor is called a parallel-plate capacitor and is

More information

RC & RL Transient Response

RC & RL Transient Response EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient

More information

6/06 E Field Energy Storage

6/06 E Field Energy Storage Capacitor charging-discharging setup About this lab: The volume energy density (joules/cubic meter, in mks units) stored in an electric field is proportional to E 2. (A similar relation involving B 2 holds

More information

Laboratory 4 AC Circuits Phasors, Impedance and Transformers

Laboratory 4 AC Circuits Phasors, Impedance and Transformers Laboratory 4 AC Circuits Phasors, Impedance and Transformers Objectives The objectives of this laboratory are to gain practical understanding of circuits in the sinusoidal steady state and experience with

More information

Experiment #9: RC and LR Circuits Time Constants

Experiment #9: RC and LR Circuits Time Constants Experiment #9: RC and LR Circuits Time Constants Purpose: To study the charging and discharging of capacitors in RC circuits and the growth and decay of current in LR circuits. Part 1 Charging RC Circuits

More information

LAMAR UNIVERSITY CIRCUITS LABORATORY. EXPERIMENT 5: Transient Response of RC Circuit

LAMAR UNIVERSITY CIRCUITS LABORATORY. EXPERIMENT 5: Transient Response of RC Circuit LAMAR UNIVERSITY CIRCUITS LABORATORY EXPERIMENT 5: Transient Response of RC Circuit Objective: Study the transient response of a series RC circuit and understand the time constant concept using pulse waveforms.

More information

Capacitors and Inductors

Capacitors and Inductors P517/617 ec2, P1 Capacitors and Inductors 1) Capacitance: Capacitance (C) is defined as the ratio of charge (Q) to voltage () on an object. Define capacitance by: C = Q/ = Coulombs/olt = Farad. Capacitance

More information

5. Smaller resistors usually have resistance value. A. small B. high C. low D. very small ANSWER: B

5. Smaller resistors usually have resistance value. A. small B. high C. low D. very small ANSWER: B 1. The total resistance of a two similar wire conductors connected in parallel is. A. resistance of one wire multiplied by 4 B. same resistance of one wire C. one half the resistance of one wire D. double

More information

NZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians

NZQA registered unit standard 20431 version 2 Page 1 of 7. Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians NZQA registered unit standard 0431 version Page 1 of 7 Title Demonstrate and apply fundamental knowledge of a.c. principles for electronics technicians Level 3 Credits 7 Purpose This unit standard covers

More information

EE301 CAPACITORS AND INDUCTORS

EE301 CAPACITORS AND INDUCTORS Learning Objectives a. Define capacitance and state its symbol and unit of measurement b. Predict the capacity of a parallel plate capacitor c. Analyze how a capacitor stores charge and energy d. Explain

More information

RC and RL Circuits. RC and RL Circuits Page 1

RC and RL Circuits. RC and RL Circuits Page 1 RC and RL Circuits Page 1 RC and RL Circuits RC Circuits In this lab we study a simple circuit with a resistor and a capacitor from two points of view, one in time and the other in frequency. The viewpoint

More information

Chapter 11. Inductors. Objectives

Chapter 11. Inductors. Objectives Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

More information

Step Response of RC Circuits

Step Response of RC Circuits Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3

More information

ECE 2201 PRELAB 2 DIODE APPLICATIONS

ECE 2201 PRELAB 2 DIODE APPLICATIONS ECE 2201 PRELAB 2 DIODE APPLICATIONS P1. Review this experiment IN ADVANCE and prepare Circuit Diagrams, Tables, and Graphs in your notebook, prior to coming to lab. P2. Hand Analysis: (1) For the zener

More information

FB-DC8 Electric Circuits: RC and L/R Time Constants

FB-DC8 Electric Circuits: RC and L/R Time Constants CREST Foundation Electrical Engineering: DC Electric Circuits Kuphaldt FB-DC8 Electric Circuits: RC and L/R Time Constants Contents 1. Capacitor transient response 2. Inductor transient response 3. Voltage

More information

Alexandria University Faculty of Engineering Electrical Engineering Department

Alexandria University Faculty of Engineering Electrical Engineering Department Alexandria University Faculty of Engineering Electrical Engineering Department ECE: Principles and Applications of Electrical Engineering Sheet 3 1. The voltage across a 100-μF capacitor takes the following

More information

University of Arizona Physics REU: Introduction to Oscilloscopes

University of Arizona Physics REU: Introduction to Oscilloscopes University of Arizona Physics REU: Introduction to Oscilloscopes Quick Review: o VOLTAGE (VOLTS) is a measure of the electrical force (per unit charge) present in a circuit that causes the charge carriers

More information

RLC Resonant Circuit

RLC Resonant Circuit EXPEIMENT E: LC esonant Circuit Objectives: Learn about resonance. Measure resonance curves for an LC circuit. Investigate the relationships between voltage and current in circuits containing inductance

More information

ECE 207 Lab Project 3 Capacitor Model

ECE 207 Lab Project 3 Capacitor Model ECE 207 Lab Project 3 Capacitor Model Purpose: The measurements in this lab will determine the parallel model of a commercial capacitor. Capacitors are by no means perfect their dielectric has an effective

More information

Magnetic fields and inductance

Magnetic fields and inductance Magnetic fields and inductance When a length of wire is formed into a coil, it becomes a basic inductor. Current through the coil produces an electromagnetic field. The magnetic lines of force around each

More information

April 8. Physics 272. Spring Prof. Philip von Doetinchem

April 8. Physics 272. Spring Prof. Philip von Doetinchem Physics 272 April 8 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 218 L-C in parallel

More information

Lecture 16. More RC Circuits and Impedance

Lecture 16. More RC Circuits and Impedance Lecture 16 More RC Circuits and Impedance Copyright 2016 by Mark Horowitz 1 Reading Reader: Chapter 6 Capacitance (if you haven t read it yet) Section 7.3 Impedance You should skip all the parts about

More information

Electronics for artists. induction, capacitance, resistance

Electronics for artists. induction, capacitance, resistance Electronics for artists induction, capacitance, resistance AC electromagnetism induction capacitance Goals Transformations we can use current to create magnetic fields, and magnetic fields to create current

More information

Electromagnetic Induction

Electromagnetic Induction TS, HB, MS 04-17-2012 1 Electromagnetic Induction Equipment DataStudio, RLC circuit board, box with 2 coils and iron rod, magnet, 2 voltage sensors (no alligator clips), 2 leads (35 in.), bubble wrap to

More information

Lab #4 examines inductors and capacitors and their influence on DC circuits.

Lab #4 examines inductors and capacitors and their influence on DC circuits. Transient DC Circuits 1 Lab #4 examines inductors and capacitors and their influence on DC circuits. As R is the symbol for a resistor, C and L are the symbols for capacitors and inductors. Capacitors

More information

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J.

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. Roberts) Objectives The objectives of Laboratory 1 are learn to operate

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet RC Circuits 1. Objectives. The objectives of this laboratory are a. to verify the functional dependence of the potential difference

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II RC Circuits PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet 1. Objectives. The objectives of this laboratory are a. to verify the functional dependence of the potential difference

More information

Electromagnetic Induction

Electromagnetic Induction HB, MS 01-21-2011 1 Electromagnetic Induction Equipment SWS, RLC circuit board, box with 2 coils and iron rod, magnet, 2 voltage sensors (no alligator clips), 2 leads (35 in.), bubble wrap to catch dropped

More information

Analog Electronics Computer and Electronics Engineering

Analog Electronics Computer and Electronics Engineering Analog Electronics Computer and Electronics Engineering Roger Sash Herb Detloff Alisa Gilmore Analog Electronics Objectives: The objectives of this module are to: # Become familiar with basic electrical

More information

" = R # C. Create your sketch so that Q(t=τ) is sketched above the delineated tic mark. Your sketch. 1" e " t & (t) = Q max

 = R # C. Create your sketch so that Q(t=τ) is sketched above the delineated tic mark. Your sketch. 1 e  t & (t) = Q max Physics 241 Lab: Circuits DC Source http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. Today you will investigate two similar circuits. The first circuit is

More information

RMS Values. Topic Nine: Alternating Current (AC) Electricity (AS 90523, Physics 3.6) Mains electricity. Power. RMS (root mean square) values

RMS Values. Topic Nine: Alternating Current (AC) Electricity (AS 90523, Physics 3.6) Mains electricity. Power. RMS (root mean square) values Topic Nine: Alternating Current (AC) Electricity (AS 90523, Physics 3.6) RMS alues Objectives By the end of this section you should be able to: 1 state the relationship between RMS and maximum value for

More information

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP 1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

More information

FVCC Engineering Laboratory. Capacitance and Inductance

FVCC Engineering Laboratory. Capacitance and Inductance FVCC Engineering Laboratory Capacitance and Inductance J.K. Boger January 30, 2012 symbol.jpg 1 Objective Upon successful completion of this lab we will know what capacitors and inductors are and we will

More information

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

ε: Voltage output of Signal Generator (also called the Source voltage or Applied Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

More information

Problem Solving 8: RC and LR Circuits

Problem Solving 8: RC and LR Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 8: RC and LR Circuits Section Table and Group (e.g. L04 3C ) Names Hand in one copy per group at the end of the Friday Problem

More information

CAPACITOR & CAPACITANCE - ELECTRICAL CIRCUITS

CAPACITOR & CAPACITANCE - ELECTRICAL CIRCUITS CAPACITOR & CAPACITANCE - Electrical circuits ELECTRICAL CIRCUITS The electrons within dielectric molecules are influenced by the electric field, causing the molecules to rotate slightly from their equilibrium

More information

sin( D t), where D is called the driving frequency of the amplitude 2

sin( D t), where D is called the driving frequency of the amplitude 2 Physics 241 Lab: R ircuits A Source http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. Last week you studied R circuits, examining the exponential time dependence

More information

Alternating Current RL Circuits

Alternating Current RL Circuits Alternating Current RL Circuits Objectives. To understand the voltage/current phase behavior of RL circuits under applied alternating current voltages, and. To understand the current amplitude behavior

More information

Alternating Current Electricity Frequency and Period

Alternating Current Electricity Frequency and Period Frequency and Period 15-1 Frequency (linear and angular) Period = T Average Value 15-2a Square wave, positive pulse = negative pulse: X ave = 0 Pulse pattern, positive, all the same: X ave = tx max T where

More information

Chapter 5: Analysis of Time-Domain Circuits

Chapter 5: Analysis of Time-Domain Circuits Chapter 5: Analysis of Time-Domain Circuits This chapter begins the analysis of circuits containing elements with the ability to store energy: capacitors and inductors. We have already defined each of

More information

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

More information

PHY 132 LAB : RC time constant

PHY 132 LAB : RC time constant PHY 132 LAB : RC time constant Introduction In this lab we look at the transient response of an RC circuit by digitizing the v(t) waveform and fitting it to appropriate non-linear functions, namely decaying

More information

RLC Circuits. 1 of 9. Eq. 1. Eq. 2

RLC Circuits. 1 of 9. Eq. 1. Eq. 2 Purpose: In this lab we will get reacquainted with the oscilloscope, determine the inductance of an inductor, verify the resonance frequency and find the phase angle, φ, of an circuit. Equipment: Oscilloscope,

More information

Laboratory Exercise 5 THE OSCILLOSCOPE

Laboratory Exercise 5 THE OSCILLOSCOPE Introduction Laboratory Exercise 5 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

More information

Physics 2102 Lecture 19. Physics 2102

Physics 2102 Lecture 19. Physics 2102 Physics 2102 Jonathan Dowling Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Nikolai Tesla What are we going to learn? A road map Electric charge Electric force on other electric charges Electric

More information

EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT Kathmandu University Department of Electrical and Electronics Engineering BASIC ELECTRICAL LAB (ENGG 103) EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

More information

1 of 6 4/28/2010 2:12 PM

1 of 6 4/28/2010 2:12 PM http://sessionmasteringphysicscom/myct/assignmentprint?assignmentid= 1 of 6 4/28/2010 2:12 PM Chapter 36 Homework Due: 8:00am on Wednesday, April 28, 2010 Note: To understand how points are awarded, read

More information

POWER AND ENERGY IN ELECTRIC CIRCUITS

POWER AND ENERGY IN ELECTRIC CIRCUITS POWER AND ENERGY IN ELECTRIC CIRCUITS Energy: Volts X Coulombs (e.g. raise one coulomb up through one volt in potential and you have done 1 Joule of work (i.e. delivered one Joule of energy). Power: Transfer

More information

Experiment 7: Ohm s Law & DC Circuits

Experiment 7: Ohm s Law & DC Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2009 OBJECTIVES Experiment 7: Ohm s Law & DC Circuits 1. To explore the measurement of voltage & current in circuits 2. To see Ohm

More information

AME 140. Electronic Components: Components: Resistors, Capacitors, and Inductors:

AME 140. Electronic Components: Components: Resistors, Capacitors, and Inductors: INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this lab is to guide students through a few simple activities to increase your familiarity with basic electronics

More information

LAB 4: The Capacitor and Capacitors Combinations

LAB 4: The Capacitor and Capacitors Combinations University of Waterloo Electrical and Computer Engineering Department Physics of Electrical Engineering 2 ECE-106 Lab manual LAB 4: The Capacitor and Capacitors Combinations Winter 2016 Electrical and

More information

Experiment 20: Exponentials and Oscilloscopes

Experiment 20: Exponentials and Oscilloscopes Experiment 20: Exponentials and Oscilloscopes EQUIPMENT Universal Circuit Board (1) 680 k Resistor (4) Jumpers (1) 47 µf Capacitor (4) Wire Leads Digital Multi-Meter (DMM) Power Supply Stopwatch Figure

More information

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören

W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and

More information

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13 CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how

More information

Pre-Lab 7 Assignment: Capacitors and RC Circuits

Pre-Lab 7 Assignment: Capacitors and RC Circuits Name: Lab Partners: Date: Pre-Lab 7 Assignment: Capacitors and RC Circuits (Due at the beginning of lab) Directions: Read over the Lab Handout and then answer the following questions about the procedures.

More information

Experiment 9 ~ RC Circuits

Experiment 9 ~ RC Circuits Experiment 9 ~ RC Circuits Objective: This experiment will introduce you to the properties of circuits that contain both resistors AND capacitors. Equipment: 18 volt power supply, two capacitors (8 µf

More information

Lecture 15. Capacitance

Lecture 15. Capacitance Lecture 15 Capacitance Copyright 2016 by Mark Horowitz 1 Reading Reader: Chapter 6 Capacitance A & L: 9.1.1, 9.2.1 2 Roadmap While solving circuits that are made from voltage and current sources, resistors

More information

Electrical Circuits and Components

Electrical Circuits and Components Electrical Circuits and Components Resistors Resistance is provided in electrical circuits by resistors. The leads of a resistor can be axial or radial. Traditionally, resistor values are colour coded.

More information

Pre-Lab for Discharge of a Capacitor

Pre-Lab for Discharge of a Capacitor PreLab for Discharge of a Capacitor Just like resistors, the concept of equivalent capacitors can be used to simplify complex circuits of capacitors. For example, if capacitors C 1, C 2 and C 3 are connected

More information

SERIES-PARALLEL DC CIRCUITS

SERIES-PARALLEL DC CIRCUITS Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

More information

Reactance and Impedance in RC and RL Circuits

Reactance and Impedance in RC and RL Circuits Reactance and Impedance in RC and RL Circuits Consider the RC circuit shown which is connected to an alternating (AC) voltage source V(t). The circuit current I C, which is also the capacitive current,

More information

Filters and Waveform Shaping

Filters and Waveform Shaping Physics 333 Experiment #3 Fall 211 Filters and Waveform Shaping Purpose The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and the

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet RC Circuits 1. Objectives. The objectives of this laboratory are a. to verify the functional dependence of the potential difference

More information