E X P E R I M E N T 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "E X P E R I M E N T 7"

Transcription

1 E X P E R I M E N T 7 The RC Circuit Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 7: The RC Circuit Page 1

2 Purpose In this experiment, you will both charge and discharge capacitors in an RC circuit. We will explore how the charging and discharging times depend on the resistance and capacitance in the circuit. Equipment Power amplifier RLC circuit board Voltage sensor Digital multimeter Resistor, 10 kw Stop Watch Double-throw switch Theory When you connect a battery or power supply to an uncharged capacitor, the charge does not instantaneously appear on the capacitor plates. The charge on (and voltage across) the capacitor increases exponentially from zero. Similarly, the charge on (and voltage across) the capacitor decreases exponentially toward zero when you discharge it. As with all properties that change at an exponential rate, the rate of change of the charge (or voltage) on a capacitor at any point in time is proportional to the amount of charge (or voltage) already present at that time. And like all exponential curves, both the half-life of the measured property (the time required for the property to change to half or double its value) and its time constant (the time required for the property to change to 1/e of its initial or final value) are constant. The values of the half-life and of the time constant depend on the values of C and R in the circuit. Figure 7.1 shows a capacitor, a resistor, a switch, and a battery (power source) connected in series. Assume initially that the switch is open and there is no charge on the capacitor. When the switch is closed at time t = 0, current begins to flow in the circuit. Figure 7.1 University Physics II, Exp 7: The RC Circuit Page 2

3 Kirchhoff s second rule states that the sum of all the voltage drops across the components of a loop (or series circuit) is zero. The voltage across the capacitor is q/c; the voltage across the resistor is IR; and the battery has a voltage V 0. Assume that the voltages across the other circuit components (wires and switch) are negligible. Setting the sum of all the voltage drops to zero, you get V 0 q/c IR = 0 Equation 7.1 Since the current cannot flow across the capacitor, charge must accumulate on the two capacitor plates. The time rate of change or accumulation of charge is, of course, the current I, so dq/dt = I Equation 7.2 Eliminating I from equation (7.1) by using its value in equation (7.2), you get V 0 q/c Rdq/dt = 0 Equation 7.3 Equation (7.3) is a differential equation for the charge on the capacitor as a function of time. Solving this equation, you get q(t) = Q(1 e t/rc ), Equation 7.4 where Q is the charge on the capacitor after an infinite time. To find the current, differentiate Equation 7.4 with respect to time to get I(t) = (V 0 /R)e t/rc Equation 7.5 where C = Q/V 0 Note from Equations 7.4 and 7.5 that the initial charge on the capacitor is zero. This is consistent with the requirement that the capacitor be uncharged initially. The initial current (at t = 0) is V 0 /R. This is the current that would flow if you replaced the capacitor with a short piece of wire. After an infinite time, the charge on the capacitor is Q, and the current in the circuit is zero. The denominator in the exponent of Equation 7.5 is RC. This factor is called the time constant τ c of the series RC circuit. After a time equal to τ c, the current in the circuit is reduced to 1/e (36.8%) of its initial value. This is true for all values of time: if you measure the current at any time while the capacitor is charging, the current at a time τ c later will be 36.8% of the value you measured. Another way of expressing the rate of current decrease is the half life of the circuit. The half life, τ h, is the time for the current to be reduced to 50% of its value. The half life is related to the time constant by τ h = τ c ln 2 Equation 7.6 University Physics II, Exp 7: The RC Circuit Page 3

4 The half life is the time for the capacitor to discharge from any given charge to half that charge, or the time required to charge a capacitor to one half the voltage of the power source. Procedure The basic procedure is to connect an uncharged capacitor, a resistor and a voltage source in series and measure the rate at which the voltage across the capacitor increases. You will use two separate techniques to measure the change in V C, and you will measure the time both manually and automatically. In the first technique you will observe how the voltage across the capacitor changes by using the Data Studio Scope display. The voltage source will be the Power Amplifier controlled by the computer. When the Power Amplifier applies a square-wave voltage to the circuit, the voltage across the capacitor shown on the Scope display will be a modified square wave as shown in Figure 7.2. Its leading edge is the capacitor s charging curve and its trailing edge is its discharge curve. You will measure the half life of the charging curve on a display of the voltage across the capacitor. Figure 7.2 In the second technique you will observe the discharge of a capacitor through a resistor. You will first charge the capacitor with a DC voltage supplied by the Power Amplifier, then use a double-throw switch to disconnect the voltage source and connect the resistor across the capacitor. You will use a digital multimeter to measure V C during both the charging and discharging of the capacitor, but you will record your measurements only for the discharge. You will start a stop watch when V C has an arbitrary value; then stop the stop watch when V C drops to half that value. A. Automated Time Measurement Experimental Setup 1. Connect the Power Amplifier to analog input channel A of the Interface. The RLC circuit board contains various resistors, capacitors, and other components. Each component on the circuit board is labeled with its type and value. For each component, there are banana jacks for wiring the components together and to external equipment. You will use only one resistor and one capacitor. 2. Select the 100 Ω resistor and the 330 μf capacitor, and use the patch cords to wire them in series with the output of the Power Amplifier. Record the values of the components in Table Connect the Voltage Sensor across the capacitor and to analog input channel B of the Interface. Switch on the computer and the Interface. University Physics II, Exp 7: The RC Circuit Page 4

5 4. Open the Data Studio program and select Create Experiment. Double-click the Power Amplifier icon in the Sensors list. Change Sine Wave to Square Wave, set the Amplitude to V, and set the Frequency to Hz. 5. Double-click the Scope display to view the voltage signal from the sensor connected to Channel B. Data Collection 1. Switch on the Power Amplifier. 2. Click the Start button to start collecting data. Continue data collection for about 4 seconds and then press Stop. The Data List will show the data as Run #1. 3. Switch off the Power Amplifier. 4. Adjust the V/div on the SCOPE display so the wave pattern fills the graph. 5. Drag a rectangle around the rising portion of one cycle of the displayed voltage. Start the rectangle before the exponentially falling voltage reaches 4 V and end it before the rising voltage reaches 4 V. 6. Using the Smart Tool, measure and record (a) the time t a when the voltage just starts to raise, and (b) the time t b when the rising voltage crosses 0 volts. 7. Calculate and record both the half life τ h and the time constant τ c of the circuit. 8. Remove the resistor from the circuit. Measure and record its resistance with the multimeter using the appropriate resistance scale. 9. Using the measured value of R, calculate and record both the theoretical time constant and half-life of the circuit. 10. Calculate and record the percent error in your experimental value of the time constant. B. Manual Time Measurement Equipment Setup 1. Connect the Power Amplifier to analog input channel A. 2. Select the 330 μf capacitor on the RLC circuit board and use the patch cords to connect the capacitor, a 10 kω resistor, the Power amplifier, a SPDT switch and a voltmeter as shown in Figure 7.3. Figure 7.3 University Physics II, Exp 7: The RC Circuit Page 5

6 Note. The single-pole double-throw (SPDT) switch has three positions: When you close it upward, the Power Amplifier, the capacitor, and the resistor are connected in series so the capacitor is charged through the resistor by the Power Amplifier. The voltmeter is connected across the capacitor. When the switch is open, the capacitor and voltmeter are disconnected from the circuit. When you close it downward, the power amplifier is disconnected from the capacitor and voltmeter so the capacitor discharges through the resistor. 3. In the Data Studio SETUP window, double-click Power Amplifier in the Sensors list. In the Signal Generator window, select Square Wave, set the Amplitude to V, and set the Frequency to Hz. Data Collection 1. Switch on the Power Amplifier. Select ON in the Signal Generator window. 2. Put the SPDT switch in the open position. 3. Discharge the capacitor by shorting it for a moment with a clip lead. 4. Charge the capacitor by closing the switch to the power amplifier position. Let the capacitor charge until the voltage across it is nearly 4 volts. 5. Open the SPDT switch. The capacitor will retain its charge (except for a small amount which leaks off through the voltmeter). 6. Select OFF in the Signal Generator window and switch off the Power Amplifier. 7. Start discharging the capacitor by closing the SPDT switch to the resistor position. 8. When the voltage across the capacitor passes 3 volts, start the stop watch. When the voltage reaches 1.5 volts, stop the watch and record the time interval t. 9. Calculate and record both the half life and the time constant of the RC circuit. 10. Remove the resistor from the circuit and measure and record the value of its resistance with the multimeter using the appropriate resistance scale. 11. Using the measured value of R, calculate and record both the theoretical time constant and half-life of the circuit. 12. Calculate and record the percent error in your experimental value of the time constant. University Physics II, Exp 7: The RC Circuit Page 6

RC Circuit (Power amplifier, Voltage Sensor)

RC Circuit (Power amplifier, Voltage Sensor) Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

More information

Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

More information

Kirchhoff s Voltage Law and RC Circuits

Kirchhoff s Voltage Law and RC Circuits Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator

More information

Teacher s Guide - Activity P50: RC Circuit (Power Output, Voltage Sensor)

Teacher s Guide - Activity P50: RC Circuit (Power Output, Voltage Sensor) Teacher s Guide - Activity P50: RC Circuit (Power Output, Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuits P50 RC Circuit.DS (See end of activity) (See end of activity)

More information

RC Circuits. 1 Introduction. 2 Capacitors

RC Circuits. 1 Introduction. 2 Capacitors 1 RC Circuits Equipment DataStudio with 750 interface, RLC circuit board, 2 voltage sensors (no alligator clips), 2x35 in. leads, 12 in. lead Reading Review operation of DataStudio oscilloscope. Review

More information

Experiment #9: RC and LR Circuits Time Constants

Experiment #9: RC and LR Circuits Time Constants Experiment #9: RC and LR Circuits Time Constants Purpose: To study the charging and discharging of capacitors in RC circuits and the growth and decay of current in LR circuits. Part 1 Charging RC Circuits

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

The Time Constant of an RC Circuit

The Time Constant of an RC Circuit The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?

More information

Capacitors. We charge a capacitor by connecting the two plates to a potential difference, such as a battery:

Capacitors. We charge a capacitor by connecting the two plates to a potential difference, such as a battery: RC Circuits PHYS 1112L Capacitors A capacitor is an electrical component that stores charge. The simplest capacitor is just two charged metal plates separated by a non-conducting material: In the diagram

More information

Discharge of a Capacitor

Discharge of a Capacitor Discharge of a Capacitor THEORY The charge Q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this with Q = C V (1) where C is a proportionality constant

More information

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

ε: Voltage output of Signal Generator (also called the Source voltage or Applied Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

More information

RC Circuits and The Oscilloscope Physics Lab X

RC Circuits and The Oscilloscope Physics Lab X Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

More information

Physics 2306 Experiment 7: Time-dependent Circuits, Part 1

Physics 2306 Experiment 7: Time-dependent Circuits, Part 1 Name ID number Date Lab CRN Lab partner Lab instructor Objectives Physics 2306 Experiment 7: Time-dependent Circuits, Part 1 To study the time dependent behavior of the voltage and current in circuits

More information

LRC Circuits. Purpose. Principles PHYS 2211L LAB 7

LRC Circuits. Purpose. Principles PHYS 2211L LAB 7 Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

Capacitors. Evaluation copy

Capacitors. Evaluation copy Capacitors Computer 24 The charge q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this relationship with q V =, C where C is a proportionality constant

More information

Experiment 9 ~ RC Circuits

Experiment 9 ~ RC Circuits Experiment 9 ~ RC Circuits Objective: This experiment will introduce you to the properties of circuits that contain both resistors AND capacitors. Equipment: 18 volt power supply, two capacitors (8 µf

More information

PHYS 2426 Engineering Physics II EXPERIMENT 5 CAPACITOR CHARGING AND DISCHARGING

PHYS 2426 Engineering Physics II EXPERIMENT 5 CAPACITOR CHARGING AND DISCHARGING PHYS 2426 Engineering Physics II EXPERIMENT 5 CAPACITOR CHARGING AND DISCHARGING I. OBJECTIVE: The objective of this experiment is the study of charging and discharging of a capacitor by measuring the

More information

Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor)

Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Teacher s Guide Physics Labs with Computers, Vol. 2 012-06101C P52: LRC Circuit Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win)

More information

Lab 5 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

Lab 5 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Name Lab 5 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Partners' Names Instructions October 15, 2015October 13, 2015 Read

More information

The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI

The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

A MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT

A MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT A MODEL OF VOLTAGE IN A RESISTOR CIRCUIT AND AN RC CIRCUIT ARJUN MOORJANI, DANIEL STRAUS, JENNIFER ZELENTY Abstract. We describe and model the workings of two simple electrical circuits. The circuits modeled

More information

" = R # C. Create your sketch so that Q(t=τ) is sketched above the delineated tic mark. Your sketch. 1" e " t & (t) = Q max

 = R # C. Create your sketch so that Q(t=τ) is sketched above the delineated tic mark. Your sketch. 1 e  t & (t) = Q max Physics 241 Lab: Circuits DC Source http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. Today you will investigate two similar circuits. The first circuit is

More information

Capacitance, Resistance, DC Circuits

Capacitance, Resistance, DC Circuits This test covers capacitance, electrical current, resistance, emf, electrical power, Ohm s Law, Kirchhoff s Rules, and RC Circuits, with some problems requiring a knowledge of basic calculus. Part I. Multiple

More information

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP 1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

More information

Capacitors. Goal: To study the behavior of capacitors in different types of circuits.

Capacitors. Goal: To study the behavior of capacitors in different types of circuits. Capacitors Goal: To study the behavior of capacitors in different types of circuits. Lab Preparation A capacitor stores electric charge. A simple configuration for a capacitor is two parallel metal plates.

More information

EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors Chapter 19 DC Electrical Circuits Topics in Chapter 19 EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors

More information

CAPACITANCE IN A RC CIRCUIT

CAPACITANCE IN A RC CIRCUIT 5/16 Capacitance-1/5 CAPACITANCE IN A RC CIRCUIT PURPOSE: To observe the behavior of resistor-capacitor circuit, to measure the RC time constant and to understand how it is related to the time dependence

More information

LAB ELEC3.COMP From Physics with Computers, Vernier Software and Technology, 2003

LAB ELEC3.COMP From Physics with Computers, Vernier Software and Technology, 2003 APAITORS LAB ELE3.OMP From Physics with omputers, Vernier Software and Technology, 2003 INTRODUTION The charge q on a capacitor s plate is proportional to the potential difference V across the capacitor.

More information

Ch 18 Direct Current Circuits. concept #2, 5, 10, 12, 13, 23 Problems #1, 5, 6, 11, 17, 25, 31, 32, 33, 35, 36, 37

Ch 18 Direct Current Circuits. concept #2, 5, 10, 12, 13, 23 Problems #1, 5, 6, 11, 17, 25, 31, 32, 33, 35, 36, 37 Ch 18 Direct Current Circuits concept #2, 5, 10, 12, 13, 23 Problems #1, 5, 6, 11, 17, 25, 31, 32, 33, 35, 36, 37 currents are maintained by a source of emf (battery, generator) Sources of emf act as charge

More information

NEON BULB OSCILLATOR EXPERIMENT

NEON BULB OSCILLATOR EXPERIMENT NEON BULB OSCILLATOR EXPERIMENT When we combine a neon bulb with the circuit for charging up a capacitor through a resistor, we obtain the worlds simplest active electronic circuit that does something

More information

Problem Solving 8: RC and LR Circuits

Problem Solving 8: RC and LR Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 8: RC and LR Circuits Section Table and Group (e.g. L04 3C ) Names Hand in one copy per group at the end of the Friday Problem

More information

DC Circuits: Ch 19. Resistors in Series 6/1/2016

DC Circuits: Ch 19. Resistors in Series 6/1/2016 DC Circuits: Ch 19 Voltage Starts out at highest point at + end of battery Voltage drops across lightbulbs and other sources of resistance. Voltage increases again at battery. I The following circuit uses

More information

Class #12: Experiment The Exponential Function in Circuits, Pt 1

Class #12: Experiment The Exponential Function in Circuits, Pt 1 Class #12: Experiment The Exponential Function in Circuits, Pt 1 Purpose: The objective of this experiment is to begin to become familiar with the properties and uses of the exponential function in circuits

More information

Chapter 21 Electric Current and Direct-Current Circuit

Chapter 21 Electric Current and Direct-Current Circuit Chapter 2 Electric Current and Direct-Current Circuit Outline 2- Electric Current 2-2 Resistance and Ohm s Law 2-3 Energy and Power in Electric Circuit 2-4 Resistance in Series and Parallel 2-5 Kirchhoff

More information

Discharging and Charging a Capacitor

Discharging and Charging a Capacitor Name: Partner(s): Desk #: Date: Discharging and Charging a Capacitor Figure 1. Various types of capacitors. "Capacitors (7189597135)" by Eric Schrader from San Francisco, CA, United States - 12739s. Licensed

More information

RC CIRCUITS. Phys 31220 Fall 2012. Introduction:

RC CIRCUITS. Phys 31220 Fall 2012. Introduction: Phys 31220 Fall 2012 RC CIRCUITS Introduction: In this experiment the rates at which capacitors in series with resistors can be charged and discharged are measured directly with a picoscope (scope) and

More information

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Physics 260 Calculus Physics II: E&M. RC Circuits

Physics 260 Calculus Physics II: E&M. RC Circuits RC Circuits Object In this experiment you will study the exponential charging and discharging of a capacitor through a resistor. As a by-product you will confirm the formulas for equivalent capacitance

More information

Resistor-Capacitor (RC) Circuits

Resistor-Capacitor (RC) Circuits Resistor-Capacitor (RC) Circuits Introduction In this second exercise dealing with electrical circuitry, you will work mainly with capacitors, which are devices that are used to store charge for later

More information

The Nerve as a Capacitor

The Nerve as a Capacitor HPP Activity 72v1 The Nerve as a Capacitor Exploration - How Does a Neuron Transmit a Signal? Electrical processes are essential to the working of the human body. The transmission of information in the

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

More information

RC CIRCUIT. THEORY: Consider the circuit shown below in Fig. 1: a S. V o FIGURE 1

RC CIRCUIT. THEORY: Consider the circuit shown below in Fig. 1: a S. V o FIGURE 1 RC CIRCUIT OBJECTIVE: To study the charging and discharging process for a capacitor in a simple circuit containing an ohmic resistance, R, and a capacitance, C. THEORY: Consider the circuit shown below

More information

Time dependent circuits - The RC circuit

Time dependent circuits - The RC circuit Time dependent circuits - The circuit Example 1 Charging a Capacitor- Up until now we have assumed that the emfs and resistances are constant in time, so that all potentials, currents and powers are constant

More information

Ohm s Law. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference

Ohm s Law. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference Ohm s Law Experiment 25 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of

More information

Circuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same

Circuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuits The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuit II has ½ current of each branch of circuit

More information

Name: Partner: Date: RC Circuit Analysis Lab Experiment t RC

Name: Partner: Date: RC Circuit Analysis Lab Experiment t RC Name: Partner: Date: RC Circuit Analysis Lab Experiment t RC VC () t = VS + ( VC, initial VS ) e ε A 0 q C = C = τ = ReqC d V 1. Solve the V C (t) equation above for t. 2. Solve the V C (t) equation above

More information

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

More information

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.

More information

Experiment: RC Circuits

Experiment: RC Circuits Phy23: General Physics III Lab page 1 of 5 OBJETIVES Experiment: ircuits Measure the potential across a capacitor as a function of time as it discharges and as it charges. Measure the experimental time

More information

Lab 5 RC Circuits. What You Need To Know: Physics 226 Lab

Lab 5 RC Circuits. What You Need To Know: Physics 226 Lab Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists

More information

RC Circuits. The purpose of this lab is to understand how capacitors charge and discharge.

RC Circuits. The purpose of this lab is to understand how capacitors charge and discharge. Department of Physics and Geology Purpose Circuits Physics 2402 The purpose of this lab is to understand how capacitors charge and discharge. Materials Decade Resistance Box (CENCO), 0.1 µf, 0.5µF, and

More information

Capacitors & RC Circuits

Capacitors & RC Circuits Capacitors & C Circuits Name: EQUIPMENT NEEDED: Circuits Experiment Board One D-cell Battery Wire leads Multimeter Capacitors(100 F, 330 F) esistors(1k, 4.7k ) Logger Pro Software, ULI Purpose The purpose

More information

Episode 129: Discharge of a capacitor: Q = Q o e -t/cr

Episode 129: Discharge of a capacitor: Q = Q o e -t/cr Episode 129: Discharge of a capacitor: Q = Q o e -t/cr Students will have already seen that the discharge is not a steady process (Episode 125), but it is useful to have graphical evidence before discussing

More information

Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node.

Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node. Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1 - The sum of the currents

More information

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT INTRODUCTION The objective of this experiment is to study the behavior of an RLC series circuit subject to an AC

More information

P150A Experimental Lab #7 Ohm s Law (Ver A 10/12)

P150A Experimental Lab #7 Ohm s Law (Ver A 10/12) Ohm s Law The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of electrical resistance

More information

Efficiency of a Motor and a Generator

Efficiency of a Motor and a Generator Efficiency of a Motor and a Generator 6EM Object: Apparatus: The purpose of this laboratory activity is to determine the efficiency of an electric motor and the efficiency of an electric generator. Electric

More information

Episode 126: Capacitance and the equation C =Q/V

Episode 126: Capacitance and the equation C =Q/V Episode 126: Capacitance and the equation C =Q/V Having established that there is charge on each capacitor plate, the next stage is to establish the relationship between charge and potential difference

More information

Evaluation copy. Ohm s Law. Computer

Evaluation copy. Ohm s Law. Computer Ohm s Law Computer 22 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of electrical

More information

Lab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response

Lab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response Capacitor and Inductor Transient Response Capacitor Theory Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all

More information

DC Circuits. 3. Three 8.0- resistors are connected in series. What is their equivalent resistance? a c b. 8.0 d. 0.13

DC Circuits. 3. Three 8.0- resistors are connected in series. What is their equivalent resistance? a c b. 8.0 d. 0.13 DC Circuits 1. The two ends of a 3.0- resistor are connected to a 9.0-V battery. What is the current through the resistor? a. 27 A c. 3.0 A b. 6.3 A d. 0.33 A 2. The two ends of a 3.0- resistor are connected

More information

Chapter 19 DC Circuits

Chapter 19 DC Circuits Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli Chapter 19 DC Circuits 2005 Pearson Prentice Hall This work is protected by United States copyright laws and

More information

Electricity & Electronics 8: Capacitors in Circuits

Electricity & Electronics 8: Capacitors in Circuits Electricity & Electronics 8: Capacitors in Circuits Capacitors in Circuits IM This unit considers, in more detail, the charging and discharging of capacitors. It then investigates how capacitors behave

More information

The R-C series circuit

The R-C series circuit School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 4 The C series circuit 1 Introduction Objectives To study the

More information

Capacitors. V=!f_. Figure 1

Capacitors. V=!f_. Figure 1 Computer Capacitors 24 The charge q on a capacitor's plate is proportional to the potential difference V across the capacitor. We express this relationship with V=!f_ c where C is a proportionality constant

More information

Storing And Releasing Charge In A Circuit

Storing And Releasing Charge In A Circuit Storing And Releasing Charge In A Circuit Topic The characteristics of capacitors Introduction A capacitor is a device that can retain and release an electric charge, and is used in many circuits. There

More information

College Physics II Lab 8: RC Circuits

College Physics II Lab 8: RC Circuits INTODUTION ollege Physics II Lab 8: ircuits Peter olnick with Taner Edis Spring 2015 Introduction onsider the circuit shown. (onsult section 23.7 in your textbook.) If left for long enough, the charge

More information

PHYS-2212 LAB Ohm s Law and Measurement of Resistance

PHYS-2212 LAB Ohm s Law and Measurement of Resistance Objectives PHYS-2212 LAB Ohm s Law and Measurement of Resistance Part I: Comparing the relationship between electric current and potential difference (voltage) across an ohmic resistor with the voltage-current

More information

Experiment #4: Basic Electrical Circuits

Experiment #4: Basic Electrical Circuits Purpose: Equipment: Discussion: Experiment #4: Basic Electrical Circuits Rev. 07042006 To construct some simple electrical circuits which illustrate the concepts of current, potential, and resistance,

More information

Kirchhoff s Laws Physics Lab IX

Kirchhoff s Laws Physics Lab IX Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,

More information

Electronic WorkBench tutorial

Electronic WorkBench tutorial Electronic WorkBench tutorial Introduction Electronic WorkBench (EWB) is a simulation package for electronic circuits. It allows you to design and analyze circuits without using breadboards, real components

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of the circuits analyzed will be assumed to be in steady

More information

Chapter 15. Time Response of Reactive Circuits. Objectives

Chapter 15. Time Response of Reactive Circuits. Objectives Chapter 15 Time Response of Reactive Circuits Objectives Explain the operation of an RC integrator Analyze an RC integrator with a single input pulse Analyze an RC integrator with repetitive input pulses

More information

Basic DC Circuits. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference

Basic DC Circuits. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference Basic DC Circuits Current and voltage can be difficult to understand, because the flow of electrons and potential differences cannot be observed by the unaided human eye. To clarify these terms, some people

More information

CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 28 ELECTRIC CIRCUITS CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

More information

King Fahd University of Petroleum & Minerals. Department of Electrical Engineering EE201. Electric Circuits. Laboratory Manual.

King Fahd University of Petroleum & Minerals. Department of Electrical Engineering EE201. Electric Circuits. Laboratory Manual. King Fahd University of Petroleum & Minerals Department of Electrical Engineering EE201 Electric Circuits Laboratory Manual August 2003 Prepared by Dr. A. H. Abdur-Rahim Noman Tasadduq Preface The EE 201

More information

The RC Circuit. Pre-lab questions. Introduction. The RC Circuit

The RC Circuit. Pre-lab questions. Introduction. The RC Circuit The RC Circuit Pre-lab questions 1. What is the meaning of the time constant, RC? 2. Show that RC has units of time. 3. Why isn t the time constant defined to be the time it takes the capacitor to become

More information

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START Laboratory Section: Last Revised on December 15, 2014 Partners Names Grade EXPERIMENT 10 Electronic Circuits 0. Pre-Laboratory Work [2 pts] 1. How are you going to determine the capacitance of the unknown

More information

RC transients. EE 201 RC transient 1

RC transients. EE 201 RC transient 1 RC transients Circuits having capacitors: At DC capacitor is an open circuit, like it s not there. Transient a circuit changes from one DC configuration to another DC configuration (a source value changes

More information

EXPERIMENT 6 CHARGE SHARING BY CAPACITORS

EXPERIMENT 6 CHARGE SHARING BY CAPACITORS 60 6- I. THEORY EXPERIMENT 6 HARGE SHARING BY APAITORS The purpose of this experiment is to test the theoretical equations governing charge sharing by capacitors and to measure the capacitance of an "unknown"

More information

Lab #4 examines inductors and capacitors and their influence on DC circuits.

Lab #4 examines inductors and capacitors and their influence on DC circuits. Transient DC Circuits 1 Lab #4 examines inductors and capacitors and their influence on DC circuits. As R is the symbol for a resistor, C and L are the symbols for capacitors and inductors. Capacitors

More information

CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION

CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION 1. DEVICES AND PANELS USED IN EXERCISE The following devices are to be used in this exercise: oscilloscope HP

More information

Recitation 6 Chapter 21

Recitation 6 Chapter 21 Recitation 6 hapter 21 Problem 35. Determine the current in each branch of the circuit shown in Figure P21.35. 3. Ω 5. Ω 1. Ω 8. Ω 1. Ω ɛ 2 4 12 Let be the current on the left branch (going down), be the

More information

Resistor Capacitor (RC) Circuits

Resistor Capacitor (RC) Circuits Resistor Capacitor (RC) Circuits So far, we know how to handle resistors in a circuit: What happens when the switch is closed? A steady current flows in the circuit What happens if we also put a capacitor

More information

Chapter 5: Analysis of Time-Domain Circuits

Chapter 5: Analysis of Time-Domain Circuits Chapter 5: Analysis of Time-Domain Circuits This chapter begins the analysis of circuits containing elements with the ability to store energy: capacitors and inductors. We have already defined each of

More information

Physics Lab 202P-8. Understanding RC Circuits NAME: LAB PARTNERS:

Physics Lab 202P-8. Understanding RC Circuits NAME: LAB PARTNERS: Physics Lab 202P-8 Understanding RC Circuits NAME: LAB PARTNERS: LAB SECTION: LAB INSTRUCTOR: DATE: EMAIL ADDRESS: Penn State University Created by nitin samarth Physics Lab 202P-8 Page 1 of 16 Physics

More information

Experiment 8 RC Circuits

Experiment 8 RC Circuits Experiment 8 ircuits Nature, to be commanded, must be obeyed. F. Bacon (1561-1626) OBJETIVE To study a simple circuit that has time-dependent voltages and current. THEOY ircuits with steady currents and

More information

EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS

EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS OBJECTIVES To understand the theory of operation of the clipping and clamping diode circuits. To design wave shapes that meet different circuits needs.

More information

1: (ta initials) 2: first name (print) last name (print) brock id (ab13cd) (lab date)

1: (ta initials) 2: first name (print) last name (print) brock id (ab13cd) (lab date) 1: (ta initials) 2: first name (print) last name (print) brock id (ab13cd) (lab date) Experiment 1 Capacitance In this Experiment you will learn the relationship between the voltage and charge stored on

More information

FREQUENTLY ASKED QUESTIONS October 2, 2012

FREQUENTLY ASKED QUESTIONS October 2, 2012 FREQUENTLY ASKED QUESTIONS October 2, 2012 Content Questions Why do batteries require resistors? Well, I don t know if they require resistors, but if you connect a battery to any circuit, there will always

More information

= V peak 2 = 0.707V peak

= V peak 2 = 0.707V peak BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

More information

Lab 4 Op Amp Filters

Lab 4 Op Amp Filters Lab 4 Op Amp Filters Figure 4.0. Frequency Characteristics of a BandPass Filter Adding a few capacitors and resistors to the basic operational amplifier (op amp) circuit can yield many interesting analog

More information

R C DMM. b a. Power Supply. b a. Power Supply DMM. Red + Black - Red + Black -

R C DMM. b a. Power Supply. b a. Power Supply DMM. Red + Black - Red + Black - Sample Lab Report - PHYS 231 The following is an example of a well-written report that might be submitted by a PHYS 231 student. It begins with a short statement of what is being measured, and why. The

More information

Lab 9: Op Amps Lab Assignment

Lab 9: Op Amps Lab Assignment 3 class days 1. Differential Amplifier Source: Hands-On chapter 8 (~HH 6.1) Lab 9: Op Amps Lab Assignment Difference amplifier. The parts of the pot on either side of the slider serve as R3 and R4. The

More information

Lab 4 - Capacitors & RC Circuits

Lab 4 - Capacitors & RC Circuits Lab 4 Capacitors & RC Circuits L41 Name Date Partners Lab 4 Capacitors & RC Circuits OBJECTIVES To define capacitance and to learn to measure it with a digital multimeter. To explore how the capacitance

More information

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors

More information

OCR (A) specifications: 5.4.7a,b,c,d,e,f,g,h. Chapter 7 Capacitors

OCR (A) specifications: 5.4.7a,b,c,d,e,f,g,h. Chapter 7 Capacitors OCR (A) specifications: 5.4.7a,b,c,d,e,f,g,h Chapter 7 Capacitors Worksheet Worked examples Practical : Determining the capacitance of a parallel-plate capacitor Practical 2: Determining the capacitance

More information