PowerTeaching i3: Algebra I Mathematics


 Lenard Wright
 11 months ago
 Views:
Transcription
1 PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I
2 Key Ideas and Details Section I: Alignment to the Standards for Mathematical Practice Algebra I Standard for Mathematical Practice 1: Make sense of problems and persevere in solving them. The PowerTeaching curriculum consistently encourages students to ask questions, plan for solutions, assess their reasoning and the reasonableness of their answers, and to check their work. The students focus on these good habits as a part of the daily PowerTeaching lesson routine as well as specific strategy lessons throughout the curriculum. Team Huddle During daily Team Huddle activities, students work with their teammates to discuss, plan for, and solve math problems. Within the team, they must work through disagreements, ensure that each teammate understands and can explain the solution, and encourage each other when problems seem difficult. Problem Solving Strategies Students practice the various problemsolving strategies at multiple points. Specific lessons introduce and have students practice the strategies: identify extraneous data, make a model, find a pattern, guess and check, work backwards, and solve a simpler problem. Extended Response Many PowerTeaching learning cycles culminate in an extended response lesson. The math problems in these lessons are complex and combine multiple math topics. The teacher modeling, teamwork activities, and individual practice are all centered on solving these realworld problems in steps: understand the problem, find the parts, make a plan, estimate the answer, find the solution, and assess the reasonableness and correctness of the solution. Standard for Mathematical Practice 2: Reason abstractedly and quantitatively. Throughout PowerTeaching students will routinely approach math concepts using both concrete and abstract tools and methods. Problem Solving Strategies The problem solving strategies that students learn help them break apart word problems and realworld math scenarios into the important information, then represent this information as numeric and algebraic models. Problem Solving Practice In each cycle, students will apply the problem solving strategies they have learned. Many lessons include realworld math problems. The students learn to represent the solutions to these problems concretely and abstractly. Students are also routinely asked to design a math story for a numeric or algebraic model. ProjectBased Learning The PowerTeaching curriculum includes quarterly projectbased learning opportunities. These activities will be multiday cycles of learning that include planning, research, modeling, reporting, and presenting. Students will be required to represent their project topic mathematically, use the math to find a solution to the problem they researched or an answer to the question they asked, and then explain how the mathematical model relates back to their original problem or question. Standard for Mathematical Practice 3: Construct viable arguments and critique the reasoning of others. Students will support their arguments with sound reasoning as well as critique or support the reasoning of others. They will construct their supports and critiques both in writing as well as verbally. Get the Goof Each lesson includes a Get the Goof activity. Students will discuss a completed problem related to recently studied math topics. They will work with their teams to identify the
3 error in think that led to a mistake in the math work. The students will explain the error and correct the math. Random Reporter A part of the daily PowerTeaching routine includes teamwork and team discussion to solve problems. At various points during each lesson, the teacher will use Random Reporter to have a student from each team share their answer and support that answer with their team s reasoning. Extended Response One type of extended response math problem will have students critique the math reasoning presented in the problem, correctly solve the problem, and construct a viable argument to support their reasoning. These types of extended response situations will represent about one third of the PowerTeaching extended response experiences. Standard for Mathematical Practice 4: Model with mathematics. Students will use tables, graphs, charts and diagrams to represent mathematical information. They will also use number sentences, expressions, and equations to describe a situation. Students will also use the information they gather in tables, graphs, charts, and diagrams to identify patterns, determine relationships, and draw conclusion. Problem Solving Strategy: Modeling Students will receive specific and targeted instruction on modeling as a strategy to solve math problems. Problem Solving Practice The ongoing problem solving experiences, word problems, realworld scenarios, and extended response, often require students to represent the data as a model. Students must determine which model would best help them find the solution or answer the question. Standard for Mathematical Practice 5: Use appropriate tools strategically. Throughout the PowerTeaching curriculum, students will be guided to use various tools to solve math problems and answer math questions. They will also be faced with opportunities to choose which tool would best help them solve more complex math problems or realworld scenarios. The students will more often be faced with choices when completing extended response and projectbased learning activities. Standard for Mathematical Practice 6: Attend to precision. Students will use symbols, math vocabulary, and clear explanations in their team discussions and written and oral explanations. Students will also make choices to best represent their solution and reasoning clearly and efficiently. Rubrics Students will use rubrics to assess the completeness and clarity of their oral and written explanations. They will also use the rubrics to critique the explanations of their peers. Complete explanations include the correct answer stated as a complete sentence that identifies the question and a clear explanation in words, as a diagram, using symbols. Vocabulary PowerTeaching key vocabulary is highlighted in each lesson. The definition is built into the lesson instead of only existing in a separate glossary. Students will see the vocabulary used correctly within the teacher modeling and be expected to use key vocabulary to support their mathematical thinking. Standard for Mathematical Practice 7: Look for and make use of structure. Specific targeted skills in the PowerTeaching curriculum address the topics of structure and patterns. Problem Solving Strategy: Look for a Pattern Students will learn to identify problems that can be solved by finding and describing a pattern. They will learn how to represent the data to most efficiently identify the pattern. In later lessons, students will apply this strategy to new and more
4 complex problem solving situations. Expressions and Equations Within the Expressions and Equations content area students will consistently work to make sense of data by defining any patterns they notice and translating those patterns into expressions, equations, and graphs. Formulas and Mathematical Rules In the PowerTeaching curriculum, students will be guided through instruction, modeling, teamwork, and individual practice, to define rules and formulas based on work with multiple examples. Instead of being given the rule, they will have to write the rule, and then prove it by applying it to new situations. Standard for Mathematical Practice 8: Look for and express regularity in repeated reasoning. Specific targeted skills in the PowerTeaching curriculum address the topic of repeated reasoning to find shortcuts, processes, and formulas. Expressions and equations Within the Expressions and Equations content area, students will prove expressions equivalent, prove or disprove solutions to equations and inequalities, and use the properties of addition and multiplication. Geometry Within the Geometry content area of PowerTeaching, students will apply their knowledge of expressions and equations to geometry and derive formulas for area, volume, and surface area.
5 Key Ideas and Details Section II: Alignment to the Standards for Mathematical Content Algebra I Standard for Mathematical Content N.Q 1: Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. Unit 2 Cycle 1 Lesson 1 Using Appropriate Units Objective: Select and use appropriate units of measure to solve multiplestep problems Unit 2 Cycle 1 Lesson 2 Units in Formulas Objective: Choose and interpret units correctly in formulas Unit 2 Cycle 1 Lesson 3 Units and Graphing Objective: Determine the scale and origin to graph data and use the graph to answer questions Unit 2 Cycle 2 Lesson 5 Scientific Notation Objective: Write numbers in scientific notation and perform operations on numbers written in scientific notation Standard for Mathematical Content N.Q 2: Define appropriate quantities for the purpose of descriptive modeling. Unit 2 Cycle 2 Lesson 4 Defining Quantities Objective: Define appropriate quantities and calculate multiple quantities to describe real world situations Standard for Mathematical Content N.Q 3: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities Unit 2 Cycle 2 Lesson 6 Significant Digits Objective: Write quantities using the correct number of significant digits Unit 2 Cycle 2 Lesson 7 Accuracy with Measurement Instruments Objective: Select and use an appropriate level of accuracy based on measurement instruments Unit 2 Cycle 2 Lesson 8 Quantities in Complex Problems Objective: Solve realworld, complex problems involving quantities, accurate measures, and significant digits Standard for Mathematical Content A.SSE 1: Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. Unit 2 Cycle 3 Lesson 9 Parts of Expressions Objective: Identify and name the parts of an algebraic expression Unit 10 Cycle 1 Lesson 1 Identify and Interpret Parts of an Expression Objective: Interpret complex expressions in different ways, focusing on quadratic expressions b. Interpret complicated expressions by viewing one or more of their parts as a single entity. Unit 2 Cycle 3 Lesson 10 Describing Complicated Algebraic Expressions Objective: Write math statements to represent complicated algebraic expressions Unit 2 Cycle 3 Lesson 11 Expressions in Context Objective: Interpret and describe the parts of an expression in context of a realworld situation
6 Unit 2 Cycle 3 Lesson 12 Write Complicated Expressions Objective: Given a contextual situation, write multiple term algebraic expressions Standard for Mathematical Content A.SSE 2: Use the structure of an expression to identify ways to rewrite it. Unit 10 Cycle 1 Lesson 2 Factoring Quadratic Expressions I Objective: Factor quadratic expressions using common rules such as the difference of two squares Unit 10 Cycle 1 Lesson 3 Rewrite Expressions Objective: Rewrite complex expressions in different ways, focusing on quadratic expressions Standard for Mathematical Content A.SSE 3: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. a. Factor a quadratic expression to reveal the zeros of the function it defines. Unit 10 Cycle 2 Lesson 4 Factoring Quadratic Expressions II Objective: Use additional methods to factor quadratics; find the zeros, ZeroProduct Property, connect factors, etc. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. Unit 10 Cycle 2 Lesson 5 Completing the Square Objective: Complete the square in a quadratic expression to find the maximum and minimum value of the function c. Use the properties of exponents to transform expressions for exponential functions Unit 10 Cycle 2 Lesson 6 Rewriting Exponential Expressions Objective: Use the properties of exponents to transform exponential functions to make equivalent expressions, answer a question, or find a solution Standard for Mathematical Content A.CED 1: Create equations and inequalities in one variable and use them to solve problems. Unit 3 Cycle 1 Lesson 1 Creating Equation and Inequalities in One Variable Objective: Create linear and exponential equations and linear inequalities in one variable to solve problems Unit 11 Cycle 1 Lesson 1 Creating Equations and Inequality in One Variable Objective: Write equations for situation including linear, exponential, and quadratic equation in one variable Standard for Mathematical Content A.CED 2: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. Unit 3 Cycle 1 Lesson 2 Creating Equation and Inequalities in Two Variables Objective: Create linear and exponential equations and linear inequalities in two variables to solve problems Unit 11 Cycle 1 Lesson 2 Creating Equations and Inequalities in Two Variables Objective: Write equations for situations including linear, exponential, and quadratic equations in two variables Standard for Mathematical Content A.CED 3: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
7 Unit 3 Cycle 1 Lesson 3 Representing Constraints Objective: Represent constraints by equations and/or inequalities; determine if a solution in a viable solution to a contextual problem Standard for Mathematical Content A.CED 4: Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. Unit 3 Cycle 1 Lesson 4 Rearranging Formulas Objective: Rearrange formulas for a particular variable of interest Unit 11 Cycle 1 Lesson 3 Solve Formulas for a Given Variable Objective: Solve a given equation or formula for a particular variable, including linear, exponential, and quadratic equations Standard for Mathematical Content A.REI 1: Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Unit 3 Cycle 2 Lesson 5 Equation Proofs Objective: Use the properties of multiplication and addition to explain each step in solving an equation Standard for Mathematical Content A.REI 3: Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. Also aligns to 8.EE.8 Unit 3 Cycle 2 Lesson 6 Solving Linear Equations Objective: Solve linear equations in one variable Unit 3 Cycle 2 Lesson 7 Solving Linear Inequalities Objective: Solve linear inequalities in one variable Standard for Mathematical Content A.REI 4: Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form (x p) 2 = q that has the same solutions. Derive the quadratic formula from this form. Unit 11 Cycle 2 Lesson 4 Solve Quadratic Equations I Objective: Solve quadratic equations by factoring the equation b. Solve quadratic equations by inspection (e.g., for x 2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b. Unit 11 Cycle 2 Lesson 5 Derive the Quadratic Formula Objective: Solve a quadratic equation for a given variable to derive the quadratic formula Unit 11 Cycle 2 Lesson 6 Complex Numbers Objective: Explore what complex numbers are, what they represent, and how to use them Unit 11 Cycle 2 Lesson 7 Solve Quadratic Equations II Objective Use the quadratic formula to solve quadratic equations Standard for Mathematical Content A.REI 5: Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. Also aligns to 8.EE.8
8 Unit 5 Cycle 2 Lesson 5 Solve Systems of Equations Algebraically Objective: Use the process of substitution and elimination to solve a system of twovariable linear equations Unit 5 Cycle 2 Lesson 6 Problem Solving with Systems of Equations Objective: Solve a pair of equations graphically and/or algebraically to solve a realworld math situation Unit 11 ProjectBased Cycle Solve Systems of Equations with Quadratic Equations Objective: During a threeday cycle, solve systems of equations that include quadratic equations by solving the equations algebraically and graphically Standard for Mathematical Content A.REI 6: Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. Also aligns to 8.EE.8 Unit 5 Cycle 2 Lesson 4 Solve Systems of Equation by Graphing Objective: Solve a system of twovariable linear equations by graphing both equations Unit 5 Cycle 2 Lesson 6 Problem Solving with Systems of Equations Objective: Solve a pair of equations graphically and/or algebraically to solve a realworld math situation Standard for Mathematical Content A.REI 10: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Unit 5 Cycle 1 Lesson 1 Graphs of TwoVariable Equations Objective: Discover that the graph of a twovariable equation represents all possible solutions for the equation Standard for Mathematical Content A.REI 11: Explain why the xcoordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. Unit 5 Cycle 1 Lesson 2 Graphs of Multiple Equations Objective: Discover that any points of intersection when two equations are graphed represent the solution(s) to both equations and test that knowledge Unit 5 Cycle 1 Lesson 3 Approximate Solutions to Systems of Equations Objective: Approximate the solution to various systems of equations using graphing software Standard for Mathematical Content A.REI 12: Graph the solutions to a linear inequality in two variables as a halfplane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding halfplanes. Unit 5 Cycle 3 Lesson 7 Graph an Inequality Objective: Represent a linear inequality on a graph Unit 5 Cycle 3 Lesson 8 Inequalities in Context Objective: Graph linear inequalities to describe solutions in context and determine if given values are solutions to contextual linear inequalities by graphing them Unit 5 Cycle 3 Lesson 9 Solving Paris of Linear Inequalities Objective: Solve a pair of linear inequalities by graphing and identifying the overlap of solutions to their graphs Standard for Mathematical Content 8.EE 1: Know and apply the properties of integer exponents to generate equivalent numerical expressions
9 Unit 4 Cycle 1 Lesson 1 Understanding Negative Exponents Objective: Explain what a negative exponent represent in a numeric or algebraic expression and rewrite expressions with negative exponents Standard for Mathematical Content N.RN 1: Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. Unit 4 Cycle 1 Lesson 2 Operations with Exponents Objective: Add, subtract, multiply, and divide numbers and algebraic terms with exponents Unit 4 Cycle 1 Lesson 4 Simplify and Rewrite Expressions with Radicals Objective: Simplify and rewrite numeric and algebraic steps with multiple steps of exponents and radicals Standard for Mathematical Content N.RN 2: Rewrite expressions involving radicals and rational exponents using the properties of exponents. Unit 4 Cycle 1 Lesson 3 Fractional Exponents and Radicals Objective: Rewrite numeric and algebraic expression with fractional exponents and radicals Unit 4 Cycle 1 Lesson 4 Simplify and Rewrite Expressions with Radicals Objective: Simplify and rewrite numeric and algebraic steps with multiple steps of exponents and radicals Standard for Mathematical Content N.RN 3: Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational. Unit 2 Cycle 1 Lesson 2 Units in Formulas Objective: Choose and interpret units correctly in formulas Standard for Mathematical Content 8.F 3: Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. Unit 6 Cycle 2 Lesson 4 Linear Functions Objective: Discover that y = mx + b is a function that describes a straight line Unit 6 Cycle 2 Lesson 5 Exponential Functions Objective: Compare linear and exponential functions using graphs, data sets, and equations Standard for Mathematical Content F.IF 1: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). Also aligns to 8.IF.1 Unit 6 Cycle 1 Lesson 1 Defining Functions Objective: Define and identify function in words, in tables, and graphically by definition Unit 6 Cycle 1 Lesson 2 Domain and Range Objective: Determine the domain and range of functions given different representations Standard for Mathematical Content F.IF 2: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Also aligns to 8.IF.2 Unit 6 Cycle 1 Lesson 3 Evaluate Functions Objective: Evaluate functions for given values and use function notation Standard for Mathematical Content F.IF 3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers Also aligns to 8.IF.2
10 Unit 6 Cycle 2 Lesson 6 Sequences as Functions Objective: Recognize that sequences represent function that are sometimes represented recursively Standard for Mathematical Content F.IF 4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Also aligns to 8.F.5 Unit 6 Cycle 3 Lesson 8 Functions and Graphs I Objective: Analyze the graph of a function and use the graph to describe different aspects of the function and sketch a function given a description Standard for Mathematical Content F.IF 5: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. Unit 6 Cycle 3 Lesson 9 Functions and Graphs II Objective: Given a graph or other information about a function, discuss the domain in detail Standard for Mathematical Content F.IF 6: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. Unit 6 Cycle 3 Lesson 7 Construct and Analyze Linear Functions Objective: Given different information about a function, determine the rate of change Standard for Mathematical Content F.IF 7: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. Also aligns to 8.IF.3 Unit 7 Cycle 1 Lesson 1 Linear and Quadratic Functions Objective: Graph and analyze linear and quadratic functions to show intercepts, maxima, and minima Unit 12 Cycle 1 Lesson 1 Graph Linear and Quadratic Functions Objective: Graph linear and quadratic functions Unit 12 Cycle 1 Lesson 2 Graph Absolute Value, Step, and PieceWise Functions Objective: Graph absolute value, step, and piecewise functions b. Graph square root, cube root, and piecewisedefined functions, including step functions and absolute value functions. Unit 12 Cycle 1 Lesson 1 Graph Linear and Quadratic Functions Objective: Graph linear and quadratic functions Unit 12 Cycle 1 Lesson 2 Graph Absolute Value, Step, and PieceWise Functions Objective: Graph absolute value, step, and piecewise functions e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. Unit 7 Cycle 1 Lesson 2 Exponential, Logarithmic, and Trigonometric Functions Objective: Graph and analyze exponential, logarithmic, and trigonometric functions to show various descriptors such as intercepts, end behavior, period, midline, and amplitude Standard for Mathematical Content F.IF 8: Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
11 Unit 12 Cycle 1 Lesson 3 Rewriting Functions Objective: Use factoring, completing the square, and the properties of exponents to rewrite functions to highlight a property of the function b. Use the properties of exponents to interpret expressions for exponential functions. Unit 12 Cycle 1 Lesson 3 Rewriting Functions Objective: Use factoring, completing the square, and the properties of exponents to rewrite functions to highlight a property of the function Standard for Mathematical Content F.IF 9: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). Unit 7 Cycle 1 Lesson 3 Compare Functional Representations Objective: Compare the graphs of different functions and compare the properties of functions given in different ways Unit 12 Cycle 1 Lesson 4 Compare Functions Objective: Compare the properties of two functions including quadratic functions Standard for Mathematical Content F.BF 1: Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. Also aligns to 8.F.4. Unit 7 Cycle 2 Lesson 4 Functions and Context Objective: Determine an explicit expression, a recursive process, or steps for a calculation from a given context for a function Unit 12 Cycle 2 Lesson 5 Write a Function from a Context Objective: Determine the elicit expression, a recursive process, or the steps for a calculation for a contextual situation, including Quadratic functions b. Combine standard function types using arithmetic operations. Unit 7 Cycle 2 Lesson 5 Combine Function Objective: Add, subtract, multiply, and divide separate functions Unit 10 Cycle 2 Lesson 6 Combine Functions Objective: Add, subtract, multiply, and divide functions to create new functions including quadratic functions Standard for Mathematical Content F.BF 2: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. Unit 7 Cycle 2 Lesson 6 Model Situations with Geometric and Arithmetic Sequences Objective: Write arithmetic and geometric sequences both recursively and with an explicit formula to model situations Standard for Mathematical Content F.BF 3: Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Unit 7 Cycle 3 Lesson 7 Even and Odd Functions Objective: Recognize even and odd functions from their graph and the algebraic expressions for them Unit 7 Cycle 3 Lesson 8 Changes to Function Graphs Objective: Record the changes to the output of a function when the same value is combined with the function in different ways
12 Unit 7 Cycle 3 Lesson 9 Functions of Functions Objective: Given two functions, find a function of the other function; find f(gx) Unit 10 Cycle 2 Lesson 7 Building New Functions Objective: Record the changes to the output of a function when the same value is combining with the quadratic function in different ways Standard for Mathematical Content F.BF 4: Find inverse functions. a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. Unit 10 Cycle 2 Lesson 8 Find the Inverse of a Function Objective: Understand the inverse of a function and find it for linear and simple exponential functions Standard for Mathematical Content F.LE 1: Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. Unit 8 Cycle 1 Lesson 1 Growth of Functions Objective: Establish a pattern of growth for linear and exponential functions b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. Unit 8 Cycle 1 Lesson 2 Recognize Linear and Exponential Situations Objective: Given mathematical situation, identify whether they are linear of exponential c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. Unit 8 Cycle 1 Lesson 2 Recognize Linear and Exponential Situations Objective: Given mathematical situations, identify whether they are linear or exponential Standard for Mathematical Content F.LE 2: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). Unit 8 Cycle 1 Lesson 3 Construct Linear and Exponential Functions Objective: Given information like a graph or input/output pairs, construct linear and exponential functions Standard for Mathematical Content F.LE 3: Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. Unit 8 Cycle 1 Lesson 4 Compare Linear and Exponential Models Objective: Compare linear and exponential models of functions by observing that the quantities starting at the same point behave differently Unit 10 ProjectBased Cycle Linear vs. Quadratic Functions Objective: During the threeday cycle, use graphs, tables, and functions written symbolically to compare linear and quadratic functions and solve realworld math problems Standard for Mathematical Content F.LE 5: Interpret the parameters in a linear or exponential function in terms of a context. Unit 8 Cycle 1 Lesson 5 Functions and Parameters Objective: Interpret the parameters of linear and exponential functions in context Unit 11 ProjectBased Cycle Functions in Context Objective: During a threeday cycle, apply all function work to realworld situations
13 Standard for Mathematical Content S.ID 1: Represent data with plots on the real number line (dot plots, histograms, and box plots). Unit 9 Cycle 1 Lesson 1 Numeric Data Displays Objective: Represent data on various numeric data displays, choose the best display and interpret the data display Standard for Mathematical Content S.ID 2: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. Unit 9 Cycle 1 Lesson 2 Measure of Center and Spread Objective: Compare the center and spread of various date given on dot numeric data displays using measure like mean and standard deviation Standard for Mathematical Content S.ID 3: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). Unit 9 Cycle 1 Lesson 3 Data Displays and Problem Solving Objective: Interpret the difference in shape, center, spread, trend, outliers, and clusters of data on different graphs in context Standard for Mathematical Content S.ID 5: Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. Unit 9 Cycle 2 Lesson 4 Frequency Tables Objective: Organize, summarize, and interpret categorical data for two categories into frequency tables and discuss the characteristics of each data display Standard for Mathematical Content S.ID 6: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Also aligns to 8.SP.1. Unit 9 Cycle 2 Lesson 5 Scatter Plots Objective: Construct scatter plots for bivariate data and interpret the shape of the plot by discussing clusters, outliers, and general association b. Informally assess the fit of a function by plotting and analyzing residuals. Also aligns to 8.SP.2 Unit 9 Cycle 2 Lesson 6 Functions and Scatter Plots Objective: Assess how well a function fits the data of a scatter plot by determining the residuals c. Fit a linear function for a scatter plot that suggests a linear association. Also aligns to 8.SP.2 Unit 9 Cycle 2 Lesson 7 Lines of Best Fit Objective: Create a line of best fit for scatter plots with linear associations Standard for Mathematical Content S.ID 7: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. Also aligns to 8.SP.3 Unit 9 Cycle 3 Lesson 8 Slope and Intercept Objective: Interpret the slope and intercept of a linear association in context Standard for Mathematical Content S.ID 8: Compute (using technology) and interpret the correlation coefficient of a linear fit. Also aligns to 8.SP.4
14 Unit 9 Cycle 3 Lesson 9 Correlation Coefficient Objective: Find and analyze the correlation coefficient of a linear line of best fit Standard for Mathematical Content S.ID 9: Distinguish between correlation and causation. Also aligns to 8.SP.4 Unit 9 Cycle 3 Lesson 10 Correlation vs. Causation Objective: Understand the different between correlation and causation and recognize when there is a strong correlation but no causation Standard for Mathematical Content A.APR 1: Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. Unit 10 Cycle 3 Lesson 7 Adding and Subtracting Polynomials Objective: Add and subtract polynomials to rewrite or simplify the polynomials Unit 10 Cycle 3 Lesson 8 Multiplying and Dividing Polynomials Objective: Multiply and divide polynomials to rewrite or simplify the polynomials Unit 10 Cycle 3 Lesson 9 Special Polynomial Combinations Objective: Use special polynomial combinations to rewrite or simplify polynomials Standard for Mathematical Content 8.G 6: Explain a proof of the Pythagorean Theorem and its converse. Unit 11 Cycle 1 Lesson 1 Explain the Pythagorean Theorem Objective: Use algebra and functions to explain the Pythagorean Theorem and its converse Standard for Mathematical Content 8.G 7: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions. Unit 11 Cycle 1 Lesson 2 Apple the Pythagorean Theorem Objective: Use the Pythagorean Theorem to find missing side length on triangles and explore special right triangles Unit 11 Cycle 1 Lesson 3 Distance Formula Objective: Use the Pythagorean Theorem to derive the distance formula
High School Algebra 1 Common Core Standards & Learning Targets
High School Algebra 1 Common Core Standards & Learning Targets Unit 1: Relationships between Quantities and Reasoning with Equations CCS Standards: Quantities NQ.1. Use units as a way to understand problems
More informationThis unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
More informationTopic: Solving Linear Equations
Unit 1 Topic: Solving Linear Equations NQ.1. Reason quantitatively and use units to solve problems. Use units as a way to understand problems and to guide the solution of multistep problems; choose and
More informationCorrelation to the Common Core State Standards for Mathematics Algebra 1. Houghton Mifflin Harcourt Algerbra
Correlation to the Common Core State Standards for Mathematics Algebra 1 Houghton Mifflin Harcourt Algerbra 1 2015 Houghton Mifflin Harcourt Algebra I 2015 correlated to the Common Core State Standards
More informationMontana Common Core Standard
Algebra I Grade Level: 9, 10, 11, 12 Length: 1 Year Period(s) Per Day: 1 Credit: 1 Credit Requirement Fulfilled: A must pass course Course Description This course covers the real number system, solving
More informationPearson Algebra 1 Common Core 2015
A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).
More informationInfinite Algebra 1 supports the teaching of the Common Core State Standards listed below.
Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School
More informationCreating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
More informationAlgebra I Support Lab CURRICULUM GUIDE AND INSTRUCTIONAL ALIGNMENT
TRENTON PUBLIC SCHOOLS Department of Curriculum and Instruction 108 NORTH CLINTON AVENUE TRENTON, NEW JERSEY 08609 Secondary Schools Algebra I Support Lab CURRICULUM GUIDE AND INSTRUCTIONAL ALIGNMENT The
More informationPARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS. Algebra I Overview FOR ALGEBRA I
PARCC MODEL CONTENT FRAMEWORK FOR MATHEMATICS FOR ALGEBRA I Algebra I Overview Numerals in parentheses designate individual content standards that are eligible for assessment in whole or in part. Underlined
More informationContent Emphases by ClusterKindergarten *
Content Emphases by ClusterKindergarten * Counting and Cardinality Know number names and the count sequence. Count to tell the number of objects. Compare numbers. Operations and Algebraic Thinking Understand
More informationAlgebra 1 Math Standards and I Can Statements
Algebra 1 Math Standards and I Can Statements Standard  CC.912.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic
More informationDRAFT. Algebra 1 EOC Item Specifications
DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as
More informationNorth Carolina Math 1
Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.
More informationWentzville School District Curriculum Development Template Stage 1 Desired Results
Wentzville School District Curriculum Development Template Stage 1 Desired Results Unit Title: Radicals and Radical Expressions Course: Middle School Algebra 1 Unit 10 Radicals and Radical Expressions
More informationGeorgia Standards of Excellence Mathematics
Georgia Standards of Excellence Mathematics Standards GSE Algebra I K12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding
More informationAlgebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only
Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: AAPR.3: Identify zeros of polynomials
More informationPolynomial Operations and Factoring
Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationPlanned Course of Study. Algebra I Part 1 NORTHWESTERN LEHIGH SCHOOL DISTRICT 6493 ROUTE 309 NEW TRIPOLI, PA 18066
Planned Course of Study Algebra I Part 1 NORTHWESTERN LEHIGH SCHOOL DISTRICT 6493 ROUTE 309 NEW TRIPOLI, PA 18066 NORTHWESTERN LEHIGH SCHOOL BOARD 2013 Darryl S. Schafer, President LeRoy Sorenson, Vice
More informationUnit 2 Quadratic Equations and Polynomial Functions Algebra 2
Number of Days: 29 10/10/16 11/18/16 Unit Goals Stage 1 Unit Description: Students will build on their prior knowledge of solving quadratic equations. In Unit 2, solutions are no longer limited to real
More informationGeorgia Standards of Excellence 20152016 Mathematics
Georgia Standards of Excellence 20152016 Mathematics Standards GSE Coordinate Algebra K12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical
More informationWentzville School District Algebra 1: Unit 9 Stage 1 Desired Results
Wentzville School District Algebra 1: Unit 9 Stage 1 Desired Results Unit 9  Quadratic Functions Unit Title: Quadratics Functions Course: Algebra I Brief Summary of Unit: At the end of this unit, students
More informationGeorgia Standards of Excellence Curriculum Map. Mathematics. GSE Algebra I
Georgia Standards of Excellence Curriculum Map Mathematics GSE Algebra I These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Georgia Department
More informationOverview of Math Standards
Algebra 2 Welcome to math curriculum design maps for Manhattan Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse
More informationNEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
More informationWentzville School District Formal Algebra II
Wentzville School District Formal Algebra II Unit 6  Rational Functions Unit Title: Rational Functions Course: Formal Algebra II Brief Summary of Unit: In this unit, students will graph and analyze the
More informationSouth Carolina College and CareerReady (SCCCR) Algebra 1
South Carolina College and CareerReady (SCCCR) Algebra 1 South Carolina College and CareerReady Mathematical Process Standards The South Carolina College and CareerReady (SCCCR) Mathematical Process
More informationWentzville School District Algebra II
Wentzville School District Algebra II Unit 6  Rational Functions Unit Title: Rational Functions Course: Algebra II Brief Summary of Unit: In this unit, students will graph and analyze the properties of
More information8 th Grade Math Curriculum/7 th Grade Advanced Course Information: Course 3 of Prentice Hall Common Core
8 th Grade Math Curriculum/7 th Grade Advanced Course Information: Course: Length: Course 3 of Prentice Hall Common Core 46 minutes/day Description: Mathematics at the 8 th grade level will cover a variety
More informationAlgebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 201213 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
More informationAlgebra Nation MAFS Videos and Standards Alignment Algebra 2
Section 1, Video 1: Linear Equations in One Variable  Part 1 Section 1, Video 2: Linear Equations in One Variable  Part 2 Section 1, Video 3: Linear Equations and Inequalities in Two Variables Section
More informationCommon Core Algebra Critical Area 6: Systems of Equations and Inequalities and Linear Programming
Pacing: Weeks 3136 Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the
More informationEQ: How can regression models be used to display and analyze the data in our everyday lives?
School of the Future Math Department Comprehensive Curriculum Plan: ALGEBRA II (Holt Algebra 2 textbook as reference guide) 20162017 Instructor: Diane Thole EU for the year: How do mathematical models
More informationCommon Core State Standards  Mathematics Content Emphases by Cluster Grade K
Grade K Not all of the content in a given grade is emphasized equally in the standards. Some clusters require greater emphasis than the others based on the depth of the ideas, the time that they take to
More informationGRADE 8 SKILL VOCABULARY MATHEMATICAL PRACTICES Define rational number. 8.NS.1
Common Core Math Curriculum Grade 8 ESSENTIAL DOMAINS AND QUESTIONS CLUSTERS How do you convert a rational number into a decimal? How do you use a number line to compare the size of two irrational numbers?
More informationMiddle School Course Acceleration
Middle School Course Acceleration Some students may choose to take Algebra I in Grade 8 so they can take collegelevel mathematics in high school. Students who are capable of moving more quickly in their
More informationPrentice Hall Mathematics: Algebra 1 2007 Correlated to: Michigan Merit Curriculum for Algebra 1
STRAND 1: QUANTITATIVE LITERACY AND LOGIC STANDARD L1: REASONING ABOUT NUMBERS, SYSTEMS, AND QUANTITATIVE SITUATIONS Based on their knowledge of the properties of arithmetic, students understand and reason
More informationPythagorean Theorem. Overview. Grade 8 Mathematics, Quarter 3, Unit 3.1. Number of instructional days: 15 (1 day = minutes) Essential questions
Grade 8 Mathematics, Quarter 3, Unit 3.1 Pythagorean Theorem Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Prove the Pythagorean Theorem. Given three side lengths,
More informationPacing for a Common Core Curriculum with Prentice Hall Algebra 1
Pacing for a Common Core Curriculum with Prentice Hall Algebra 1 This leveled Pacing Guide can help you transition to a Common Corebased curriculum with Pearson s Prentice Hall Algebra 1 2011. The first
More informationCourse Title: Honors Algebra Course Level: Honors Textbook: Algebra 1 Publisher: McDougall Littell
Course Title: Honors Algebra Course Level: Honors Textbook: Algebra Publisher: McDougall Littell The following is a list of key topics studied in Honors Algebra. Identify and use the properties of operations
More informationAlgebra 1 Course Objectives
Course Objectives The Duke TIP course corresponds to a high school course and is designed for gifted students in grades seven through nine who want to build their algebra skills before taking algebra in
More informationALGEBRA I A PLUS COURSE OUTLINE
ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best
More informationManhattan Center for Science and Math High School Mathematics Department Curriculum
Content/Discipline Algebra 1 Semester 2: Marking Period 1  Unit 8 Polynomials and Factoring Topic and Essential Question How do perform operations on polynomial functions How to factor different types
More informationMath at a Glance for April
Audience: School Leaders, Regional Teams Math at a Glance for April The Math at a Glance tool has been developed to support school leaders and region teams as they look for evidence of alignment to Common
More informationGeorgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade
Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade
More informationwith functions, expressions and equations which follow in units 3 and 4.
Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model
More informationStudents will understand 1. use numerical bases and the laws of exponents
Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?
More informationA COURSE OUTLINE FOR ALGEBRA 1 DEVELOPED BY ANN SHANNON & ASSOCIATES FOR THE BILL & MELINDA GATES FOUNDATION
A COURSE OUTLINE FOR ALGEBRA 1 DEVELOPED BY ANN SHANNON & ASSOCIATES FOR THE BILL & MELINDA GATES FOUNDATION JANUARY 2014 Algebra 1 Course Outline Content Area Formative Assessment Lessons # of Days A0
More informationMathematics Common Core Cluster. Mathematics Common Core Standard. Domain
Mathematics Common Core Domain Mathematics Common Core Cluster Mathematics Common Core Standard Number System Know that there are numbers that are not rational, and approximate them by rational numbers.
More informationOperations and Algebraic Thinking. K.NBT Number and Operations in Base Ten
KINDERGARTEN K.CC K.OA Counting and Cardinality Know number names and the count sequence. Count to tell the number of objects. Compare numbers. Operations and Algebraic Thinking Understand addition as
More informationWest WindsorPlainsboro Regional School District Algebra I Part 2 Grades 912
West WindsorPlainsboro Regional School District Algebra I Part 2 Grades 912 Unit 1: Polynomials and Factoring Course & Grade Level: Algebra I Part 2, 9 12 This unit involves knowledge and skills relative
More informationMathematics. Designing High School Mathematics Courses Based on the Common
common core state STANDARDS FOR Mathematics Appendix A: Designing High School Mathematics Courses Based on the Common Core State Standards Overview The (CCSS) for Mathematics are organized by grade level
More informationA Correlation of Pearson Algebra 1, Geometry, Algebra 2 Common Core 2015
A Correlation of Pearson,, Common Core 2015 To the North Carolina High School Mathematics Alignment to Traditional Text  MATH II A Correlation of Pearson,, Common Core, 2015 Introduction This document
More informationOverview of Math Standards
Grade 8A Welcome to math curriculum design maps for Manhattan Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse
More informationQuadratic Functions: Complex Numbers
Algebra II, Quarter 1, Unit 1.3 Quadratic Functions: Complex Numbers Overview Number of instruction days: 1214 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Develop
More informationPennsylvania System of School Assessment
Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read
More informationWentzville School District Algebra 1: Unit 8 Stage 1 Desired Results
Wentzville School District Algebra 1: Unit 8 Stage 1 Desired Results Unit Title: Quadratic Expressions & Equations Course: Algebra I Unit 8  Quadratic Expressions & Equations Brief Summary of Unit: At
More informationScope & Sequence MIDDLE SCHOOL
Math in Focus is a registered trademark of Times Publishing Limited. Houghton Mifflin Harcourt Publishing Company. All rights reserved. Printed in the U.S.A. 06/13 MS77941n Scope & Sequence MIDDLE SCHOOL
More informationFor example, estimate the population of the United States as 3 times 10⁸ and the
CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number
More informationEquations of Linear. Functions
SECTION Trusted Content Common Core State W ith American students fully prepared for the future, our communities will be best positioned to compete successfully in the global economy. Common Core State
More informationCommon Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS)
CCSS Key: The Number System (NS) Expressions & Equations (EE) Functions (F) Geometry (G) Statistics & Probability (SP) Common Core State Standard I Can Statements 8 th Grade Mathematics 8.NS.1. Understand
More informationCurrent Standard: Mathematical Concepts and Applications Shape, Space, and Measurement Primary
Shape, Space, and Measurement Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two and threedimensional shapes by demonstrating an understanding of:
More informationHigh School Mathematics Algebra
High School Mathematics Algebra This course is designed to give students the foundation of understanding algebra at a moderate pace. Essential material will be covered to prepare the students for Geometry.
More informationCommon Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity 8G18G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
More informationSolving Equations with One Variable
Grade 8 Mathematics, Quarter 1, Unit 1.1 Solving Equations with One Variable Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Solve linear equations in one variable
More informationHigher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More informationGeorgia Standards of Excellence Mathematics
Georgia Standards of Excellence Mathematics Standards GSE Algebra II/Advanced Algebra K12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical
More informationAlgebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
More informationAlgebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )
Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.11.4, 1.61.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order
More informationSouth Carolina College and CareerReady (SCCCR) PreCalculus
South Carolina College and CareerReady (SCCCR) PreCalculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More informationALGEBRA I / ALGEBRA I SUPPORT
Suggested Sequence: CONCEPT MAP ALGEBRA I / ALGEBRA I SUPPORT August 2011 1. Foundations for Algebra 2. Solving Equations 3. Solving Inequalities 4. An Introduction to Functions 5. Linear Functions 6.
More informationAlgebra 1 Competencies for Capital High
Basic Course Information Course Name: Algebra 1 Algebra 1 Competencies for Capital High Course #: MAT1010 Level: Ninth Department: Mathematics Length of Class: Yearlong # Credits: 1.0 Who can take this
More informationNorth Carolina Math 2
Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.
More informationAlgebra 1 Chapter 3 Vocabulary. equivalent  Equations with the same solutions as the original equation are called.
Chapter 3 Vocabulary equivalent  Equations with the same solutions as the original equation are called. formula  An algebraic equation that relates two or more reallife quantities. unit rate  A rate
More informationGeorgia Standards of Excellence Curriculum Map. Mathematics. GSE Algebra II/Advanced Algebra
Georgia Standards of Excellence Curriculum Map Mathematics GSE Algebra II/Advanced Algebra These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement.
More informationCourse Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics
Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)
More informationLesson List
20162017 Lesson List Table of Contents Operations and Algebraic Thinking... 3 Number and Operations in Base Ten... 6 Measurement and Data... 9 Number and Operations  Fractions...10 Financial Literacy...14
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationBig Ideas in Mathematics
Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards
More informationgraphs, Equations, and inequalities
graphs, Equations, and inequalities You might think that New York or Los Angeles or Chicago has the busiest airport in the U.S., but actually it s HartsfieldJackson Airport in Atlanta, Georgia. In 010,
More informationAlgebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
More informationMasconomet Regional High School Curriculum Guide
Masconomet Regional High School Curriculum Guide COURSE TITLE: Algebra 2 COURSE NUMBER: 1322 DEPARTMENT: Mathematics GRADE LEVEL(S) & PHASE: 10 12, CP LENGTH OF COURSE: Full Year Course Description: This
More informationIndiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
More informationFlorida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourthyear math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
More informationALGEBRA 1/ALGEBRA 1 HONORS
ALGEBRA 1/ALGEBRA 1 HONORS CREDIT HOURS: 1.0 COURSE LENGTH: 2 Semesters COURSE DESCRIPTION The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical
More informationAlgebra PUHSD Curriculum PARCC MODEL CONTENT FRAMEWORK FOR ALGEBRA 34
PARCC MODEL CONTENT FRAMEWORK FOR ALGEBRA 34 Building on their work in Algebra I with linear and quadratic functions, students in Algebra II expand their repertoire by working with rational and exponential
More informationCorrelation of Common Core Content Standards to CMP3 Content. Number Standard for Mathematical Content CMP3 Unit: Investigation
Correlation of Common Core Content Standards to CMP3 Content GRADE 8 8.NS.A Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1 8.NS.A.2 Understand informally
More informationPrentice Hall Algebra 2 2011 Correlated to: Colorado P12 Academic Standards for High School Mathematics, Adopted 12/2009
Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level
More informationGrade 8 Math. Content Skills Learning Targets Assessment Resources & Technology
St. MichaelAlbertville Middle School East Teacher: Dawn Tveitbakk Grade 8 Math September 2014 UEQ: (new) CEQ: WHAT IS THE LANGUAGE OF ALGEBRA? HOW ARE FUNCTIONS USED? HOW CAN ALGEBRA BE USED TO SOLVE
More informationMathematics Curriculum
Common Core Mathematics Curriculum Table of Contents 1 Polynomial and Quadratic Expressions, Equations, and Functions MODULE 4 Module Overview... 3 Topic A: Quadratic Expressions, Equations, Functions,
More information4. Factor polynomials over complex numbers, describe geometrically, and apply to realworld situations. 5. Determine and apply relationships among syn
I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of
More informationCOGNITIVE TUTOR ALGEBRA
COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,
More informationGRADE 7 SKILL VOCABULARY MATHEMATICAL PRACTICES Add linear expressions with rational coefficients. 7.EE.1
Common Core Math Curriculum Grade 7 ESSENTIAL QUESTIONS DOMAINS AND CLUSTERS Expressions & Equations What are the 7.EE properties of Use properties of operations? operations to generate equivalent expressions.
More informationAlgebra 12. A. Identify and translate variables and expressions.
St. Mary's College High School Algebra 12 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used
More informationKeystone Exams: Algebra I Assessment Anchors and Eligible Content. Pennsylvania Department of Education
Assessment Anchors and Eligible Content Pennsylvania Department of Education www.education.state.pa.us January 2013 PENNSYLVANIA DEPARTMENT OF EDUCATION General Introduction to the Keystone Exam Assessment
More informationTools of Algebra. Solving Equations. Solving Inequalities. Dimensional Analysis and Probability. Scope and Sequence. Algebra I
Scope and Sequence Algebra I Tools of Algebra CLE 3102.1.1, CFU 3102.1.10, CFU 3102.1.9, CFU 3102.2.1, CFU 3102.2.2, CFU 3102.2.7, CFU 3102.2.8, SPI 3102.1.3, SPI 3102.2.3, SPI 3102.4.1, 12 Using Variables,
More informationPrentice Hall Mathematics Courses 13 Common Core Edition 2013
A Correlation of Prentice Hall Mathematics Courses 13 Common Core Edition 2013 to the Topics & Lessons of Pearson A Correlation of Courses 1, 2 and 3, Common Core Introduction This document demonstrates
More informationMercer County Public Schools PRIORITIZED CURRICULUM. Mathematics Content Maps Algebra II Revised August 07
Mercer County Public Schools PRIORITIZED CURRICULUM Mathematics Content Maps Algebra II Revised August 07 Suggested Sequence: C O N C E P T M A P ALGEBRA I I 1. Solving Equations/Inequalities 2. Functions
More informationUtah Core Curriculum for Mathematics
Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions
More information