Data Mining Prediction


 Osborn Herbert Dorsey
 2 years ago
 Views:
Transcription
1 Data Mining Prediction Jingpeng Li 1 of 23 What is Prediction? Predicting the identity of one thing based purely on the description of another related thing Not necessarily future events, just unknowns Based on the relationship between a thing that you can know and a thing you need to predict 2 of 23 1
2 Terms Predictor => Predicted When building a predictive model, you have data covering both When using one, you have data describing the predictor and you want it to tell you the predicted value 3 of 23 How Does it Differ From Classification? A classification problem could be seen as a predictor of classes, but. Predicted values are usually continuous whereas classifications are discreet. Predictions are often (but not always) about the future whereas classifications are about the present. Classification is more concerned with the input than the output 4 of 23 2
3 Usual Examples Predicting levels of sales that will result from a price change or advert. Predicting whether or not it will rain based on current humidity Predicting the colour of a pottery glaze based on a mixture of base pigments Predicting how far up the charts a single will go Predicting how much revenue a book will bring 5 of 23 Techniques Most prediction techniques are based on mathematical models: Simple statistical models such as linear regression Nonlinear statistics such as power series Neural networks, RBFs, etc All based on fitting a curve through the data, that is, finding a relationship from the predictors to the predicted 6 of 23 3
4 Simple Worked Example Predicting sales levels for a national newspaper Predictors Price Front cover story Competitions Advertising spend Predicted Sales in Units 7 of 23 Price Cover Competition Advert spend Sales 22 Political No Political No Sport No Sport No Royal No Royal No Crime No Royal No Royal High Val Royal Low Val Sport No Sport High Val Royal No Crime Low Val Sport Low Val Sport Low Val Crime No Sport No Sport High Val Royal No Political High Val Sport No Political No Royal High Val Sport No Royal No Sport No The Data Sales increase as price decreases but other factors play a part too Sales by Price of 23 4
5 Mathematical Model Learns relationship between all predictors at once and the predicted outcome: Sales=f(Price, Cover, Adverts, Competition) Sales are a function of several variables. The job of a data mining algorithm is to find the function f 9 of 23 Neural Network Example A certain type of neural network, called a multi layer perceptron (MLP) can learn a function between our inputs (qualities of a newspaper) and the outcome (Sales) It works by building the function out of many small simple functions, joined by weighted connections 10 of 23 5
6 MLP Structure Output Layer Every unit does the same thing: Hidden Layer O j f ( wij i i O ) Input Layer 1 f (a) = 1+ e a 11 of 23 Neural Network Example A neural network uses the data to modify the weighted connections between all of its functions until it is able to predict the data accurately This process is referred to as training the neural network 12 of 23 6
7 Neural Network Training 1. Prepare the data so that a file contains the predictors and the predicted variables with an example per row 2. Split the data into a test set and a training set 3. Read each row in turn into the neural network, presenting the predictors as inputs and the predicted value as the target output 4. Make a prediction and compare the value given by the neural network to the target value 5. Update the weights see next slide 6. Present the next example in the file 7. Repeat until the error no longer reduces ideally stop when the test error is at its lowest. 13 of 23 How are the Weights Changed? Training data has inputs and outputs, in this example, newspaper details and sales figures The MLP starts with random weights Each example in the training data is used as an input and the network generates an output The difference between that output and the value in the training data is known as the error 14 of 23 7
8 Error Back Propagation An algorithm known as error back propagation uses this error value to change the weights The weight change from the input layer unit i to hidden layer unit j is: w ij å j xi where d j = o j (1 o j ) w jk The weight change from the hidden layer unit j to the output layer unit k is: k d k Dw jk =h d k o j where error ) y (1 y ) k ( k k Qualities of a Predictor Which ever technique you use, it should have the following qualities: Ability to make correct predictions on data that is not in the original training data Ability to provide a certainty measure with its predictions How well a solution performs depends on both the data and the person who built it 16 of 23 8
9 Important Concepts Over Fitting A data mining predictor can capture the structure of the data so well that irrelevant details are picked up and used when they are not generally true Data Quantity and Quality Insufficient data or data that does not capture the relationship between predictors and predicted can produce a very poor solution 17 of 23 Important Concepts Multiple solutions It is possible (easy, in fact) to build more than one correct (or equally accurate) predictor from the same data set Several such predictors should be built and compared A winner might be chosen, or several could be used as a panel of experts 18 of 23 9
10 Nonlinear? Curvy! Or to be more specific: If x predicts y then they have a nonlinear relationship if the effect on y of a small change in x depends on the current value of x. 19 of 23 Nonlinear? Where ever you are along the line on the linear plot above, moving one unit to the right will move you up 5 units. The 1/5 ratio is constant so the relationship is linear Here, moving a unit to the right on the line above will carry you up a different amount, depending on where you are: nonlinear 20 of 23 10
11 NonLinear Note that if you have more than one predictor, nonlinearity can occur as two or more predictors combine E.g Putting the price up 1p will cause you to sell 1000 fewer newspapers when there is a political story on the front cover, but only 500 fewer with sport on the cover 21 of 23 Advantages of Neural Networks Very powerful predictors almost always better than any rule based system a human expert could design Can cope with nonlinear relationships, multiple numeric and discreet variables Able to generalise to data that it has not seen before 22 of 23 11
12 Disadvantages How predictions are gained can be hard to understand by a human user Not easy to ask why an answer was given (though some help is possible) No rules to look at Can make big errors if not trained properly Requires a certain degree of faith! 23 of 23 12
Introduction to Neural Networks : Revision Lectures
Introduction to Neural Networks : Revision Lectures John A. Bullinaria, 2004 1. Module Aims and Learning Outcomes 2. Biological and Artificial Neural Networks 3. Training Methods for Multi Layer Perceptrons
More informationPrediction of Stock Performance Using Analytical Techniques
136 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013 Prediction of Stock Performance Using Analytical Techniques Carol Hargreaves Institute of Systems Science National University
More informationLearning. Artificial Intelligence. Learning. Types of Learning. Inductive Learning Method. Inductive Learning. Learning.
Learning Learning is essential for unknown environments, i.e., when designer lacks omniscience Artificial Intelligence Learning Chapter 8 Learning is useful as a system construction method, i.e., expose
More informationA Basic Guide to Modeling Techniques for All Direct Marketing Challenges
A Basic Guide to Modeling Techniques for All Direct Marketing Challenges Allison Cornia Database Marketing Manager Microsoft Corporation C. Olivia Rud Executive Vice President Data Square, LLC Overview
More informationSUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,
More informationLecture 6. Artificial Neural Networks
Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm
More informationData Mining Classification
Data Mining Classification Jingpeng Li 1 of 26 What is Classification? Assigning an object to a certain class based on its similarity to previous examples of other objects Can be done with reference to
More informationMachine Learning: Multi Layer Perceptrons
Machine Learning: Multi Layer Perceptrons Prof. Dr. Martin Riedmiller AlbertLudwigsUniversity Freiburg AG Maschinelles Lernen Machine Learning: Multi Layer Perceptrons p.1/61 Outline multi layer perceptrons
More informationActuarial. Modeling Seminar Part 2. Matthew Morton FSA, MAAA Ben Williams
Actuarial Data Analytics / Predictive Modeling Seminar Part 2 Matthew Morton FSA, MAAA Ben Williams Agenda Introduction Overview of Seminar Traditional Experience Study Traditional vs. Predictive Modeling
More informationMicrosoft Azure Machine learning Algorithms
Microsoft Azure Machine learning Algorithms Tomaž KAŠTRUN @tomaz_tsql Tomaz.kastrun@gmail.com http://tomaztsql.wordpress.com Our Sponsors Speaker info https://tomaztsql.wordpress.com Agenda Focus on explanation
More informationData Mining Algorithms Part 1. Dejan Sarka
Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses
More informationNew Work Item for ISO 35345 Predictive Analytics (Initial Notes and Thoughts) Introduction
Introduction New Work Item for ISO 35345 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.
More informationChapter 12 Discovering New Knowledge Data Mining
Chapter 12 Discovering New Knowledge Data Mining BecerraFernandez, et al.  Knowledge Management 1/e  2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to
More informationTesting Stock Market Efficiency Using Historical Trading Data and Machine Learning
DEGREE PROJECT, IN COMPUTER SCIENCE, FIRST LEVEL STOCKHOLM, SWEDEN 2015 Testing Stock Market Efficiency Using Historical Trading Data and Machine Learning SAMI PURMONEN & PAUL GRIFFIN KTH ROYAL INSTITUTE
More informationRatebased artificial neural networks and error backpropagation learning. Scott Murdison Machine learning journal club May 16, 2016
Ratebased artificial neural networks and error backpropagation learning Scott Murdison Machine learning journal club May 16, 2016 Murdison, Leclercq, Lefèvre and Blohm J Neurophys 2015 Neural networks???
More informationImproving Generalization
Improving Generalization Introduction to Neural Networks : Lecture 10 John A. Bullinaria, 2004 1. Improving Generalization 2. Training, Validation and Testing Data Sets 3. CrossValidation 4. Weight Restriction
More informationINTRODUCTION TO NEURAL NETWORKS
INTRODUCTION TO NEURAL NETWORKS Pictures are taken from http://www.cs.cmu.edu/~tom/mlbookchapterslides.html http://research.microsoft.com/~cmbishop/prml/index.htm By Nobel Khandaker Neural Networks An
More informationWhat is Classification? Data Mining Classification. Certainty. Usual Examples. Predictive / Definitive. Techniques
What is Classification? Data Mining Classification Kevin Swingler Assigning an object to a certain class based on its similarity to previous examples of other objects Can be done with reference to original
More informationUse of Artificial Neural Network in Data Mining For Weather Forecasting
Use of Artificial Neural Network in Data Mining For Weather Forecasting Gaurav J. Sawale #, Dr. Sunil R. Gupta * # Department Computer Science & Engineering, P.R.M.I.T& R, Badnera. 1 gaurav.sawale@yahoo.co.in
More informationBank Customers (Credit) Rating System Based On Expert System and ANN
Bank Customers (Credit) Rating System Based On Expert System and ANN Project Review Yingzhen Li Abstract The precise rating of customers has a decisive impact on loan business. We constructed the BP network,
More informationnot possible or was possible at a high cost for collecting the data.
Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their daytoday
More informationMultiple Linear Regression in Data Mining
Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple
More informationNonLinear Regression Analysis
NonLinear Regression Analysis By Chanaka Kaluarachchi Presentation outline Linear regression Checking linear Assumptions Linear vs nonlinear Non linear regression analysis Linear regression (reminder)
More informationWeek 1: Functions and Equations
Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.12.2, and Chapter
More informationEnvironment Protection Engineering APPROXIMATION OF IMISSION LEVEL AT AIR MONITORING STATIONS BY MEANS OF AUTONOMOUS NEURAL MODELS
Environment Protection Engineering Vol. 3 No. DOI: 1.577/epe1 SZYMON HOFFMAN* APPROXIMATION OF IMISSION LEVEL AT AIR MONITORING STATIONS BY MEANS OF AUTONOMOUS NEURAL MODELS Longterm collection of data,
More informationNumerical Algorithms Group
Title: Summary: Using the Component Approach to Craft Customized Data Mining Solutions One definition of data mining is the nontrivial extraction of implicit, previously unknown and potentially useful
More informationStatistical Models in Data Mining
Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari Flood of
More informationChapter 6. The stacking ensemble approach
82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described
More informationNeural Networks algorithms and applications
Neural Networks algorithms and applications By Fiona Nielsen 4i 12/122001 Supervisor: Geert Rasmussen Niels Brock Business College 1 Introduction Neural Networks is a field of Artificial Intelligence
More informationNeural Networks & Boosting
Neural Networks & Boosting Bob Stine Dept of Statistics, School University of Pennsylvania Questions How is logistic regression different from OLS? Logistic mean function for probabilities Larger weight
More informationAPPLYING DATA MINING CLASSIFICATION TECHNIQUES TO SPEAKER IDENTIFICATION
Jastrzȩbia Góra, 16 th 20 th September 2013 APPLYING DATA MINING CLASSIFICATION TECHNIQUES TO SPEAKER IDENTIFICATION Kinga Sałapa 1,, Agata Trawińska 2 and Irena RotermanKonieczna 1, 1 Department of Bioinformatics
More informationIBM SPSS Neural Networks 22
IBM SPSS Neural Networks 22 Note Before using this information and the product it supports, read the information in Notices on page 21. Product Information This edition applies to version 22, release 0,
More informationData Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
More informationChapter 4: Artificial Neural Networks
Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/
More informationFeature Subset Selection in Email Spam Detection
Feature Subset Selection in Email Spam Detection Amir Rajabi Behjat, Universiti Technology MARA, Malaysia IT Security for the Next Generation Asia Pacific & MEA Cup, Hong Kong 1416 March, 2012 Feature
More informationData mining and statistical models in marketing campaigns of BT Retail
Data mining and statistical models in marketing campaigns of BT Retail Francesco Vivarelli and Martyn Johnson Database Exploitation, Segmentation and Targeting group BT Retail Pp501 Holborn centre 120
More informationReview on Financial Forecasting using Neural Network and Data Mining Technique
ORIENTAL JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY An International Open Free Access, Peer Reviewed Research Journal Published By: Oriental Scientific Publishing Co., India. www.computerscijournal.org ISSN:
More informationData Mining Lab 5: Introduction to Neural Networks
Data Mining Lab 5: Introduction to Neural Networks 1 Introduction In this lab we are going to have a look at some very basic neural networks on a new data set which relates various covariates about cheese
More information6. Feedforward mapping networks
6. Feedforward mapping networks Fundamentals of Computational Neuroscience, T. P. Trappenberg, 2002. Lecture Notes on Brain and Computation ByoungTak Zhang Biointelligence Laboratory School of Computer
More informationMonotonicity Hints. Abstract
Monotonicity Hints Joseph Sill Computation and Neural Systems program California Institute of Technology email: joe@cs.caltech.edu Yaser S. AbuMostafa EE and CS Deptartments California Institute of Technology
More information6.2.8 Neural networks for data mining
6.2.8 Neural networks for data mining Walter Kosters 1 In many application areas neural networks are known to be valuable tools. This also holds for data mining. In this chapter we discuss the use of neural
More informationClass #6: Nonlinear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris
Class #6: Nonlinear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Nonlinear classification Linear Support Vector Machines
More informationData Mining Chapter 6: Models and Patterns Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University
Data Mining Chapter 6: Models and Patterns Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Models vs. Patterns Models A model is a high level, global description of a
More informationNTC Project: S01PH10 (formerly I01P10) 1 Forecasting Women s Apparel Sales Using Mathematical Modeling
1 Forecasting Women s Apparel Sales Using Mathematical Modeling Celia Frank* 1, Balaji Vemulapalli 1, Les M. Sztandera 2, Amar Raheja 3 1 School of Textiles and Materials Technology 2 Computer Information
More informationNON PARAMETRIC MODELING OF STOCK INDEX
National Journal on Advances in Computing and Management, Vol. 1, No.2, October 2010 49 Abstract NON PARAMETRIC MODELING OF STOCK INDEX Sujatha K.V. 1 and Meenakshi Sundaram S. 2 1 Research Scholar, Sathyabama
More informationAn Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. XML data mining research based on multilevel technology
[Type text] [Type text] [Type text] ISSN : 09747435 Volume 10 Issue 13 BioTechnology 2014 An Indian Journal FULL PAPER BTAIJ, 10(13), 2014 [76027609] XML data mining research based on multilevel technology
More informationNeural Networks and Support Vector Machines
INF5390  Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF539013 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines
More informationIssues in Information Systems Volume 16, Issue IV, pp. 3036, 2015
DATA MINING ANALYSIS AND PREDICTIONS OF REAL ESTATE PRICES Victor Gan, Seattle University, gany@seattleu.edu Vaishali Agarwal, Seattle University, agarwal1@seattleu.edu Ben Kim, Seattle University, bkim@taseattleu.edu
More informationAutomatic Inventory Control: A Neural Network Approach. Nicholas Hall
Automatic Inventory Control: A Neural Network Approach Nicholas Hall ECE 539 12/18/2003 TABLE OF CONTENTS INTRODUCTION...3 CHALLENGES...4 APPROACH...6 EXAMPLES...11 EXPERIMENTS... 13 RESULTS... 15 CONCLUSION...
More informationData Mining. Nonlinear Classification
Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15
More informationGINICoefficient and GOZINTOGraph (Workshop) (Two economic applications of secondary school mathematics)
GINICoefficient and GOZINTOGraph (Workshop) (Two economic applications of secondary school mathematics) Josef Böhm, ACDCA & DERIVE User Group, nojo.boehm@pgv.at Abstract: GINICoefficient together with
More informationData Mining: STATISTICA
Data Mining: STATISTICA Outline Prepare the data Classification and regression 1 Prepare the Data Statistica can read from Excel,.txt and many other types of files Compared with WEKA, Statistica is much
More informationArtificial Neural Network and NonLinear Regression: A Comparative Study
International Journal of Scientific and Research Publications, Volume 2, Issue 12, December 2012 1 Artificial Neural Network and NonLinear Regression: A Comparative Study Shraddha Srivastava 1, *, K.C.
More informationArtificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence
Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network?  Perceptron learners  Multilayer networks What is a Support
More informationIBM SPSS Neural Networks 19
IBM SPSS Neural Networks 19 Note: Before using this information and the product it supports, read the general information under Notices on p. 95. This document contains proprietary information of SPSS
More informationReview on Financial Forecasting using Neural Network and Data Mining Technique
Global Journal of Computer Science and Technology Neural & Artificial Intelligence Volume 12 Issue 11 Version 1.0 Year 2012 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global
More informationBREAST CANCER DIAGNOSIS USING STATISTICAL NEURAL NETWORKS
ISTANBUL UNIVERSITY JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING YEAR VOLUME NUMBER : 004 : 4 : (11491153) BREAST CANCER DIAGNOSIS USING STATISTICAL NEURAL NETWORKS Tüba KIYAN 1 Tülay YILDIRIM 1, Electronics
More informationFootball Match Winner Prediction
Football Match Winner Prediction Kushal Gevaria 1, Harshal Sanghavi 2, Saurabh Vaidya 3, Prof. Khushali Deulkar 4 Department of Computer Engineering, Dwarkadas J. Sanghvi College of Engineering, Mumbai,
More informationUtilization of Neural Network for Disease Forecasting
Utilization of Neural Network for Disease Forecasting Oyas Wahyunggoro 1, Adhistya Erna Permanasari 1, and Ahmad Chamsudin 1,2 1 Department of Electrical Engineering and Information Technology, Gadjah
More informationTime Series Data Mining in Rainfall Forecasting Using Artificial Neural Network
Time Series Data Mining in Rainfall Forecasting Using Artificial Neural Network Prince Gupta 1, Satanand Mishra 2, S.K.Pandey 3 1,3 VNS Group, RGPV, Bhopal, 2 CSIRAMPRI, BHOPAL prince2010.gupta@gmail.com
More informationPrediction Model for Crude Oil Price Using Artificial Neural Networks
Applied Mathematical Sciences, Vol. 8, 2014, no. 80, 39533965 HIKARI Ltd, www.mhikari.com http://dx.doi.org/10.12988/ams.2014.43193 Prediction Model for Crude Oil Price Using Artificial Neural Networks
More informationvolumeprofit relationships
Slide 1.3.1 1. Accounting for decision making 1.3 Costvolume volumeprofit relationships Slide 1.3.2 Introduction This chapter examines one of the most basic planning tools available to managers: cost
More informationInternational Journal of Academic Research in Computer Engineering ( ) Vol: 1, No: 1, Pages: 4752, September 2016
International Journal of Academic Research in Computer Engineering (24767638) Vol: 1, No: 1, Pages: 4752, September 2016 International Journal of Academic Research in Computer Engineering Volume 1, Number
More informationPerformance Evaluation of Artificial Neural. Networks for Spatial Data Analysis
Contemporary Engineering Sciences, Vol. 4, 2011, no. 4, 149163 Performance Evaluation of Artificial Neural Networks for Spatial Data Analysis Akram A. Moustafa Department of Computer Science Al albayt
More informationRole of Customer Response Models in Customer Solicitation Center s Direct Marketing Campaign
Role of Customer Response Models in Customer Solicitation Center s Direct Marketing Campaign Arun K Mandapaka, Amit Singh Kushwah, Dr.Goutam Chakraborty Oklahoma State University, OK, USA ABSTRACT Direct
More informationData Mining Applications in Higher Education
Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2
More informationPredict Influencers in the Social Network
Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons
More informationNeural Network Addin
Neural Network Addin Version 1.5 Software User s Guide Contents Overview... 2 Getting Started... 2 Working with Datasets... 2 Open a Dataset... 3 Save a Dataset... 3 Data Preprocessing... 3 Lagging...
More informationImpact of Feature Selection on the Performance of Wireless Intrusion Detection Systems
2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Impact of Feature Selection on the Performance of ireless Intrusion Detection Systems
More informationChapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network
Chapter 2 The Research on Fault Diagnosis of Building Electrical System Based on RBF Neural Network Qian Wu, Yahui Wang, Long Zhang and Li Shen Abstract Building electrical system fault diagnosis is the
More informationSOLAR RADIATION PREDICTION. the need and effectiveness of a delicate issue
SOLAR RADIATION PREDICTION the need and effectiveness of a delicate issue ABOUT THE SPEAKER Fatih SERTTAŞ (Electrical and Electronics Engineer) is a research assistant in Afyon Kocatepe University, TURKEY.
More informationSOFTWARE EFFORT ESTIMATION USING RADIAL BASIS FUNCTION NEURAL NETWORKS Ana Maria Bautista, Angel Castellanos, Tomas San Feliu
International Journal Information Theories and Applications, Vol. 21, Number 4, 2014 319 SOFTWARE EFFORT ESTIMATION USING RADIAL BASIS FUNCTION NEURAL NETWORKS Ana Maria Bautista, Angel Castellanos, Tomas
More information1. Classification problems
Neural and Evolutionary Computing. Lab 1: Classification problems Machine Learning test data repository Weka data mining platform Introduction Scilab 1. Classification problems The main aim of a classification
More informationTamás Sovány, PhD. University of Szeged Department of Pharmaceutical Technology
Tamás Sovány, PhD University of Szeged Department of Pharmaceutical Technology Introduction API: lysozyme Natural peptide Antimicrobial Immune modulator (anti inflammatory. antiviral. anticancer effects)
More informationExample 3: Predictive Data Mining and Deployment for a Continuous Output Variable
Página 1 de 6 Example 3: Predictive Data Mining and Deployment for a Continuous Output Variable STATISTICA Data Miner includes a complete deployment engine with various options for deploying solutions
More informationData Mining Practical Machine Learning Tools and Techniques
Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea
More informationPrediction and Confidence Intervals in Regression
Fall Semester, 2001 Statistics 621 Lecture 3 Robert Stine 1 Prediction and Confidence Intervals in Regression Preliminaries Teaching assistants See them in Room 3009 SHDH. Hours are detailed in the syllabus.
More informationLOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as
LOGISTIC REGRESSION Nitin R Patel Logistic regression extends the ideas of multiple linear regression to the situation where the dependent variable, y, is binary (for convenience we often code these values
More informationNeural networks. Chapter 20, Section 5 1
Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of
More informationData Mining. SPSS Clementine 12.0. 1. Clementine Overview. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine
Data Mining SPSS 12.0 1. Overview Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Types of Models Interface Projects References Outline Introduction Introduction Three of the common data mining
More informationSpam? Not Any More! Detecting Spam emails using neural networks
Spam? Not Any More! Detecting Spam emails using neural networks ECE / CS / ME 539 Project Submitted by Sivanadyan, Thiagarajan Last Name First Name TABLE OF CONTENTS 1. INTRODUCTION...2 1.1 Importance
More informationData Mining mit der JMSL Numerical Library for Java Applications
Data Mining mit der JMSL Numerical Library for Java Applications Stefan Sineux 8. Java Forum Stuttgart 07.07.2005 Agenda Visual Numerics JMSL TM Numerical Library Neuronale Netze (Hintergrund) Demos Neuronale
More informationCombining GLM and datamining techniques for modelling accident compensation data. Peter Mulquiney
Combining GLM and datamining techniques for modelling accident compensation data Peter Mulquiney Introduction Accident compensation data exhibit features which complicate loss reserving and premium rate
More informationPerformance Evaluation and Prediction of ITOutsourcing Service Supply Chain based on Improved SCOR Model
Performance Evaluation and Prediction of ITOutsourcing Service Supply Chain based on Improved SCOR Model 1, 2 1 International School of Software, Wuhan University, Wuhan, China *2 School of Information
More informationNEURAL networks [5] are universal approximators [6]. It
Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 183 190 An Investment Strategy for the Stock Exchange Using Neural Networks Antoni Wysocki and Maciej Ławryńczuk
More informationStock Portfolio Selection using Data Mining Approach
IOSR Journal of Engineering (IOSRJEN) eissn: 22503021, pissn: 22788719 Vol. 3, Issue 11 (November. 2013), V1 PP 4248 Stock Portfolio Selection using Data Mining Approach Carol Anne Hargreaves, Prateek
More informationMAXIMIZING RETURN ON DIRECT MARKETING CAMPAIGNS
MAXIMIZING RETURN ON DIRET MARKETING AMPAIGNS IN OMMERIAL BANKING S 229 Project: Final Report Oleksandra Onosova INTRODUTION Recent innovations in cloud computing and unified communications have made a
More informationPearson's Correlation Tests
Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation
More informationAssessing Data Mining: The State of the Practice
Assessing Data Mining: The State of the Practice 2003 Herbert A. Edelstein Two Crows Corporation 10500 Falls Road Potomac, Maryland 20854 www.twocrows.com (301) 9833555 Objectives Separate myth from reality
More informationPredictive Dynamix Inc
Predictive Modeling Technology Predictive modeling is concerned with analyzing patterns and trends in historical and operational data in order to transform data into actionable decisions. This is accomplished
More informationLecture  32 Regression Modelling Using SPSS
Applied Multivariate Statistical Modelling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture  32 Regression Modelling Using SPSS (Refer
More informationComparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations
Volume 3, No. 8, August 2012 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info Comparison of Supervised and Unsupervised Learning Classifiers for Travel Recommendations
More informationTIME SERIES FORECASTING WITH NEURAL NETWORK: A CASE STUDY OF STOCK PRICES OF INTERCONTINENTAL BANK NIGERIA
www.arpapress.com/volumes/vol9issue3/ijrras_9_3_16.pdf TIME SERIES FORECASTING WITH NEURAL NETWORK: A CASE STUDY OF STOCK PRICES OF INTERCONTINENTAL BANK NIGERIA 1 Akintola K.G., 2 Alese B.K. & 2 Thompson
More informationC19 Machine Learning
C9 Machine Learning 8 Lectures Hilary Term 25 2 Tutorial Sheets A. Zisserman Overview: Supervised classification perceptron, support vector machine, loss functions, kernels, random forests, neural networks
More informationIntroduction to Machine Learning Connectionist and Statistical Language Processing
Introduction to Machine Learning Connectionist and Statistical Language Processing Frank Keller keller@coli.unisb.de Computerlinguistik Universität des Saarlandes Introduction to Machine Learning p.1/22
More informationBuilding MLP networks by construction
University of Wollongong Research Online Faculty of Informatics  Papers (Archive) Faculty of Engineering and Information Sciences 2000 Building MLP networks by construction Ah Chung Tsoi University of
More informationForecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network
Forecasting of Economic Quantities using Fuzzy Autoregressive Model and Fuzzy Neural Network Dušan Marček 1 Abstract Most models for the time series of stock prices have centered on autoregressive (AR)
More informationA Property and Casualty Insurance Predictive Modeling Process in SAS
Paper 114222016 A Property and Casualty Insurance Predictive Modeling Process in SAS Mei Najim, Sedgwick Claim Management Services ABSTRACT Predictive analytics is an area that has been developing rapidly
More informationNovelty Detection in image recognition using IRF Neural Networks properties
Novelty Detection in image recognition using IRF Neural Networks properties Philippe Smagghe, JeanLuc Buessler, JeanPhilippe Urban Université de HauteAlsace MIPS 4, rue des Frères Lumière, 68093 Mulhouse,
More informationStudy Plan for the Master Degree In Industrial Engineering / Management. (Thesis Track)
Study Plan for the Master Degree In Industrial Engineering / Management (Thesis Track) Plan no. 2005 T A. GENERAL RULES AND CONDITIONS: 1. This plan conforms to the valid regulations of programs of graduate
More information